DOF solved problems#
This page presents some examples of determining the number of d.o.f. in a mechanism using the Gruebler’s formula as seen in the former section.
Example 1#
(Image credits: [AI14])
Solution
Two valid solutions:
\[n= 4, p_I=3, p_{II}=1 \rightarrow g=2\]
or
\[n= 5, p_I=5, p_{II}=0 \rightarrow g=2 \]
Example 2#
(Image credits: [AI14])
Solution
Two valid solutions:
\[ n= 12, p_I=15, p_{II}=0 \rightarrow g=3 \]
or
\[ n= 11, p_I=13, p_{II}=1 \rightarrow g=3 \]
Example 3#
(Image credits: [AI14])
Solution
Do not count neither the disk at the bottom, nor the belt coupling. Grüebler fails with belts and gears, we must skip them.
\[ n= 6, p_I=7, p_{II}=0 \rightarrow g=1 \]
or (counting the cam as a type II joint instead):
\[ n= 5, p_I=5, p_{II}=1 \rightarrow g=1 \]
Example 4#
(Image credits: [AI14])
Solution
\[ n= 10, p_I=12, p_{II}=0 \rightarrow g=3 \]
Example 5#
(Image credits: [AI14])
Solution
\[ n= 5, p_I=4, p_{II}=2 \rightarrow g=2 \]
or
\[ n= 7, p_I=8, p_{II}=0 \rightarrow g=2 \]
Example 6#
(Image credits: [AI14])
Solution
\[ n= 6, p_I=5, p_{II}=2 \rightarrow g=3 \]
or:
\[ n= 8, p_I=9, p_{II}=0 \rightarrow g=3 \]
Example 7#
(Image credits: [AI14])
Solution
\[ n= 9, p_I=9, p_{II}=2 \rightarrow g=4 \]
or:
\[ n= 11, p_I=13, p_{II}=0 \rightarrow g=4 \]