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Abstract

The paper reports on mobile robot motion estimation based on
matching points from successive two-dimensional (2D) laser scans.
This ego-motion approach is well suited to unstructured and dynamic
environments because it directly uses raw laser points rather than ex-
tracted features. We have analyzed the application of two methods
that are very different in essence: i) A 2D version of Iterative Clos-
est Point (ICP), which is widely used for surface registration; ii) A
Genetic Algorithm (GA), which is a novel approach for this kind of
problem. Their performance in terms of real-time applicability and
accuracy has been compared in outdoor experiments with non-stop
motion under diverse realistic navigation conditions. Based on this
analysis, we propose a hybrid GA-ICP algorithm that combines the
best characteristics of these pure methods. The experiments have been
carried out with the tracked mobile robot Auriga-α and an on-board
2D laser scanner.

∗This research was partially supported by the Spanish CICYT projects DPI 2002-01319
and DPI 2002-04401-C03-01
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1 Introduction

The aim of motion estimation is to capture the short-term behavior of mobile
robots from sensor data. This information is useful for low-level control,
for shaping the followed trajectory, and for kinematic model identification.
Ego-motion estimation is essential for many field applications because, as
opposed to pose estimation, it is a relative scheme that does not rely on an
absolute world frame. Usually, this is computed by dead-reckoning, which
comprises odometry and inertial sensors (Borenstein et al., 1997). These
provide acceptable accuracy for sufficiently small steps, but their estimate
can be improved if external sensor data is also considered.

This paper focusses on motion estimation by means of 2D laser point
matching. On-board laser scanners have become common in mobile robotics
due to a substantial increase in performance and a decrease in cost. Each scan
provides a precise contour of the surrounding environment, so motion can be
estimated by finding a correspondence between successive laser scans. Three-
dimensional scanners are increasingly being used for off-road navigation, but
two-dimensional range-finders are by large the most widely used ones for
mobile robot operation on approximately flat terrains.

Scan matching, or registration, can be defined as finding the translation
and rotation of a scan contour in such a way that a maximum overlap occurs
with either a known map (i.e., position estimation) or a previous scan (i.e.,
motion estimation). Dead-reckoning can be employed to provide an initial
estimation for this search. It must be noted that the integration of mo-
tion estimations (e.g., when applied to global localization or map building)
inevitably leads to unbounded growth of pose uncertainty during navigation.

The application of scan matching methods for motion estimation can be
broadly classified into three different categories:

1. Feature based techniques that discern distinctive geometrical patterns,
such as line segments (González et al., 1994), corners (Shaffer et al.,
1992) or edges (Weber et al., 2002), from the laser readings. Computa-
tion of these features can be a hard burden for ego-motion estimation.

2. Compact data methods that extract mathematical properties from ran-
ge measurements such as histograms (Weiß et al., 1994), motion fields
(González and Gutiérrez, 1999) or principal eigenvectors (Crowley et al.,
1998). These characteristics can be very sensitive to measurement noise
and moving objects in the sensed environment.

3. Point matching techniques that directly establish correspondences be-
tween spatial points from two laser scans. These are well suited for
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motion estimation in unstructured and dynamic environments because
they directly use raw laser data. Exact point correspondence is im-
possible due to sensor limitations, so matching is usually regarded as
an optimization problem where the maximum expected precision is in-
trinsically limited by the working environment and by the rangefinder
performance.

Different optimization-based techniques have been proposed for point
matching methods, such as a direct-descent technique denominated Iterative
Closest Point (ICP) (Chen and Medioni, 1991), (Besl and McKay, 1992),
(Zhang, 1992), Gradient Computation (GC) (Neugebauer, 1997), (Fitzgib-
bon, 2001), (Thrun et al., 2000), Evolutionary Programming (EP) (Agrawal
et al., 1994), Simulated Annealing (SA) (Blais and Levine, 1995), and, re-
cently, a Genetic Algorithm (GA) (Mart́ınez, 2003). Among them, the ICP
procedure is the most popular because of its simplicity and effectiveness, and
many variants have been proposed (Rusinkiewicz and Levoy, 2001). GC is
based on calculating gradients of either probabilistic (Thrun et al., 2000)
or squared-error (Neugebauer, 1997), (Fitzgibbon, 2001) cost functions. Fi-
nally, the EP, SA and GA methods introduce a stochastic component in the
search of either the correspondence of points (Agrawal et al., 1994) or the
whole pose (Blais and Levine, 1995), (Mart́ınez, 2003).

Point correspondences can be computed either in polar (Neugebauer,
1997), (Thrun et al., 2000), (Blais and Levine, 1995), (Mart́ınez, 2003) or
cartesian (Chen and Medioni, 1991), (Besl and McKay, 1992), (Zhang, 1992),
(Fitzgibbon, 2001), (Agrawal et al., 1994) coordinates. The latter strategy
can be accelerated for large amounts of data by using closest point caching or
multi-dimensional binary search trees (Zhang, 1992), which use information
from previous matching tentatives. Moreover, unmatchable points can dis-
rupt the optimization process if included in the cost function, so an adaptive
statistical threshold can be used to discard outliers (Zhang, 1992), (Fitzgib-
bon, 2001).

In this paper, we have analyzed two essentially different point matching
techniques for motion estimation: a fast 2D version of ICP, a local-scope
optimizer which is the most widely used registration algorithm for 3D sur-
faces, and the GA method, a wide-scope technique which constitutes a novel
stochastic approach for scan matching. Then, we propose a hybrid GA-ICP
algorithm that combines the best characteristics of these methods. Com-
parative experimental results have been obtained with the tracked vehicle
Auriga-α equipped with a commercial scanner.

The rest of the paper is organized as follows. In the next section, we
enunciate the 2D laser point matching problem, we review the ICP and GA
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methods, and we propose a hybrid GA-ICP solution. Subsequently, in sec-
tion 3, these techniques are compared based on non-stop motion outdoor
experiments under diverse realistic navigation conditions with the Auriga-α
mobile robot. Finally, the conclusions and future work are outlined in section
4.

2 The 2D laser point matching problem

A laser scanner mounted on a vehicle generates a light beam that rotates in
a horizontal plane parallel to the ground. Thus, a range scan at discrete time
k can be defined as a set of points {qk} which is represented in polar coor-
dinates as a coupled list of distances and angles {(dk, αk)} that correspond
to the successive intersections of the laser ray with the closest objects in the
surroundings.

The scan angles are arranged consecutively and they are evenly spaced
with a certain angular resolution ρ. The scanning sequence is indexed by
j, which represents an integer between 0 and a maximum value N . If Φ
denotes the field of view, N is given by Φ/ρ for partial field-of-view scans
and by (Φ/ρ)− 1 for complete circular scans (i.e., Φ = 360◦).

Let XYk be a coordinate system attached to the rangefinder at discrete
time k. Assuming that the X axis is aligned with the laser beam at αk(0) = 0◦

(see Fig. 1), then:
αk(j) = ρ j (1)

and the cartesian coordinates of the jth scanned point qk(j) are:

xk(j) = dk(j) cos(αk(j)) (2)

yk(j) = dk(j) sin(αk(j))

When in motion, two consecutive scans at discrete instants k and k + 1
will be recorded from different poses of the vehicle. Thus, {qk} and {qk+1}
will be expressed in polar coordinates on the laser frames at those instants,
denoted by XYk and XYk+1, respectively. Both frames are defined with
respect to an arbitrary global coordinate system.

In order to find correspondences between both scans, {qk+1} must be
projected onto the XYk frame, which results in {q̂k} according to a tentative
transformation Tk (see Fig. 2). Tk is composed of the relative displacements
(∆x, ∆y) and the rotation increment ∆φ between XYk and XYk+1.

Cartesian coordinates for {q̂k} are obtained as:[
x̂k(j)
ŷk(j)

]
=

[
cos(∆φ) − sin(∆φ)
sin(∆φ) cos(∆φ)

] [
xk+1(j)
yk+1(j)

]
+

[
∆x
∆y

]
(3)
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Figure 1: Cartesian and polar coordinates of the qk(j) point.

Figure 2: Projection of qk+1(j) onto the XYk frame.

Similarly, the projected polar coordinates for {q̂k} can be computed as:

α̂k(j) = ∆φ + arctan

(
yk+1(j) + ∆y

xk+1(j) + ∆x

)
(4)
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d̂k(j) =
√

(xk+1(j) + ∆x)2 + (yk+1(j) + ∆y)2

Assuming a given transformation estimation Tk, let us define the cor-
respondence index function as J(j) if the projection q̂k(j) of point qk+1(j)
corresponds with qk(J(j)). A match error function eTk

(j) can then be defined
for each pair of matched points:

eTk
(j) = eTk

[q̂k(j) ,qk(J(j))] (5)

Unmatchable points can be discarded by defining a boolean function for
outliers detection:

pTk
(j) =

{
0 if |eTk

(j)| ≥ E
1 otherwise

(6)

given a correspondence threshold E. Consequently, the number nTk
of valid

correspondences is given by:

nTk
=

N∑
j=0

pTk
(j) (7)

and the ratio that shows the degree of overlap of any possible transformation
is:

PTk
=

nTk

N + 1
(8)

Exact correspondence of points from different scans is impossible due to
a number of facts: deformation caused by vehicle motion, spurious ranges,
random noise, terrain unevenness, mixed pixels, occluded areas, discretized
angular resolution, moving objects, etc. Then, scan matching can be thought
of as an optimization problem for determining a 2D transformation that
minimizes a well-grounded matching criterion ITk

.
A general matching index ITk

for a given transformation Tk can be for-
mulated by accumulating the matching errors and dividing this sum by nTk

to normalize and by PTk
to penalize low correspondence rates, that is:

ITk
=

∑N
j=0[pTk

(j) eTk
(j)]

nTk
PTk

(9)

This expression represents the cost function to be iteratively minimized
by point matching methods. A description of the ICP and GA methods can
be found next. They mainly differ in the search procedure, in the definition of
the match error function eTk

, and in the adjustment of the outlier threshold
E. After that, a hybrid GA-ICP approach is proposed.
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2.1 Iterative closest point algorithm (ICP)

In spite of its popularity, particularly for 3D surface registration (Chen and
Medioni, 1991), (Besl and McKay, 1992), (Zhang, 1992), (Rusinkiewicz and
Levoy, 2001), including 3D SLAM (Surmann et al., 2004), only a few appli-
cations of ICP have been reported for 2D mobile robot motion estimation
and always in combination with other methods (Lu and Milios, 1997), (Mad-
havan et al., 1998). Since our aim is to use the method for 2D scan matching,
what follows is a description of a pure two-dimension point-to-point version
of the algorithm (i.e. without tangent line calculations).

Firstly, Tk is initialized with the odometric motion estimation T o
k before

ICP starts four-step iterations. The first step calculates the cartesian coor-
dinates of {q̂k} as the projection of {qk+1} onto the XYk frame according to
Eq. (3).

The second step consists on computing the squared distances for every
possible combination of {q̂k} and {qk} points:

e(i , j) = (xk(i)− x̂k(j))
2 + (yk(i)− ŷk(j))

2 (10)

In the third step, ICP calculates the correspondence index function J(j)
based on minimum squared distances:

J(j) = m, if e(m, j) = minN
i=0[e(i, j)] (11)

Thus, the match error function of Eq. (5) is given by:

eTk
(j) = (xk(J(j))− x̂k(j))

2 + (yk(J(j))− ŷk(j))
2 (12)

and outliers detection is carried out with Eq. (6).
Finally, motion parameters are updated by minimizing Eq. (9) with the

error definition of Eq. (12). This optimization can be solved analytically as
follows:

∂ITk

∂∆φ
= 0 ⇒ ∆φnew = arctan

(
Sxk

Syk+1
+ nTk

Sykxk+1
− nTk

Sxkyk+1
− Sxk+1

Syk

nTk
Sxkxk+1

+ nTk
Sykyk+1

− Sxk
Sxk+1

− Syk
Syk+1

)
∂ITk

∂∆x
= 0 ⇒ ∆xnew =

Sxk
− cos (∆φnew) Sxk+1

+ sin (∆φnew) Syk+1

nTk

(13)

∂ITk

∂∆y
= 0 ⇒ ∆ynew =

Syk
− sin (∆φnew) Sxk+1

− cos (∆φnew) Syk+1

nTk
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where the S terms stand for the following sums:

Sxk
=

N∑
j=0

[pTk
(j) xk(J(j))] Sxk+1

=
N∑

j=0

[pTk
(j) xk+1(j)]

Syk
=

N∑
j=0

[pTk
(j) yk(J(j))] Syk+1

=
N∑

j=0

[pTk
(j) yk+1(j)] (14)

Sxkxk+1
=

N∑
j=0

[pTk
(j) xk(J(j)) xk+1(j)] Sxkyk+1

=
N∑

j=0

[pTk
(j) xk(J(j)) yk+1(j)]

Sykxk+1
=

N∑
j=0

[pTk
(j) yk(J(j)) xk+1(j)] Sykyk+1

=
N∑

j=0

[pTk
(j) yk(J(j)) yk+1(j)]

This technique guarantees convergence to a local minimum that is close
to the odometric estimation (Besl and McKay, 1992), which is not necessarily
the optimal one (Zhang, 1992). Note that the most expensive computation
of ICP is to find the closest points at each iteration.

The outlier threshold E is a critical parameter for the ICP algorithm.
Some 3D implementations have proposed an adaptive statistical threshold
(Zhang, 1992). To set up this parameter properly for 2D motion estimation,
where less laser points are available and these are noisier, we propose a
different approach. Since the registration error is reduced after each ICP
iteration, E can be progressively decreased from Emax for the first iteration
to Emin in the last one.

The value of Emax can be characterized from experimental calibration of
odometric uncertainty (Muñoz et al., 1994). An upper bound of the expected
odometric errors for each parameter of the transformation can be expressed
as b = (bx, by, bφ), which depends on the elapsed navigation time t between
two consecutive scans. Then, Emax is calculated as a squared distance:

Emax = b2
x + b2

y (15)

As for Emin, the best possible registration should only depend on laser
range errors. Provided that these are gaussian (Ye and Borenstein, 2002)
with a standard deviation σ, squared match errors defined in Eq. (12) can
be modeled as a chi-squared distribution (χ2) of one degree of freedom. Ac-
cording to the percentage of this distribution, the squared threshold value
that concentrates 99% of valid point correspondences is:

Emin = (χ2
0.99)

2 = (6.63 σ)2 (16)
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2.2 Genetic algorithm (GA)

GAs provide a derivative-free stochastic optimization tool, where each point
in a solution space is encoded into a bit string (chromosome) and is associated
with a fitness value according to a cost function. Starting from an initial ran-
dom population, points with better fitness values are used to construct a new
population of solutions by means of genetic operators. Basically, these are:
(i) selection, that determines which individuals survive to the next genera-
tion, (ii) crossover, that generates new chromosomes by randomly combining
parts from good solutions, and (iii) mutation, that sporadically changes some
bits of the new individuals. Thus, after several iterations (generations), the
overall fitness value is improved by exploiting the best solutions and exploring
new possibilities (Man et al., 1999).

GAs are useful for finding an optimized transformation Tk from experi-
mental data because it is straightforward to code and evaluate the possible
solutions (Mart́ınez, 2003). Besides, the stochastic nature of this technique
is valuable for coping with local minima. Thus, the genetic algorithm can
find a motion estimation (∆x, ∆y, ∆φ) that minimizes the fitness value ITk

.
Each parameter of Tk is a gene coded as a bit string. This means that the
problem space has to be discretized into a finite solution space with a resolu-
tion given by the chromosome length. A complete chromosome results from
the concatenation of the three genes (see Fig. 3).

Figure 3: Genetic representation of a movement in the plane.

The tridimensional problem space is centered in the odometric estimation
T o

k , and its limits are set according to the odometric error bound b. The finite
solution space consists of all the possible chromosomes that can be codified.

For each individual of the population, this method first extracts Tk from
the chromosome. Then, {q̂k} is obtained by projecting polar coordinates
of {qk+1} onto the XYk frame according to Eq. (4). The correspondence
function can directly be established geometrically as (see Fig. 2):

J(j) = round

(
α̂k(j)

ρ

)
(17)
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The matching error function eTk
(j) of Eq. (5) is computed as the difference

between the actual and the projected ranges:

eTk
(j) =

{
E, if (J(j) < 0 or J(j) > N) and Φ < 360◦

|dk(J(j))− d̂k(j)|, otherwise
(18)

Note that with partial field-of-view scanners (i.e., Φ < 360◦), Eq. (17) ren-
ders some non valid indexes when ∆φ is not null. The match error assigned
to these cases is the correspondence threshold E that results in pTk

(j) = 0
when evaluating Eq. (6).

The threshold E is a constant distance for all the genetic search, whose
value is an upper bound of the expected odometric errors:

E =
√

b2
x + b2

y (19)

Finally, the expression of eTk
(j) indicated in Eq. (18) is employed to

compute Eq. (9) as the fitness value of each chromosome for the genetic
tournament.

2.3 Hybrid GA-ICP method

Previous theoretical study as well experimental analysis (which, for the sake
of clarity is discussed in the next section) evidence that the combination
of ICP and GA methods can be a promising solution to the motion esti-
mation problem. Such combination would benefit from the robustness of
GA to cope with local minima as well as from the efficiency of ICP’s direct
search. Therefore, in this section we propose a new hybrid GA-ICP method
for mobile robot motion estimation. Interestingly, another combination of
ICP with a random search procedure (in particular, Simulated Annealing)
has been reported for the case of 3D surface registration (Luck et al., 2000).

The hybrid approach consists of a two-step algorithm:

1. GA performs a complete but rough search around the odometric esti-
mation T o

k that avoids local minima. This is accomplished by defining
a shorter bit string for each gene but maintaining the limits of the
problem space. In this way, the size of the solution space is reduced,
as well as running time. Hence, the GA search results in a coarse
transformation TGA

k .

2. Then, the ICP technique starts from TGA
k instead of T o

k in order to refine
the coarse transformation with a local search. In this case, the maxi-
mum expected initial error Emax has a lower bound. This reduction of
search uncertainty favours fewer iterations for ICP convengence.
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Thus, the new laser-point matching method for mobile robot motion estima-
tion profits from the exploration capabilities of GA and from the refinement
of ICP at a reasonable running time cost.

3 Experimental comparison

3.1 Experimental setup

The motion estimation methods described above could be applied to any
robotic vehicle equipped with a 2D laser rangefinder and dead-reckoning. In
this case, the tracked mobile robot Auriga-α has been employed for outdoor
experiments (see Fig. 4). The vehicle of 260 kg is powered by an on-board
petrol-fed AC generator of 4 kW. The locomotion system is based on the
skid-steering principle. Thus, the top speed of 1 m/s can only be reached
in straight line movement and decreases to zero according to the increase in
demanded curvature (Pedraza et al., 2000).

A computer based on a Pentium-IV microprocessor at 2.2 GHz governs
navigation via a real-time operating system (LynxOS 4.0). Dead-reckoning
is obtained by encoders on both traction motors every 30 ms. Because of
skid-steering, odometric estimations in tracked vehicles are intrinsically poor,
although they have been improved by using an asymmetric kinematic model
(Mart́ınez et al., 2005). An upper bound for the odometric error has been
estimated to be proportional to the scan period τ :

b = (bx, by, bφ) = (0.13 m/s, 0.13 m/s, 6.3◦/s) τ (20)

The laser device is a conventional time-of-flight range scanner (Sick LMS
200). It has the following features: field of view Φ = 180◦, angular resolution
ρ = 0.5◦ (i.e., N = 360), and range resolution of 1 cm. A complete new
scan takes 0.27 s to be transmitted to the on-board computer, although it
is acquired in just 27 ms. According to the manufacturer’s specifications,
with a exploration horizon of 20 m, the range errors are ±4 cm. Assuming
a normal distribution (Ye and Borenstein, 2002), this value corresponds to
σ = 1.4 cm approximately.

The laser scanner is mounted at the front of the vehicle, 0.5 m ahead of
its geometric center and 0.55 m above the ground (see Fig. 4). The scan
plane is parallel to the motion plane, with the sensor Y axis aligned with the
forward motion direction. Since the position of the laser does not coincide
with the vehicle’s center of coordinates, a fixed transformation is necessary to
relate the motion estimation of the rangefinder with the vehicle’s movement
(Mart́ınez, 2003).
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Figure 4: The mobile robot Auriga-α.

The experiments took place in a messy alley that contains construction
hardware, a builder’s container, a ramp, sand humps, as well as pedestri-
ans and cars passing through a nearby street separated by an iron gate (see
Fig. 5). These objects are mostly non-structured and even mobile, which
means that it is a challenging environment from the scan matching stand-
point. Moreover, this environment has a hard-surface rough terrain that can
be considered as approximately flat. Hence, the use of a 2D laser scan (for
theoretical 2D navigation) is appropriate, but terrain unevenness introduces
an additional source of uncertainty for scan matching. Auriga-α has been
manually driven to record several experimental trajectories that consist of
timed odometric data along with successive laser scans.

Implementation details about the motion estimators are described below.
The parametrization of the methods has been set empirically based on the
performance of numerous trials.
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Figure 5: Experimental site.

Due to the relative low number of points in 2D scans, it is not worth using
acceleration strategies to find the closest points in the ICP method. Conver-
gence is achieved in fifteen fixed iterations. This high number of iterations
for ICP is due to the use of a decremental outlier detection threshold, whose
limits (given by Eqs. (15), (16) and (20)) are set as Emax = 0.034 τ 2 m2/s2

and Emin = 0.009 m2, respectively.
Regarding the GA method, each parameter has been coded into a 6-bit

string, thus forming individuals of 18 bits. The boundaries of the problem
space are defined by the values of b in Eq. (20) around the odometric esti-
mation T o

k . According to Eq. (19), the threshold is E = 0.184 τ m/s.
The genetic algorithm has been set to iterate 60 generations with a popu-

lation size of 120 solutions. The individuals above the fitness arithmetic mean
are replaced every generation. One-point crossover is applied to the parents,
which are chosen randomly from the entire population. The mutation rate
has been set to 1 bit per 6 new chromosomes.

For the hybrid method, the GA phase is implemented exactly as described
above, except for a solution space resolution of 15 bit chromosomes (five
bits per variable). This reduction of the search problem allows appropriate
convergence with just 40 generations of 80 individuals. Then, the ICP step
refines the coarse GA solution in just 6 iterations with the initial threshold
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reduced to Emax = 0.015 τ 2 m2/s2.
These methods have been tested by combining different values for four

navigation conditions. A representative pair of each category has been con-
sidered in the paper:

• Trajectory smoothness. The ‘smooth’ trajectory follows an O-shaped
path with an average speed of 0.2 m/s. The ‘abrupt’ course is 8-shaped,
with an average speed of 0.35 m/s and bigger accelerations and jerks.
Both trajectories have approximately the same length (about 21 m).

• Scanning angular resolution. Values of ρ = 0.5◦ for ‘high’ resolution
and ρ = 1.5◦ for ‘low’ resolution, to process more or less points from
the environment, respectively.

• Motion estimation frequency. The values of τ = 0.9 s and τ = 2.7 s
have been considered to test the effect of more or less overlap between
successive scans, respectively.

• Odometric accuracy. In this case, the application of either a symmet-
ric or an asymmetric kinematic model of the vehicle (Mart́ınez et al.,
2005) allows to obtain less or more accurate odometric calculations,
respectively.

Altogether, 16 different combinations of motion estimations result for each
method. The metrics for the comparison include running time and accuracy.

Note that it is very difficult to know the exact history of robot poses from
real motion experiments, i.e. the ground truth. Moreover, motion estimators
based on laser-point matching can be very precise in the short-term, so a
more accurate and expensive method such as a Kinematic GPS should be
implemented in order to detect motion errors. This is why simulated scans
from stationary poses are usually employed to estimate the matching errors
(González and Gutiérrez, 1999), (Lu and Milios, 1997).

In our non-stop motion experiments, the robot has been forced to end
near to the starting pose, so that the accumulated trajectory errors can be
deduced by directly matching the first and the last scans. Particularly, the
final pose error in distance ed and the absolute value of orientation error eφ

are obtained in this way.
In addition, the mean value of the cost function of Eq. (9) for all the

motion estimates along a trajectory provides an accuracy index. Since two
definitions have been proposed for the error function, two different values
can be obtained:
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• IICP provides the mean matching index given E = Emin and the ICP
squared error function expressed by Eq. (12).

• IGA is the mean matching index for the solution transformations Tk

according to the GA error as defined by Eq. (18) with E = 0.165 m
(resulting from Eqs. (19) and (20) with τ = 0.9 s).

Note that although the matching indexes obtained from Eq. (9) were
introduced to guide iterative search in the GA and the ICP methods, the
mean values defined above can be used to asses solution precision along a
trajectory independently of the applied matching method.

3.2 Performance evaluation

The only navigation condition that affects running time is the angular reso-
lution. Table 1 shows how running time increases with the number of points
for the three methods (results for the intermediate case ρ = 1◦ have also been
included in the table). Besides, it can be observed that ICP is faster than
the GA procedure. The advantage of ICP over GA is that in spite of the
cost of computing the closest cartesian points (1, 954, 815 squared distances
for ρ = 0.5◦ and only 219, 615 for ρ = 1.5◦), the latter is burdened by the
evaluation of many chromosomes (in this case, about 2, 000 solutions have
been tested regardless of angular resolution).

ρ = 0.5◦ ρ = 1◦ ρ = 1.5◦

ICP 0.11 s 0.03 s 0.01 s
GA 0.29 s 0.14 s 0.11 s

GA-ICP 0.20 s 0.08 s 0.06 s

Table 1: Average running time depending on angular resolution.

The table also reveals that computation demanded by GA is less de-
pendent on the number of points than that of ICP. This is due to the GA
polar correspondence, which has a linear computational complexity O(N),
whereas the ICP cartesian correspondence has a quadratic cost O(N2) (when
applying an acceleration strategy (Zhang, 1992), it can be reduced to order
O(N log N)). Thus, GA takes 3 times more than ICP for the high angular
resolution scenario but the rate rises to ten for the low resolution case. The
hybrid approach relaxes computation requirements for both its GA and ICP
steps, and it achieves a running time that averages that of the two pure
methods for the three ρ values.
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By replaying actual motion estimations obtained for each experimental
trajectory with recorded rangefinder data, it is possible to plot maps and esti-
mated paths. Figs. 6 and 7 show such maps for the three methods (assuming
‘high’ angular resolution, ‘high’ motion estimation frequency and accurate
odometry) in the ‘smooth’ and ‘abrupt’ trajectories, respectively. The global
coordinate system coincides with the sensor frame in the first scan. All laser
points are shown, including outliers.

Observation of these figures allows intuitive assessment on the growth
of pose uncertainty introduced by each method. Map consistency in the
figure (i.e., the repeatability of scanner points in the environment contours)
reveals that the motion estimation of the ICP algorithm is poorer for both
trajectories, and specially for the ‘abrupt’ one.

Performance of the GA and the hybrid methods is quite good in terms of
map consistency, and they offer similar results in view of the figures. Taking
into account that the ICP has the last say in the hybrid approach, the relative
lack of accuracy of its solo version can be explained by its sensibility to local
minima.

These conclusions agree with a more objective analysis of the experimen-
tal data inferred by computing ed, eφ, IGA, and IICP for the three techniques.
The values for these indexes corresponding to the experiments shown in Figs.
6 and 7 are presented in Tabs. 2 and 3, respectively.

ed (m) eφ (rad) IGA IICP

ICP 0.751 0.0357 0.0448 0.00340
GA 0.179 0.0544 0.0346 0.00164

GA-ICP 0.345 0.0272 0.0358 0.00159

Table 2: Accuracy indexes for the experiments of Fig. 6.

ed (m) eφ (rad) IGA IICP

ICP 1.461 0.204 0.0645 0.00490
GA 0.209 0.095 0.0432 0.00201

GA-ICP 0.249 0.105 0.0444 0.00193

Table 3: Accuracy indexes for the experiments of Fig. 7.

The overall effects of the alternative values for each separate navigation
condition are depicted in the bar diagrams of Figs. 8, 9, 10 and 11. Each side
of the bars represents the mean value for the eight condition combinations
that share the same category value. Note that in these diagrams, the IGA
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Figure 6: Estimated paths and perceived maps with the ICP, GA and hybrid
techniques along the ‘smooth’ trajectory.

Figure 7: Estimated paths and perceived maps with with the ICP, GA and
hybrid techniques along the ‘abrupt’ trajectory.
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and IICP values have been scaled by 10 and by 100, respectively, only for
display purposes.

The most noticeable fact about these results is that GA clearly prevails
over ICP in every scenario by achieving better (i.e., lesser) values in the four
performance indexes. As for the GA-ICP method, the bar graphs indicate
performance indexes of the same order as those of the GA. The bar graphs
also show that overall performance is worse for the three methods under
the most demanding conditions, i.e. ‘abrupt’ trajectory, less environmental
information, less scan overlap, and worse dead-reckoning.

Interestingly, the hybrid approach obtains slightly better results than the
GA in the IICP index due to the refinement provided by its ICP step, but
this also causes IGA to be a bit worse. The final position errors ed, eφ are
almost the same for GA and GA-ICP.

Figure 8: Bar graph of the accuracy indexes for the ‘abrupt’ and ‘smooth’
trajectories.

4 Conclusions

The paper has reported on mobile robot motion estimation methods based
on point matching from successive 2D laser scans. This approach provides an
ego-motion solution that is useful for navigation in unstructured and dynamic
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Figure 9: Bar graph of the accuracy indexes for angular resolutions ρ = 0.5◦

and ρ = 1.5◦.

Figure 10: Bar graph of the accuracy indexes for motion estimation intervals
of τ = 2.7 s and τ = 0.9 s.
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Figure 11: Bar graph of the accuracy indexes for standard and enhanced
odometry.

environments, as it relies on raw sensor information rather than on extracted
environmental features.

Particularly, we have analyzed two essentially different laser point match-
ing methods, ICP and GA. Furthermore, based on that analysis, we propose
a hybrid GA-ICP technique. These methods iterate starting from the odo-
metric estimation to find a transformation that best matches two successive
laser scans.

The ICP method is a local-scope optimizer that is the most popular reg-
istration algorithm for 3D surfaces. A fast 2D version of this method has
been considered for ego-motion estimation. A special decremental outliers
detection threshold has been devised, given that the number of laser points
is smaller than in 3D applications and that these are much noisier.

The GA method is a reliable stochastic approach that constitutes a novel
approach for this problem. Even though GAs are usually regarded as too
computationally expensive for real time applications, the implemented GA
scan matching approach provides acceptable computation time due to the
application of polar correspondences of points.

The key idea behind the proposed two-phase hybrid method it to obtain
a coarse motion estimation from a rough search with the GA in order to
cope with local minima. Then, this solution is refined by ICP, which finds
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the closest points based on this coarse estimation. The computational load
of GA is lightened with respect to the pure method, since the resolution
of the solution space can be conveniently reduced for the rough search. In
this sense, the ICP phase requires less iterations than its pure counterpart
because the initial estimation is closer to the actual solution.

These methods have been implemented and tested for the Auriga-α mo-
bile robot in an outdoor scenario. Non-stop motion experiments have shown
that ICP is a much faster method, whereas GA outstands in motion esti-
mation accuracy. Moreover, the tested accuracy of GA-ICP parallels that of
GA while its running time has been cut to an average value between the pure
methods. These results have been corroborated by further experiments (not
shown in the paper) in a structured indoor environment: a hall of a building
which contains glass doors, columns, staircases and corridors and passers-by.

Future work will explore the identification and tracking of moving objects
by further processing of the outlier points. Besides, we are interested in
evaluating the performance of these techniques when applied to 3D scan
matching problems for off-road navigation of mobile robots.
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Muñoz, V. F., Mart́ınez, J. L., and Ollero, A. (1994). Navigation with un-
certain position estimation in the RAM-1 mobile robot. In Proc. IFAC
Int. Conf. on Artificial Intelligence in Real Time Control, pages 215–219,
Spain.

22



Neugebauer, P. J. (1997). Geometrical cloning of 3D objects via simultaneous
registration of multiple range images. In Proc. IEEE Int. Conf. on Shape
Modeling and Applications, pages 130–139, Japan.
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