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Abstract— In this paper we consider the problem of creating
a spatial representation of a gas distribution in an environment
using a mobile robot equipped with gas sensors. The gas
distribution mapping method used models the information
content of a given measurement about the average concentration
distribution with respect to the point of measurement. In
this paper, we present an extension which can consider the
uncertainty about the robot’s position in the gas distribution
mapping. We present a preliminary result where a mobile robot
equipped with gas sensors creates a map of a large indoor
environment, using both spatial and olfactory information.

I. INTRODUCTION

Creating a spatial representation of a gas distribution in
an environment is an important and challenging subprob-
lem within the field of mobile olfaction. Gas distribution
mapping (GDM) could be used as a means to determine
the exact location of gas sources or perhaps even more
importantly, determine areas of high concentrations of a
harmful gas (that may not always be present at the source
location). Hindered by the temporally fluctuating character
of turbulent gas transport, and the fact that chemical gas
sensors provide information only about the small volume
their surface interacts with, it is probably impossible to
measure the instantaneous concentration field without using
a dense grid of sensors. Nonetheless, it is often sufficient
to know the time-constant structure of a gas distribution
for many applications such as air quality monitoring and
surveillance of industrial sites. Furthermore, by using mobile
robots to map the gas distribution, contaminated area could
be examined in rescue missions in order to provide incident
planning staff with information to prevent rescue workers
from being harmed or killed due to explosions, asphyxiation
or toxication.

The contribution of this paper is a description of a gas
distribution mapping algorithm which is able to take into
account the uncertainty in the pose estimate. This is an
important aspect to consider that is inherent to a real robot
moving in an unknown environment. In probabilistic estima-
tion theory applied to the SLAM problem, Bayesian filtering
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provides a grounded framework for estimating unobserved
variables given only noisy observations. Popular approaches
for implementation of Bayes filtering include Extended
Kalman Filter, and Particle Filters. Both of these approaches
have been extensively used in robotics. For particle based
representation, each particle represents a hypothesis of the
variables being estimated, in our case the robot path and the
maps. Our approach consists of a Rao-Blackwellised filter
where a motion model is used to predict a prior distribution
of the robot pose. The observation model from the range
scanner is then used to update the pose estimation, which
together with the gas sensor measurements is used to update
the maps. In this way, we obtain a GDM which is consistent
with the estimation of both the occupancy map and the robot
path.

The rest of this paper is organized as follows. We begin
with a brief description of related works in the field of
creating gas concentration gridmaps (Section 2). An overview
of the gas distribution algorithm used in this work is then
described (Section 3). In Section 4, we outline the method
used for integrating simultaneous localization and mapping
with gas distribution mapping. Next, the experimental setup
of an olfactory robot is given and an example of a gas
concentration map applied in an uncontrolled environment
is shown. Finally, we conclude with a discussion of future
works.

II. RELATED WORKS

The problem of creating a gridmap which represents the
distribution of a gas source is still a relatively new field to
mobile olfaction. Some works have attempted to create spatial
representation of the gas concentration in an environment
without the use of a mobile robot but rather by taking
simultaneous measurements by multiple stationary sensors.
In Ishida et al. [6], the time-averaged gas sensor response
over 5 minutes at 33 grid points distributed over an area of
21m2 was used to characterise the experimental environment.
With an increasing area, however, establishing a dense grid of
gas sensors would involve an arbitrarily high number of fixed
gas sensors, which poses problems such as cost and a lack
of flexibility. Furthermore, an array of metal oxide sensors
would cause a severe disturbance to the gas distribution due
to the convective flow created by the heaters built into these
sensors [5].

In Hayes et al. [3] gas measurements were acquired with a
mobile robot and a representation of the gas distribution was



created by two dimensional histogram whose bins contained
the number of odour hits received as the robot performed a
random walk behavior. An odour hit was registered when the
sensed concentration exceeded a predefined threshold. This
method requires perfectly even coverage of the environment
and it is doubtful whether it could be performed in large and
unknown environments. Furthermore, only binary informa-
tion is used to create the map and therefore much of the fine
gradations in the average concentration is discarded.

III. KERNEL BASED GAS DISTRIBUTION MAPPING

The general gas distribution mapping problem given the
robot trajectory is

p(mgas|xt, zt
gas). (1)

Due to fundamental differences between range sensing with
a laser scanner and gas sensing with metal oxide sensors
Bayesian estimation cannot be applied to the gas distribution
mapping problem in the same way as to estimate an occu-
pancy grid map.

The main differences are, first, that the sensor readings
do not allow to derive the instantaneous concentration levels
directly. Metal oxide gas sensors are known to recover slowly
after the target gas is removed (15 to 70 seconds [1]) and
therefore perform temporal integration implicitly. As a conse-
quence, sensor readings can be comparatively high although
the instantaneous concentration level is actually close to
zero if a high gas concentration was sensed previously. In
order to estimate the instantaneous concentration level from a
sequence of sensor readings, one would need to model the in-
teraction between the gas sensors and the (unobserved) times
when the sensors were “hit” by patches of gas and also their
respective (unobserved) strength. Second, a snapshot of the
gas distribution at a given instant contains little information
about the distribution at another time due to the chaotic nature
of turbulent gas transport. Turbulence generally dominates
the dispersal of gas. As a consequence the instantaneous
concentration field of a target gas released from a small
static source is a chaotic distribution of intermittent patches
with peak concentration values that are generally an order of
magnitude higher compared to the time-averaged values [11].
Third, in contrast to a typical range-finder sensor, a single
measurement from a gas sensor provides information about
a very small area because it represents only the reactions at
the sensor’s surface (≈ 1 cm2).

Altogether, it is futile to attempt to create a map of the
instantaneous gas distribution with a mobile robot. Therefore,
we instead consider the problem of estimating the time-
averaged gas distribution map given the robot trajectory

p(mav
gas|xt, zt

gas). (2)

Another consequence of the peculiarities of gas transport and
gas sensing is that little information about the geometrical

location of the robot can be obtained from gas sensor mea-
surements in particularly when considering a time-averaged
gas distribution. The observation likelihood for the gas sensor
measurements can thus be approximated by a constant value
compared to the observation likelihood for the laser range
scans. This property is used in Eq. (16) and visualised in
Fig. 4.

In order to estimate a grid map that represents the time-
averaged relative concentration of a detected gas, we use
the kernel extrapolation gas distribution mapping method
introduced by Lilienthal and Duckett [7]. The main idea
is to interpret the gas sensor measurements zt as noisy
samples from a time-constant distribution. This implies that
the gas distribution in fact exhibits time-constant structures,
an assumption that is often fulfilled in unventilated and
unpopulated indoor environments [14]. It is important to
note that the noise is caused by the large fluctuations of the
instantaneous gas distribution while the electronic noise on
individual gas sensor readings is negligible [4].

The gas distribution mapping method compensates for the
small overlap between single measurements by convolving
the sensor readings with a two-dimensional Gaussian kernel.
The kernel can be seen as modelling the information content
of a given measurement about the average concentration
distribution with respect to the point of measurement. This
information content decreases with increasing distance to the
point of measurement.

There is also a notable analogy of the kernel extrapolation
gas distribution mapping method with the problem of estimat-
ing density functions using a Parzen window approach [10]
with a Gaussian kernel. However, when creating the gas
distribution map, we do not sample from the gas distribution
directly. It is therefore necessary to make the assumption
that the trajectory of the robot (respectively, the trajectory of
the sensors) roughly covers the available space. The kernel
extrapolation gas distribution mapping method maintains two
temporary grid maps obtained from spatial integration of the
points of measurement convolved with the Gaussian kernel.
One temporary grid map Mxzgas integrates the points of
measurement weighted by the sensor measurements and the
second temporary grid map Mx integrates the points of
measurement without a weight assigned. The gas distribution
mav

gas is estimated from the grid map Mxzgas normalised to
Mx, which corresponds to sampling from the (normalised)
gas distribution if the sensor readings are considered as a
measure of how many samples were drawn from the particu-
lar grid cell. Because of the normalisation to Mx, a perfectly
even coverage of the inspected area is not required so that
the robot trajectory not necessarily has to be customised for
gas distribution mapping.

The kernel extrapolation gas distribution mapping method
can cope to a certain degree with the temporal and spatial
integration of successive readings that metal-oxide gas sen-



Fig. 1. Discretisation of the Gaussian weighting function onto the grid. Left side: For each grid cell within a cutoff radius R co (represented by a circle)
around the point of measurement �xt, the displacement �δ

(i,j)
t is calculated. The corresponding distances are indicated for the 13 affected cells by the vertical

lines drawn in the upper part. Right side: According to the displacement, the weights w
(i,j)
t are determined for all these grid cells (surrounded by a strong

border) by applying a Gaussian function. As an example, a Gaussian with σ = 1/3R co is used. The weights are indicated by shadings of grey (dark
shadings correspond to high weights).

sors perform implicitly due to their slow response and long
recovery time [8]. In order to obtain a faithful representation
of gas distribution despite the slow sensor dynamics (“mem-
ory effect”), the robot’s path needs to fulfill the requirement
that the directional component of the distortion due to the
memory effect is averaged out. This can either be achieved
approximately by random exploration or in a strict manner
by using a predefined path where the robot passes each point
in the trajectory equally often from opposite directions. If the
trajectory of the robot fulfills this requirement and sufficient
time is given for the map to converge, the time-constant
structures of the gas distribution will be represented faithfully
in the gridmap, being slightly expanded and blurred but not
shifted. The validity of the gridmaps produced by the kernel-
based extrapolation algorithm therefore degrades gracefully
with respect to the ratio between the time constant of the
sensor dynamics and the speed of the robot (i.e. the slow
sensor dynamics). The algorithm introduces the kernel width
σ as a selectable parameter, corresponding to the size of
the region of extrapolation around each measurement. This
parameter allows the user to decide between a faster or more
accurate map building process. Its value has to be set large
enough to obtain sufficient coverage according to the path
of the robot. Conversely, this means that for a larger kernel
width a faster convergence can be achieved while preserving
less detail of the gas distribution in the map. Consequently,
the selected value of the kernel width σ represents a trade-
off between the need for sufficient coverage and the aim

Fig. 2. Example of the information content regarding the average concentra-
tion distribution as modelled when calculating a kernel-based extrapolation
gridmap for a hypothetical series of measurements. A sensor trajectory is
assumed consisting of a constant velocity movement along a straight path
and an immediate stop after the fifth time step. (i.e., measurements x5, x6

and x7 were all taken at the same physical location).

to preserve fine details of the mapped structures. Parameter
selection and the impact of sensor dynamics are discussed in
more detail in [8].

An example of a sum of Gaussian kernels for a set of
measurement points is shown in Fig. 2, assuming a hypo-
thetical sensor trajectory that consists of a constant velocity
movement along a straight path and an immediate stop after
the fifth time step. Referring to the interpretation of the kernel
as a model of the information content, large values of the



sum of kernels correspond to locations where the certainty
about the average concentration is high. Fig. 2 reveals that,
assuming a suitable kernel width, a high certainty is assigned
along the sensor trajectory and that the information content
of the sensor readings is modelled as being approximately
constant if the robot was driven with a constant, not too
fast speed. This can be seen in the projection along the
sensor path (y = 0) in Fig. 2. The roughly constant value
reflects the fact that the sensor readings contain information
about the average concentration along the path, which is
approximately independent of the actual points of measure-
ments due to the integration of successive readings. While
the information content of the sensor readings regarding
the average concentration is modelled as being high along
the trajectory, it decreases quickly orthogonal to the path
(and also to the front end of the path) where concentration
values can be estimated by extrapolation only. Generally, the
information content is modelled as being higher if the robot
was driven more slowly, especially in cases where a number
of successive measurements were performed at a particular
spot. This can be seen in the projections orthogonal to the
sensor path (x = x3 and x = x5, x6, x7) in Fig. 2. In the
case where several measurements were performed on the
spot, the concentration value calculated by averaging over the
subsequent measurements represents a temporally integrated
quantity that naturally contains more information about the
average concentration at this particular location than a single
measurement. Further, the temporally averaged gas sensor
response value has a higher information content at adjacent
places because in addition to a higher certainty about the
average concentration the temporal mean also carries out
some spatial integration due to the spatial fluctuation of gas.
This appears as a slightly enlarged peak in the model of
information content.

Step-by-Step Explanation of Kernel Based Gas Distribution
Mapping

The sensor readings are convolved using the univariate two
dimensional Gaussian function

f(�x) =
1

2πσ2
e−

�x2

2σ2 . (3)

Then, the following steps are performed:

• In the first step the normalised readings rt are deter-
mined from the raw sensor readings Rt as

rt =
Rt − Rmin

Rmax − Rmin
, (4)

using the minimum and maximum (Rmin, Rmax) value
of a given sensor.

• Then, for each grid cell (i, j) within a cutoff radius Rco,
around the point �xt where the measurement was taken
at time t, the displacement �δ

(i,j)
t from the grid cell’s

centre �x (i,j) is calculated as

�δ
(i,j)
t = �x (i,j) − �xt. (5)

• Now the weighting w
(i,j)
t for all the grid cells (i, j) is

determined as

w
(i,j)
t =

{
f(�δ (i,j)

t ) : δ
(i,j)
t ≤ Rco

0 : δ
(i,j)
t > Rco

(6)

• Next, two temporary values maintained per grid cell are
updated with this weighting: the total sum of the weights

Mx : W
(i,j)
t =

t∑
t′

w
(i,j)
t′ , (7)

and the total sum of weighted readings

Mxzgas : WR
(i,j)
t =

t∑
t′

rt′w
(i,j)
t′ . (8)

• Finally, if the total sum of the weights W
(i,j)
t exceeds

the threshold value Wmin, the value of the grid cell is
set to

c
(i,j)
t = WR

(i,j)
t /W

(i,j)
t : W

(i,j)
t ≥ Wmin. (9)

An example that shows how a single reading is convolved
onto a 5 × 5 gridmap is given in Fig. 1. First, thirteen cells
are found to have a distance of less than the cutoff radius
from the point of measurement (Fig. 1, left). These cells are
indicated in the right side of Fig. 1 by a surrounding strong
border. The weightings for these cells are then determined by
evaluating the Gaussian function for the displacement values.
In this example, the cutoff radius was chosen to be three times
the width σ. The weights are represented by shadings of grey.
Darker shadings indicate higher weights, which correspond
to a stronger contribution of the measurement value rt in the
calculation of the average concentration value for a particular
cell.

IV. INTEGRATING SLAM INTO GAS DISTRIBUTION

MAPPING

The general SLAM problem is stated as to simultaneously
estimate the map m and the robot path xt = {x1, ..., xt},
where each xt represents the robot path at time step t. Set out
as a Bayesian filtering problem conditioned on the sequence
of robot actions ut = {u1, ..., ut} and observations zt =
{z1, ..., zt}, the probability distribution to be estimated is:

p(xt, m|ut, zt) (10)

The graphical model for this problem is shown in Fig. 3
as a Dynamic Bayesian Network (DBN), where the hidden
variables (represented by shaded circles) are to be estimated
from the only known data, i.e. the sequence of actions
and observations. The directed arcs in this graph represent
statistical dependence between variables. Notice that the
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Fig. 3. The Dynamic Bayesian Network (DBN) of the SLAM problem for
odour and occupancy grid mapping. Dependencies between variables are
represented as directed arcs. From this graphical model it becomes clear
that the map m can be estimated from the observations zt given a known
robot path hypothesis xt. Observations from the range scanner and the gas
sensors are modelled as dependent on their respective maps only.

estimation of the map m is related to the inverse sensor model
of the observations zt, which in turn depend on the estimation
of the robot path xt. The inverse sensor model is used for
estimating the map from observations since this implies to
traverse the arrows in the DBN in the opposite direction to
the actual dependence (Fig. 3). However, provided that maps
can be analytically estimated given a robot path hypothesis,
the complexity of estimating the distribution in (10) can be
highly reduced by considering the factorization:

p(xt, m|ut, zt) = p(xt|ut, zt)p(m|xt, ut, zt) (11)

and subsequently performing estimation of the first term only
(the robot path) whereas analytically computing the second
one (the maps). This technique to reduce the dimensionality
of the estimation problem by exploiting the structure of the
variables is called Rao-Blackwellised Particle Filter (RBPF)
in Estimation Theory [2]. To estimate the robot path we
represent its distribution by a set of M weighted particles,{

xt,[i]
}

i=1..M
∼ p(xt|ut, zt) (12)

where associated weights ω
[i]
t account for the fact that the

particles xt,[i] are not exactly distributed according to the
density being estimated. Particle filtering for robotics and
RBPFs are extensively discussed elsewhere ([13], [2]).

In this work we consider that a map m comprises two
different grid maps: the occupancy map mocc and the gas
distribution map mgas. Assuming independency between
them, we can estimate the map hypotheses m

[i]
occ and m

[i]
gas

for each particle i separately. In a similar way, we define the
observations zt as the pair of observations zocc,t and zgas,t

for the range scanner and the gas sensors, respectively. Notice
that both observations are also conditionally independent
given a robot path hypothesis, as illustrated in Fig. 3. If we
consider the sequential Bayesian estimation of the robot path

( )[ ] [ ]

, | ,
i i

gas t t
p z x m

( )[ ] [ ]

, | ,
i i

gas t t
p z x m

η≈

Fig. 4. Due to the precision of the range scanner, the information provided
by the gas sensors can be safely neglected for localization purposes. As
illustrated with this one-dimensional example, it is reasonable to approximate
the likelihood of the gas sensor observation with a constant value η.

distribution in (12) under the Markov assumption we obtain
the recursive formula:

p(xt|ut, zt) ∝ (13)

p(zt|xt, m)
∫

p(xt|xt−1, ut)p(xt−1|ut−1, zt−1)dxt−1

Here two stochastic models are required: the obser-
vation model p(zt|xt, m), and the robot motion model
p(xt|xt−1, ut) (from odometry). In a RBPF, the latter dis-
tribution is not necessary in closed form, since we need only
a mechanism to randomly draw samples from it. Assuming
the standard proposal distribution [2], particles for each time
step t are generated directly by sampling from the motion
model:

x
[i]
t ∼ p(xt|x[i]

t−1, ut) (14)

Accordingly, weights are updated through the observation
likelihood function:

ω
[i]
t ∝ ω

[i]
t−1p(zt|x[i]

t , m[i]) (15)

Intuitively, this means that those particles that better ex-
plain the current observations are assigned higher weights.
If we take into account now the conditional independence
between the pair of observations, we obtain:

p(zt|x[i]
t , m[i]) = p(zgas,t, zocc,t|x[i]

t , m[i]
gas, m

[i]
occ) (16)

= p(zgas,t|x[i]
t , m[i]

gas)p(zocc,t|x[i]
t , m[i]

occ)

≈ ηp(zocc,t|x[i]
t , m[i]

occ)

Notice that we approximate the observation likelihood for
the gas sensors by a constant value η, which is a reasonable
assumption if the precision of the range scanner sensor
dominates the product in (16), as is clearly the case for laser
range finders. This approximation is illustrated in Fig. 4 with
a one-dimensional example. In practice, this approximation
means that we disregard the information provided by the gas
sensor for updating the robot pose estimation, although it will
used to update the gas concentration map.

Regarding the second term in (11), the distribution of
maps, the occupancy grid p(m[i]

occ|xt,[i], zt
occ) for the i’th

hypothesis is updated by well-known sensor integration meth-
ods ([9], [12]). For estimating the gas concentration map,



Fig. 5. Sancho, the service robot. a) The original version of Sancho
for delivery applications. b) Partial view of the robot focusing on the two
electronic noses mounted on Sancho for our experiments. c) Each e-nose is
composed of four gas sensors, a fan that provides a constant air flow, and
a retractable plastic tube (not shown in the picture) that directs the air flow
to the sensors.

represented by p(m[i]
gas|xt,[i], zt

gas) in the above formulation,
we will assume in this work that the GDM introduced
in the previous section provides an approximation of the
average concentration for each cell in the grid. However, one
could devised other approaches where Bayesian estimation
is performed to estimate the exact distribution of the average
concentration at each cell. This has not been addressed so
far.

V. EXPERIMENTS

A. Robot

Our experiments have been conducted using a service
robot, called Sancho, which is intended to work within human
environments as, for example, a conference or fair host (see
Fig. 5a). It is constructed upon a pioneer 3DX mobile base
whose structure has been devised to contain the sensorial
system. The sensorial systems includes a radial laser scanner,
a set of 10 infrared sensors, a colour motorized camera, and
a pair of electronic noses placed at a low position in the
frontal part of the robot (see Fig. 5b). All devices of Sancho
are managed by a Pentium IV laptop computer at 2.4GHz
with wireless communication that connect Sancho to remote
servers or to the internet, enabling, for instance, remote users
to command and to control the robot.

B. Gas Sensors

Located on the front of Sancho approximately 11 cm from
the floor are two electronic noses based on TGS Figaro

technology. Each e-nose consists of four TGS sensors (TGS
2600 (x2), 2620, 2602). Four sensors are placed in a circular
formation on a plastic backing (see Fig. 5 (c)). The sensors
are then placed inside a retractable plastic tube sealed with
a cpu fan that provides a constant airflow into the tube (see
Fig. 5 (b)). The two e-noses are separated at a distance of 14
cm (measured from the center of the circular backing).

Readings from the gas sensors are collected by an on-
board Data acquisition system located on the frame of the
robot and a sampling frequency of 1.25 Hz was used. Prior
to experimentation, the sensor array for both e-noses were
heated for approximately 30 minutes reaching temperatures
between 300-500 ◦C, needed for proper operation. Metal ox-
ide sensors exhibit some drawbacks worth noting. Namely the
low selectivity, the comparatively high power consumption
(caused by the heating device) and a weak durability. Fur-
thermore, metal oxide sensors are subject to a long response
time and an even longer decay time. However, this type of
gas sensor is most often used for mobile noses because it
is inexpensive, highly sensitive and relatively unaffected by
changing environmental conditions like room temperature or
humidity.

C. Environment

Experiments were carried out within one of the wings of
the Computer Science building at the University of Málaga
(Spain). Fig. 6 depicts the testing scenario which comprises
two long corridors (one indoor and one outdoor) connected
through two passages. Test results are presented from the
runs conducted in the indoor portion of the corridor. The
environment was in no way modified for the purpose of the
experiment. Furthermore, during an experimental trial, people
were occasionally present in the corridor, moving about and
at times entering or closing doors.

An ethanol gas source was used and was contained in
a cup approximately 6 cm in diameter and 5 cm high.
The small size of the cup proved to be convenient since
the robot was able to drive directly over the source. The
source was prepared at a distance beyond the experimentation
area, it was then covered and moved into position in the
corridor approximately 30 minutes prior to experimentation.
The cover was then removed just before an experimentation
trial would begin.

D. Results

An implementation of the system was made by moving
the robot at a speed of 5 cm/s in a spiral sweeping fashion
in the indoor wing of the region indicated in Fig. 6. In Fig.
7 the path most likely taken by the robot was determined
and is indicated by a solid black line. Fig. 8 shows the
gas concentration map merged with the laser scan data.
The source location in the figure is indicated by a circular
ring. Here, different shadings of gray are used to indicate
concentration values, where dark shading corresponds to low



Fig. 7. Laser Scan of the explored corridor and the most likely path taken by the robot.

Fig. 8. The gas concentration map merged with the laser scan information. The actual source position is indicated by a (red) circular ring. Concentration
values higher than 80% of the maximum are indicated with a second of range of dark to light shading in purple.

Fig. 6. Map of the Computer Science building at the University of Malaga
(Spain). The region of the test scenario which contains an indoor corridor
and an outdoor corridor is marked with a rectangle.

and light shading to high relative concentration values. To
better illustrate the variations in the measured concentration,
a different shading color is used for cells containing concen-
tration values higher than 80% of the maximum. A few points
are worth noting with regards to the figure. First, in the gas
concentration map, the area indicating highest concentration
values, corresponds to the source location, seen best in Fig. 9.
This is a good indication of a reasonable performance of the

Fig. 9. Enlarged view of the gas concentration map at the source location.

gas concentration mapping, although, it can not be said with
certainty that areas of high concentration will necessarily
correspond to source location due to the complex mechanism
behind the gas transport (particularly in a complex environ-
ment). Nonetheless, having this correspondence implies that
the gas concentration mapping was able to cope with both
the large region of a corridor (approx. 20 m x 2 m) and in
the uncontrolled environment (an indoor wing connected to
outdoor junctions).

VI. CONCLUSION

In this work, we have presented a conceptual framework
whereby a gas distribution mapping algorithm was integrated
in a mobile robotic system. We have also presented an
example of this framework in practice using a mobile robot
equipped with a number of heterogeneous sensing modalities.
In our work, the observation models from the range scanner
and the gas sensors are used to obtain a gas distribution map



which is consistent with the estimation of the occupancy
map and thus the robot path. To the authors knowledge,
the experimental testbed used for evaluation is not only the
largest used so far but also uncontrolled where no explicit
effort was made to regulate ventilation or airflow. This
is an important contribution as mobile olfaction platforms
move towards real application domains. Future work will
primarily focus of establishing the validity of the proposed
algorithm through experimental validation with the current
mobile platform.
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