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Abstract— Calibration of metal oxide (MOX) gas sensor for
continuous monitoring is a complex problem due to the highly
dynamic characteristics of the gas sensor signal when exposed
to natural environment (Open Sampling System - OSS). This
work presents a probabilistic approach to the calibration of a
MOX gas sensor based on Gaussian Processes (GP). The proposed
approach estimates for every sensor measurement a probability
distribution of the gas concentration. This enables the calculation
of confidence intervals for the predicted concentrations. This is
particularly important since exact calibration is hard to obtain
due to the chaotic nature that dominates gas dispersal. The
proposed approach has been tested with an experimental setup
where an array of MOX sensors and a Photo Ionization Detector
(PID) are placed downwind w.r.t. the gas source. The PID is used
to obtain ground truth concentration. Comparison with standard
calibration methods demonstrates the advantage of the proposed
approach.

I. INTRODUCTION

Gas sensing applications often require continuous and direct
exposition of gas sensors to the environment to be analyzed,
since it contains useful information about the nature of the gas
plume that can be used e.g. to localize the source of the gas [1].
This configuration, to which we refer as open sampling system
(OSS), is the preferred solution when limitations in dimension,
payload or energy consumption do not allow the adoption of
a sampling system where the sensors are hosted in a chamber
with controlled airflow, temperature and humidity.

The most common gas sensing technology for OSS applica-
tions is metal oxide (MOX) gas sensors. The most prominent
reasons for the selection of MOX sensors are their wide com-
mercial availability, low price, and their higher sensitivity to
the compounds of interest in comparison to most other sensing
technologies. However, this technology presents among other
drawbacks, an important lack of selectivity, does not provide
true concentration readings, suffers from long and short term
drift and is rather slow [2], especially when recovering to the
baseline, i.e. the steady output value given by a gas sensor
when exposed to clean air.

The problem addressed in this paper is the estimation of gas
concentration from the readings of a MOX sensor deployed in
an OSS. This is a crucial step for some real applications of gas
sensing since legal requirements and regulations are expressed
in terms of absolute gas concentration, toxicity levels, etc.
The main difference respect the gas quantification with sensors
within a sensing chamber (where controlled conditions can be
imposed), is the many sources of uncertainty present in OSS,

being the most relevant the exposition of the sensors to the
turbulent airflow that brings the chemical compound in contact
with the sensors. Indeed, given the slow dynamics of MOX
gas sensors and the rapid fluctuations in concentration due to
turbulent airflow, the sensors never reach a steady state but
continuously fluctuate (see Fig. 1).

In this paper we propose an approach for gas concen-
tration estimation that calculates a posterior distribution of
the concentration using a Gaussian Process (GP) model [3],
which provides an estimation of the uncertainty (as a variance)
that can be used to calculate confidence intervals for the
predictions.

The structure of this article is as follows. After a discussion
of the related works in Section 2, we introduce in Section 3
the basics of Gaussian processes regression for gas quantifi-
cation. Then, Section 4 presents the experimental setup and
comparative results for different types of MOX sensors.

II. RELATED WORKS

Traditionally, researches have focused on the calibration of
MOX gas sensors enclosed inside a chamber, where environ-
mental conditions, gas exposure times and concentrations are
known and controlled. This setup allows the measurement of
steady state values, which are used in a regression process.

Different methods have been proposed for such regres-
sion objective like Principal Component Regression (PCR)
or Partial Least Squares Regression (PLSR) [4], [5], [6].
Alternatively, non-linear methods like Artificial Neural Net-
works (ANN) or more recently kernel methods, have also
drawn significant interest [7], [8], [9], being Support Vector
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Fig. 1. Instantaneous sensor response (a) and PID measurements (b) for a
standard open sampling system experiment.



Regression (SVR) probably the most studied kernel method in
chemometric applications [10].

Nevertheless, all these approaches make calibration to rely
on steady state measurements of the sensor. Unfortunately
these techniques are not immediately applicable to OSS
because steady state values are almost never reached [11],
basically due to the turbulence and advection that dominate
gas transport in the setups of our interest.

The scope of this work is towards applications in which
the sensors are deployed in a highly dynamical environment,
where they enter and exit a gas plume repeatedly, like for
example in robotics applications. In this field, traditionally
most of the works on olfaction directly obviate this problem,
working directly with the conductance readings of the sensors
as an approximate measure of the gas concentration. Just a few
works like [12] have addressed this problem, where Ishida et
al. proposes a sensor calibration based on steady state values
as a rough approximation for an OSS.

It must be noticed that all mentioned methods ignore the
uncertainty in the calibration while, if we work with OSS,
measurements of MOX conductance are always affected by
a high uncertainty due to the above mentioned gas transport
mechanisms, the inherent sensor dynamics and environmental
factors (not addressed in this work) as temperature or hu-
midity. Due to these uncertainties, it is preferable to provide
confidence information together with the gas concentration
predicted at any time. The GP-based method proposed in this
paper generates an estimate of the uncertainty (as a variance)
which can be used to calculate confidence intervals for the
predictions.

III. THE ALGORITHM FOR ESTIMATION OF GAS
CONCENTRATION.

This section details our proposal for the concentration
estimation in OSS, summarizing the theory behind Gaussian
Process regression for the particular case of gas quantification.
Additionally, two different loss functions are proposed for
evaluating the results.

A. Gaussian Process Regression for Gas Concentration Esti-
mation

GPs can be seen as a generalization of the Gaussian
probability distribution to distributions over functions [3]. That
is, they perform inference directly in the space of functions,
starting with a prior distribution over all possible functions and
subsequently learning the target function from data samples.
In our case, the relationship to be inferred is f : rt 7−→ ct,
where rt is the sensor resistance and ct the gas concentration
at time t.

A GP is completely specified by its mean and co-
variance functions, m(rt) = E [f(rt)] and k(rt, rt′) =
cov (f(rt), f(rt′)) respectively. We denote the GP as:

f (rt) ∼ GP (m(rt), k(rt, rt′)) (1)

Moreover, to account for noise in the sensor it is assumed
that the observed concentration values ct are corrupted with

an additive i.i.d Gaussian noise with zero mean and variance
σ2
n, that is:

ct = f(rt) + ε (2)
ε ∼ N (0, σ2

n)

The selection of the mean and covariance functions of the
GP, as well as the values of their hyper-parameters, determines
the prior over the functions (informally, the ”shape” of the
functions) considered in the inference process [3]. In our case
of study we consider GPs with zero mean function and the
commonly used squared exponential (SE) covariance function,
that is:

m(rt) = 0 (3)

k(rt, rt′) = σ2
f exp

(
−1

2

‖ rt − rt′ ‖2

`2

)
(4)

where σ2
f is the overall variance hyper-parameter and ` is the

characteristic length scale, how far do we have to move in the
input space for the function values to become uncorrelated.

The obtained regression model depends on the selection
of the hyper-parameters, which can be grouped in a vector
θ = (`2, σ2

f , σ
2
n). The optimal hyper-parameters are found by

maximizing the marginal likelihood function p (c|r,θ), where
c is a vector of training concentration values, r the vector
containing the sensor measurements, and θ is the vector of
unknown parameters.

This allows us to predict gas concentration values c∗ for
arbitrary sensor resistances r∗, even for values not seen in
the training set thanks to what we learned from the training
data about the latent function. The posterior distribution over
functions (our prediction) is also a Gaussian, and is obtained
by conditioning the joint prior on the training samples:

c∗|r, c, r∗ ∼ N (c̄∗, cov(c∗)) ,where (5)

c̄∗ , E[c∗|r, c, r∗] = K(r∗, r)[K(r, r) + σ2
nI]

−1c

cov(c∗) = K(r∗, r∗)−K(r∗, r)[K(r, r) + σ2
nI]

−1K(r, r∗)

Note that the predictive distribution is based on a mean
value c̄∗ (our best estimation for c∗), which is a linear
combination of the observed values c, and a variance value
cov(c∗) which denotes the uncertainty in our estimation, and
does not depend on the observed targets but only on the inputs.

B. Evaluation of the Predictions

In this section we propose two performance measures in
order to compare the results of the gas quantification based
on GP for different sensor types, and to compare the results
with other methods previously proposed in literature:

Root Mean Squared Error (RMSE): The RMSE is calcu-
lated as the difference between the ground-truth concentration
(obtained with the readings from the PID) and the expected
value of the predictive distribution (see (5)).

RMSE =

√√√√ 1

n

n∑
i=1

(ci − c̄∗i)2 (6)



Notice that the RMSE takes only into account the predictive
mean, while it ignores its uncertainty. However, this indicator
allows us to compare the prediction of the proposed GP
with other regression methods, like Partial Least Squares
Regression (PLSR) or Support Vector Regression (SVR), that
do not provide any estimation of the prediction uncertainty.

Negative Log Predictive Density (NLPD): The NLPD is
a standard criterion to evaluate probabilistic models:

NLPD = − 1

n

n∑
i=1

log(p(ci|ri)) = (7)

=
log(2π)

2
+

1

2N

n∑
i=1

[
log(σ2(ci)) +

(ci − µ(ci))
2

σ2(ci)

]
where ci is the ground truth gas concentration, σ(ci) is the
predictive standard deviation, and µ(ci) the predictive mean.

It is worth noting that the NLPD considers the whole pos-
terior distribution and not only its expected value. In general,
more negative NLPD values indicate better predictions with a
small uncertainty.

IV. RESULTS

In this section we present the experimental setup and results
for the gas quantification based on GP. We start describing the
composition of the experimental dataset, and how samples are
selected from training and validation of the GP. Then, then
results for different scenarios are presented and a comparison
is performed between the different sensors types available.
Finally, the average results of the gas quantification with GP
is compared with traditionlly regression methods.

To test the proposed GP based gas quantification, an induced
artificial airflow of approximately 10 cm/s is generated to
spread the gas released from an odour blender, a device
described in [13] that enables rapid switch of compound and
concentration, allowing the generation of rapidly changing
controlled signals. The outlet of the olfactory blender is placed
on the floor 0.5 m upwind with respect to an array of 11 MOX
gas sensors (5 Figaro TGS and 6 e2V MiCS) and a PID1. The
compound selected for this experiment is ethanol which is
heavier than air and, consequently, forms plumes at ground
level.

In order to create a dataset that contains many different
changes of concentration for the training of the GP, four differ-
ent odour emitting strategies have been used. In all strategies
the gas source starts emitting clean air for two minutes, time
enough for us to assume that the sensors response is baseline.
Fig. 2 depicts the source strength profile for three of the four
emitting strategies. In the fourth and last emitting strategy,
after the first 2 minutes in which the source emits clean air,
the intensity of the source is chosen randomly in among 20%,
40%, 60%, 80%, 100%. Every two minutes the concentration
is switched to another random value. After 10 switches the
source emits clean air for two minutes and the experiment

1PID model ppbRAE2000 from RAESystem with a 10.6 eV UV lamp

Fig. 2. Source strength profile for three of the four different emitting
strategies employed in the experimental dataset. The fourth strategy was based
in the selection of a random source intensity (0-100%) each two minutes.

finishes. Overall, the dataset includes a total of 18 experiments,
three repetitions of each strategy, plus six additional repetitions
of the random strategy.

For the training and posterior evaluation of the GP, a
cross validation procedure at experiment level has been used
to provide significance to the results. This means that if
samples from an experiment have been used during the training
procedure, no sample from that experiment will be used for
calculating the performance indexes. This is done in order
to take into account variations in the sensor response caused
by short term drift and changing environmental conditions.
Furthermore, due to the computational complexity of the
training algorithm of the GP (which is dominated by the
inversion of the kernel matrix, to be performed at every step of
the maximization of the marginal likelihood) a subset of 1000
samples from the experiments considered for the training set,
is randomly selected for training the GP.

Fig. 3 depicts the gas concentration estimation for three
different experiments. In order to compare the proposed
methodology with others previously proposed for gas quantifi-
cation, we provide for each scenario the results using Partial
Least Squares Regression (PLSR) and Support Vector Machine
Regression (SVR). Additionally, in Fig. 4 the NLPD and
RMSE for each sensor in the array are plotted using a box-plot
format to enable a comparison between the different sensors
types and technologies.

Attending to these results and to the sensor types available in
the array, sensors TGS-2611 and MiCS-5121 can be considered
as the most advisable for this specific configuration and target
gas (ethanol) for measuring the gas concentration.

Finally, table I summarizes a performance comparison be-
tween the proposed calibration method based in GP to that of
PLSR and SVR. In general, and since only the RMSE can be
used to compare between these regression methods, we can
say that the PLSR approach is slightly worse than SVR, while
the latter behaves as well as the GP approach.
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Fig. 3. Estimation of the gas concentration for three different gas emitting
strategies (rows), obtained after the calibration of sensor TGS-2611. Left
column outline the gas concentration profile, containing the ground truth
(blue line), the estimation provided by the GP calibration (red line is the
posterior mean while the shaded grey region represents the confidence interval
±1σ), the estimation provided by PLSR (green line), and the SVR estimation
(magenta line). Right column plots for each scenario the error between the
different estimations (in the case of GPs only the mean value is taken into
account) and the ground truth.

(a) (b)
Fig. 4. NLPD and RMSE box-plot for the case of one-sensor GP calibration.
For both indicators, as lower the value the better calibration. On each box,
the central red mark is the median, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually as red crosses.

V. CONCLUSION AND FUTURE WORKS

In this paper we have proposed a new approach for gas
quantification based on MOX gas sensors when used in Open
Sampling Systems (OSS). We approached the problem from
a probabilistic perspective, employing Gaussian Processes to
obtain an estimation of a posterior distribution over the gas
concentration given the response of a MOX sensor. This
has the advantage of enabling not only predictions of the
expected value of gas concentration but also predictions of
the uncertainty of the estimation. This advantage is particularly
relevant for OSS applications where typically many sources of
uncertainty exist.

TABLE I
RMSE VALUES (MEAN ± 1σ) OF THREE DIFFERENT CALIBRATION

METHODS. SENSOR MiCS-5121 AND TGS-2611 ARE THE ONES WHICH

PROVIDES THE OVERALL BEST PERFORMANCE.

Sensor Model GPs PLSR SVR
MiCS 2610 43.81 ± 22.88 44.79 ± 14.26 46.01 ± 19.44
MiCS 2710 30.38 ± 7.83 31.89 ± 6.13 29.71 ± 6.42
MiCS 5521-1 33.64 ± 9.02 34.26 ± 7.03 34.09 ± 7.56
MiCS 5121 23.84 ± 5.58 25.44 ± 4.20 24.18 ± 5.91
MiCS 5135 32.09 ± 12.00 35.61 ± 8.21 33.37 ± 12.31
MiCS 5521-2 31.11 ± 8.01 32.37 ± 7.47 31.80 ± 8.09
TGS 2600-1 26.05 ± 10.08 31.10 ± 5.42 25.71 ± 8.79
TGS 2611 21.46 ± 3.54 26.27 ± 3.59 21.57 ± 3.14
TGS 2620 34.16 ± 24.02 35.41 ± 7.08 29.61 ± 8.38
TGS 2600-2 28.96 ± 15.13 32.43 ± 5.98 27.23 ± 9.92
TGS 2602 44.64 ± 15.58 41.87 ± 8.21 37.12 ± 12.69
OVERALL 31.17 ± 6.27 33.77 ± 5.77 30.94 ± 6.78

Future works may include exploring new kernels more
specific for time series like the Autoregressive (AR) kernel,
to study if they can produce more accurate estimations of the
gas concentration than the kernel employed here.
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