
A tutorial on SE(3) transformation parameterizations

and on-manifold optimization

José Luis Blanco Claraco
jlblanco@ual.es

https://w3.ual.es/personal/jlblanco/

Technical report #012010
Last update: 07/04/2022

Málaga, Thursday 7th April, 2022

MAPIR: Grupo de Percepción y Robótica
Dpto. de Ingenieŕıa de Sistemas y Automática

ETS Ingenieŕıa Informática
Universidad de Málaga
Campus de Teatinos s/n - 29071 Málaga
Tfno: 952132724 - Fax: 952133361
http://mapir.isa.uma.es/ - http://www.isa.uma.es

https://w3.ual.es/personal/jlblanco/

Abstract

An arbitrary rigid transformation in SE(3) can be separated into two parts, namely, a translation and a
rigid rotation. This technical report reviews, under a unifying viewpoint, three common alternatives to
representing the rotation part: sets of three (yaw-pitch-roll) Euler angles, orthogonal rotation matrices
from SO(3) and quaternions. It will be described: (i) the equivalence between these representations
and the formulas for transforming one to each other (in all cases considering the translational and
rotational parts as a whole), (ii) how to compose poses with poses and poses with points in each
representation and (iii) how the uncertainty of the poses (when modeled as Gaussian distributions)
is affected by these transformations and compositions. Some brief notes are also given about the
Jacobians required to implement least-squares optimization on manifolds, an very promising approach
in recent engineering literature. The text reflects which MRPT C++ library1 functions implement each
of the described algorithms. All formulas and their implementation have been thoroughly validated
by means of unit testing and numerical estimation of the Jacobians.

1https://www.mrpt.org/

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

Feedback and contributions are welcome in:
https://github.com/jlblancoc/tutorial-se3-manifold.

History of document versions:

• Apr/2022: Fixed missing transpose in Eq. (7.13), which was correctly set in
Eq. (10.14) (Thanks to Frisch)

• Mar/2021: Added Eqs. (9.14)–(9.16) and Eqs. (9.19)–(9.24) (Thanks to
Nurlanov Zhakshylyk).

• May/2020: Fix wrong terms in Eq. 4.5 and a typo in Eq. 6.4 (Thanks to
@YB27).

• Mar/2019: Added new sections: §10.3.10, §10.3.11. Removed incorrect
transpose in Eq. 7.13. Add appendix B for SE(2) GraphSLAM. Formally
define pseudo exponential and logarithm maps in §9.4.2.

• Oct/2018: Yaw-Pitch-Roll to Quaternion Jacobian gets its own equation
number for easier reference: Eq. 2.9b. Better references for boxplus and
boxminus operators in §10. Added §2.5.2. Added exponential and logarithms
for SO(3) in quaternion form to §9.4.1.

• 29/May/2018: Adoption of the widespread notation for the ”hat” and ”vee”
Lie group operators, as introduced now in §7.1.

• 25/Mar/2018: Fixed minor typos.

• 28/Nov/2017: Fixed typos in §10.3.9 (Thanks to @gblack007).

• 10/Nov/2017: Sources published in GitHub:
https://github.com/jlblancoc/tutorial-se3-manifold.

• 18/Oct/2017: Corrected typos in equations of §4.2 (Thanks to Otaćılio Neto
for detecting and reporting it).

• 18/Oct/2016: C++ code excerpts updated to MRPT 1.3.0 or newer.

• 8/Dec/2015: Fixed a few typos in matrix size legends.

• 21/Oct/2014: Fixed a typo in Eq. 9.20 (Thanks to Tanner Schmidt for
reporting).

• 9/May/2013: Added the Jacobian of the SO(3) logarithm map, in §10.3.2.

• 14/Aug/2012: Added the explicit formulas for the logarithm map of SO(3)
and SE(3), fixed error in Eq. (10.25), explained the equivalence between
the yaw-pitch-roll and roll-pitch-yaw forms and introduction of the [log R]∨

notation when discussing the logarithm maps.

1

https://github.com/jlblancoc/tutorial-se3-manifold
https://github.com/nurlanov-zh
https://github.com/YB27
https://github.com/gblack007
https://github.com/jlblancoc/tutorial-se3-manifold

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

• 12/Sep/2010: Added more Jacobians (§10.3.5, §10.3.6, §10.3.4), the Ap-
pendix A and approximation in §10.3.8.

• 1/Sep/2010: First version.

Notice:

Part of this report was also published within chapter 10 and appendix IV of the book [6].

This work is licensed under Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License.

2

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

Contents

1 Rigid transformations in 3D 6
1.1 Basic definitions . 6
1.2 Common parameterizations . 9

1.2.1 3D translation plus yaw-pitch-roll (3D+YPR) 9
1.2.2 3D translation plus quaternion (3D+Quat) . 10
1.2.3 4× 4 transformation matrices . 11

2 Equivalences between representations 13
2.1 3D+YPR to 3D+Quat . 13

2.1.1 Transformation . 13
2.1.2 Uncertainty . 14

2.2 3D+Quat to 3D+YPR . 15
2.2.1 Transformation . 15
2.2.2 Uncertainty . 16

2.3 3D+YPR to matrix . 17
2.3.1 Transformation . 17

2.4 3D+Quat to matrix . 18
2.4.1 Transformation . 18

2.5 Matrix to 3D+YPR . 18
2.5.1 Transformation . 18
2.5.2 Uncertainty . 20

2.6 Matrix to 3D+Quat . 21
2.6.1 Transformation . 21

3 Composing a pose and a point 22
3.1 With poses in 3D+YPR form . 22

3.1.1 Composition . 22
3.1.2 Uncertainty . 22

3.2 With poses in 3D+Quat form . 23
3.2.1 Composition . 23
3.2.2 Uncertainty . 24

3.3 With poses in matrix form . 25

4 Points relative to a pose 26
4.1 With poses in 3D+YPR form . 26

4.1.1 Inverse transformation . 26

3

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

4.1.2 Uncertainty . 26
4.2 With poses in 3D+Quat form . 26

4.2.1 Inverse transformation . 26
4.2.2 Uncertainty . 27

4.3 With poses as matrices . 28
4.4 Relation with pose-point direct composition . 28

5 Composition of two poses 29
5.1 With poses in 3D+YPR form . 29

5.1.1 Pose composition . 29
5.1.2 Uncertainty . 29

5.2 With poses in 3D+Quat form . 30
5.2.1 Pose composition . 30
5.2.2 Uncertainty . 31

5.3 With poses in matrix form . 32
5.3.1 Pose composition . 32

6 Inverse of a pose 33
6.1 For a 3D+YPR pose . 33
6.2 For a 3D+Quat pose . 33

6.2.1 Inverse . 33
6.2.2 Uncertainty . 34

6.3 For a transformation matrix . 34

7 Derivatives of pose transformation matrices 36
7.1 Operators . 36
7.2 On the notation . 37
7.3 Useful expressions . 38

7.3.1 Pose-pose composition . 38
7.3.2 Pose-point composition . 38
7.3.3 Inverse of a pose . 38
7.3.4 Inverse pose-point composition . 39

8 Concepts on Lie groups 40
8.1 Definitions . 40

8.1.1 Mathematical group . 40
8.1.2 Manifold . 40
8.1.3 Smooth manifolds embedded in RN . 41
8.1.4 Tangent space of a manifold . 42
8.1.5 Lie group . 42
8.1.6 Linear Lie groups (or matrix groups) . 42
8.1.7 Lie algebra . 42
8.1.8 Exponential and logarithm maps of a Lie group 43

4

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

9 SE(3) as a Lie group 44
9.1 Properties . 44
9.2 Lie algebra of SO(3) . 44
9.3 Lie algebra of SE(3) . 45
9.4 Exponential and logarithm maps . 46

9.4.1 For SO(3) . 46
9.4.2 For SE(3) . 48
9.4.3 Implementation in MRPT . 50

10 Optimization problems on SE(3) 51
10.1 Optimization solutions are made for flat Euclidean spaces 51
10.2 An elegant solution: to optimize on the manifold . 52
10.3 Useful manifold derivatives . 53

10.3.1 Jacobian of the SE(3) exponential generator . 53
10.3.2 Jacobian of the SO(3) logarithm . 54
10.3.3 Jacobian of D � ε = eε ⊕D (left-multiply option) 54
10.3.4 Jacobian of D � ε = D ⊕ eε (right-multiply option) 55
10.3.5 Jacobian of eε ⊕D ⊕ p . 55
10.3.6 Jacobian of p	 (eε ⊕D) . 56
10.3.7 Jacobian of A⊕ eε ⊕D . 56
10.3.8 Jacobian of A⊕ eε ⊕D ⊕ p . 57
10.3.9 Jacobian of p	 (A⊕ eε ⊕D) . 57
10.3.10 Jacobian of ((P2 ⊕ eε2)	 (P1 ⊕ eε1))	D . 57
10.3.11 Jacobian of the SE(3) pseudo-logarithm . 58

A Applications to computer vision 59
A.1 Projective model of an ideal pinhole camera – h(p) . 59
A.2 Projection of a point: eε ⊕A⊕ p . 60
A.3 Projection of a point: p	 (eε ⊕A) . 61

B Expressions for SE(2) GraphSLAM 62
B.1 SE(2) definition . 62
B.2 Manifold local coordinates and retraction . 62

B.2.1 SE(2) exponential map . 62
B.2.2 SE(2) logarithm map . 63
B.2.3 SE(2) pseudo-exponential map . 63
B.2.4 SE(2) pseudo-logarithm map . 64
B.2.5 SE(2) Jacobian of D � ε = D ⊕ eε (right-multiply option) 64
B.2.6 Jacobians for SE(2) pose composition A⊕B 64
B.2.7 SE(2) Jacobian of ((P2 ⊕ eε2)	 (P1 ⊕ eε1))	D 64

5

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

1. Rigid transformations in 3D

1.1. Basic definitions

This report focuses on geometry for the most interesting case of an Euclidean space in engineering:
the three-dimensional space R3. Over this space one can define an arbitrary transformation through
a function or mapping:

f : R3 → R3 (1.1)

For now, assume that f can be any 3 × 3 matrix R, such as the mapping function from a point
x1 = [x1 y1 z1]> to x2 = [x2 y2 z2]> is simply: x2

y2

z2

 = x2 = Rx1 = R

 x1

y1

z1

 (1.2)

The set of all invertible 3×3 matrices forms the general linear group GL(3,R). From all the infinite
possibilities for R, the set of orthogonal matrices with determinant of ±1 (i.e. RR> = R>R = I3)
forms the so called orthogonal group or O(3) ⊂ GL(3,R). Note that the group operator is the standard
matrix product, since multiplying any two matrices from O(3) gives another member of O(3). All
these matrices define isometries, that is, transformations that preserve distances between any pair
of points. From all the isometries, we are only interested here in those with a determinant of +1,
named proper isometries. They constitute the group of proper orthogonal transformations, or special
orthogonal group SO(3) ⊂ O(3) [9].

The group of matrices in SO(3) represents pure rotations only. In order to also handle transla-
tions, we can take into account 4× 4 transformation matrices T and extend 3D points with a fourth
homogeneous coordinate (which in this report will be always the unity), thus:

(
x2

1

)
= T

(
x1

1

)


x2

y2

z2

1

 =

 R
tx
ty
tz

0 0 0 1




x1

y1

z1

1

 (1.3)

x2 = Rx1 + (tx ty tz)
>

In general, any invertible 4 × 4 matrix belongs to the general linear group GL(4,R), but in the
particular case of the so defined set of transformation matrices T (along with the group operation of

6

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

matrix product), they form the group of affine rigid motions which, with proper rotations (|R| = +1),
is denoted as the special Euclidean group SE(3). It turns out that SE(3) is also a Lie group, and a
manifold with structure SO(3)× R3 (see §8.1.6). Chapters 7-10 will explain what all this means and
how to exploit it in engineering optimization problems.

In this report we will refer to SE(3) transformations as poses. As seen in Eq. (1.3), a pose can
be described by means of a 3D translation plus an orthonormal vector base (the columns of R), or
coordinate frame, relative to any other arbitrary coordinate reference system. The overall number of
degrees of freedom is six, hence they can be also referred to as 6D poses. The Figure 1.1 illustrates
this definition, where the pose p is represented by the axes {X′,Y′,Z′} with respect to a reference
frame {X,Y,Z}.

Figure 1.1: Schematic representation of a 6D pose p and its role in defining the relative coordinates
a′ of the 3D point a.

Given a 6D pose p and a 3D point a, both relative to some arbitrary global frame of reference,
and being a′ the coordinates of a relative to p, we define the composition ⊕ and inverse composition
	 operations as follows:

a ≡ p⊕ a′ Pose composition

a′ ≡ a	 p Pose inverse composition

These operations are intensively applied in a number of robotics and computer vision problems,
for example, when computing the relative position of a 3D visual landmark with respect to a camera
while computing the perspective projection of the landmark into the image plane.

The composition operators can be also applied to pairs of 6D poses (above we described a com-
bination of 6D poses and 3D points). The meaning of composing two poses p1 and p2 obtaining a
third pose p = p1⊕p2 is that of concatenating the transformation of the second pose to the reference
system already transformed by the first pose. This is illustrated in Figure 1.2.

7

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

(a) The pose p1 (b) The pose p2

(c) Composition p1⊕ p2

Figure 1.2: The composition of two 6D poses p1 and p2 leads to p.

The inverse pose composition can be also applied to 6D poses, in this case meaning that the pose
p (in global coordinates) “is seen” as p2 with respect to the reference frame of p1 (this one, also in
global coordinates), a relationship expressed as p2 = p	 p1.

Up to this point, poses, pose/point and pose/pose compositions have been mostly described under
a purely geometrical point of view. The next section introduces some of the most commonly employed
parameterizations.

8

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

1.2. Common parameterizations

1.2.1 3D translation plus yaw-pitch-roll (3D+YPR)

A 6D pose p6 can be described as a displacement in 3D plus a rotation defined by means of a specific
case of Euler angles: yaw (φ), pitch (χ) and roll (ψ), that is:

p6 = [x y z φ χ ψ]> (1.4)

The geometrical meaning of the angles is represented in Figure 1.3. There are other alternative
conventions about triplets of angles to represent a rotation in 3D, but the one employed here is the
one most commonly used in robotics.

z

x

y

Yaw

(1st)

Pitch

(2nd)

Roll

(3rd)

Arrow indicates

positive direction

Figure 1.3: A common convention for the angles yaw, pitch and roll.

Note that the overall rotation is represented as a sequence of three individual rotations, each taking
a different axis of rotation. In particular, the order is: yaw around the Z axis, then pitch around the
modified Y axis, then roll around the modified X axis. It is also common to find in the literature the
roll-pitch-yaw (RPY) parameterization (versus YPR), where rotations apply over the same angles (e.g.
yaw around the Z axis) but in inverse order and around the unmodified axes instead of the successively
modified axes of the yaw-pitch-roll form. In any case, it can be shown that the numeric values of the
three rotations are identical for any given 3D rotation [6], thus both forms are completely equivalent.

This representation is the most compact since it only requires 6 real parameters to describe a
pose (the minimum number of parameters, since a pose has 6 degrees of freedom). However, in
some applications it may be more advantageous to employ other representations, even at the cost of
maintaining more parameters.

1.2.1.1 Degenerate cases: gimbal lock

One of the important disadvantages of the yaw-pitch-roll representation of rotations is the existence
of two degenerate cases, specifically, when pitch (χ) approaches ±90◦. In this case, it is easy to realize
that a change in roll becomes a change in yaw.

This means that, for χ = ±90◦, there is not a unique correspondence between any possible rotation
in 3D and a triplet of yaw-pitch-roll angles. The practical consecuences of this characteristic is the

9

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

need for detecting and handling these special cases, as will be seen in some of the transformations
described later on.

1.2.1.2 Implementation in MRPT

Poses based on yaw-pitch-roll angles are implemented in the C++ class mrpt::poses::CPose3D:

#include <mrpt/poses/CPose3D.h>

using namespace mrpt:: poses;

using mrpt:: utils:: DEG2RAD;

CPose3D p(1.0 /* x */ ,2.0 /* y */ ,3.0 /* z */,

DEG2RAD (30.0) /* yaw */, DEG2RAD (20.0) /* pitch */, DEG2RAD (90.0) /* roll */);

1.2.2 3D translation plus quaternion (3D+Quat)

A pose p7 can be also described with a displacement in 3D plus a rotation defined by a quaternion,
that is:

p7 = [x y z qr qx qy qz]
> (1.5)

where the unit quaternion elements are [qr, (qx, qy, qz)]. A useful interpretation of quaternions is that
of a rotation of θ radians around the axis defined by the vector ~v = (vx, vy, vz) ∝ (qx, qy, qz). The
relation between θ, ~v and the elements in the quaternion is:

qr = cos θ2

qx = sin θ
2vx

qy = sin θ
2vy

qz = sin θ
2vz

This interpretation is also represented in Figure 1.4. The convention is qr (and thus θ) to be
non-negative. A quaternion has 3 degrees of freedom in spite of having four components due to the
unit length constraint, which can be interpreted as a unit hyper-sphere, hence its topology being that
of the special unitary group SU(2), diffeomorphic to S(3).

1.2.2.1 Implementation in MRPT

Poses based on quaternions are implemented in the class mrpt::poses::CPose3DQuat. The quaternion
part of the pose is always normalized (i.e. q2

r + q2
x + q2

y + q2
z = 1).

#include <mrpt/poses/CPose3DQuat.h>

using namespace mrpt:: poses;

using namespace mrpt::math;

CPose3DQuat p(1.0 /* x */ ,2.0 /* y */ ,3.0 /* z */,

CQuaternionDouble (1.0 /* qr */, 0.0 ,0.0 ,0.0 /* vector part */));

1.2.2.2 Normalization of a quaternion

In many situations, the quaternion part of a 3D+Quat 7D representation of a pose may drift away of
being unitary. This is specially true if each component of the quaternion is estimated independently,
such as within a Kalman filter or any other Gauss-Newton iterative optimizer (for an alternative, see
§10).

10

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

z

x

y

Arrow indicates

positive direction

qy

qx

qz

�

Figure 1.4: A quaternion can be seen as a rotation around an arbitrary 3D axis.

The normalization function is simply:

q′(q) =


q′r
q′x
q′y
q′z

 =
q

|q|
=

1

(q2
r + q2

x + q2
y + q2

z)
1/2


qr
qx
qy
qz

 (1.6)

and its 4× 4 Jacobian is given by:

∂q′(qr, qx, qy, qz)

∂qr, qx, qy, qz
=

1

(q2
r + q2

x + q2
y + q2

z)
3/2


q2
x + q2

y + q2
z −qrqx −qrqy −qrqz

−qxqr q2
r + q2

y + q2
z −qxqy −qxqz

−qyqr −qyqx q2
r + q2

x + q2
z −qyqz

−qzqr −qzqx −qzqy q2
r + q2

x + q2
y


(1.7)

1.2.3 4× 4 transformation matrices

Any rigid transformation in 3D can be described by means of a 4 × 4 matrix P with the following
structure:

P =


x

R y
z

0 0 0 1

 (1.8)

where the 3× 3 orthogonal matrix R ∈ SO(3) is the rotation matrix 1 (the only part of P related to
the 3D rotation) and the vector (x, y, z) represents the translational part of the 6D pose. For such a
matrix to be applicable to 3D points, they must be first represented in homogeneous coordinates [4]

1Also called direction cosine matrix (DCM).

11

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

which, in our case, will consist in just considering a fourth, extra dimension to each point which will
be always equal to the unity – examples of this will be discussed later on.

1.2.3.1 Implementation in MRPT

Transformation matrices themselves can be managed as any other normal 4× 4 matrix:

#include <mrpt/utils/types_math.h>

using namespace mrpt::math;

CMatrixDouble44 P;

Note however that the 3D+YPR type CPose3D also holds a cached matrix representation of the
transformation which can be retrieved with CPose3D::getHomogeneousMatrix().

12

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

2. Equivalences between representations

In this chapter the focus will be on the transformation of the rotational part of 6D poses, since the
3D translational part is always represented as an unmodified vector in all the parameterizations.

Another point to be discussed here is how the transformation between different parameterizations
affects the uncertainty for the case of probability distributions over poses. Assuming a multivariate
Gaussian model, first order linearization of the transforming functions is proposed as a simple and
effective approximation. In general, having a multivariate Gaussian distribution of the variable x ∼
N(x̄,Σx) (where x̄ and Σx are its mean and covariance matrix, respectively), we can approximate
the distribution of y = f(x) as another Gaussian with parameters:

ȳ = f(x̄) (2.1)

Σy =
∂f(x)

∂x

∣∣∣∣
x=x̄

Σx
∂f(x)

∂x

∣∣∣∣>
x=x̄

(2.2)

Note that an alternative to this method is using the scaled unscented transform (SUT) [14], which
may give more exact results for large levels of the uncertainty but typically requires more computation
time and can cause problems for semidefinite positive (in contrast to definite positive) covariance
matrices.

2.1. 3D+YPR to 3D+Quat

2.1.1 Transformation

Any given rotation described as a combination of yaw (φ), pitch (χ) and roll (ψ) can be expressed as
a quaternion with components (qr, qx, qy, qz) given by [13]:

13

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

q(φ, χ, ψ) =


qr(φ, χ, ψ)
qx(φ, χ, ψ)
qy(φ, χ, ψ)
qz(φ, χ, ψ)

 q(φ, χ, ψ) : R3 → R4 (2.3)

qr(φ, χ, ψ) = cos
ψ

2
cos

χ

2
cos

φ

2
+ sin

ψ

2
sin

χ

2
sin

φ

2
(2.4)

qx(φ, χ, ψ) = sin
ψ

2
cos

χ

2
cos

φ

2
− cos

ψ

2
sin

χ

2
sin

φ

2
(2.5)

qy(φ, χ, ψ) = cos
ψ

2
sin

χ

2
cos

φ

2
+ sin

ψ

2
cos

χ

2
sin

φ

2
(2.6)

qz(φ, χ, ψ) = cos
ψ

2
cos

χ

2
sin

φ

2
− sin

ψ

2
sin

χ

2
cos

φ

2
(2.7)

2.1.1.1 Implementation in MRPT

Transformation of a CPose3D pose object based on yaw-pitch-roll angles into another of type CPose3DQuat
based on quaternions can be done transparently due the existence of an implicit conversion constructor:

#include <mrpt/poses/CPose3D.h>

#include <mrpt/poses/CPose3DQuat.h>

using namespace mrpt:: poses;

CPose3D p6;

...

CPose3DQuat p7 = CPose3DQuat(p6); // Transparent conversion

2.1.2 Uncertainty

Given a Gaussian distribution over a 6D pose in yaw-pitch-roll form with mean p̄6 and being cov(p6)
its 6 × 6 covariance matrix, the 7 × 7 covariance matrix of the equivalent quaternion-based form is
approximated by:

cov(p7) =
∂p7(p6)

∂p6
cov(p6)

∂p7(p6)

∂p6

>
(2.8)

where the Jacobian matrix is given by:

∂p7(p6)

∂p6
=

(
I3 03×3

04×3
∂q(φ,χ,ψ)
∂{φ,χ,ψ}

)
7×6

(2.9a)

∂q(φ, χ, ψ)

∂{φ, χ, ψ}
=


(ssc− ccs)/2 (scs− csc)/2 (css− scc)/2
−(csc+ scs)/2 −(ssc+ ccs)/2 (ccc+ sss)/2
(scc− css)/2 (ccc− sss)/2 (ccs− ssc)/2
(ccc+ sss)/2 −(css+ scc)/2 −(csc+ scs)/2


4×3

(2.9b)

where the following abbreviations have been used:

ccc = cos ψ2 cos χ2 cos φ2 ccs = cos ψ2 cos χ2 sin φ
2 csc = cos ψ2 sin χ

2 cos φ2
...

scc = sin ψ
2 cos χ2 cos φ2 ssc = sin ψ

2 sin χ
2 cos φ2 sss = sin ψ

2 sin χ
2 sin φ

2

14

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

2.1.2.1 Implementation in MRPT

Gaussian distributions over 6D poses described as yaw-pitch-roll and quaternions are implemented in
the classes CPose3DPDFGaussian and CPose3DQuatPDFGaussian, respectively. Transforming between
them is possible via an explicit transform constructor, which converts both the mean and the covariance
matrix:

#include <mrpt/poses/CPose3DPDFGaussian.h>

#include <mrpt/poses/CPose3DQuatPDFGaussian.h>

using namespace mrpt:: poses;

CPose3DPDFGaussian p6(p6_mean , p6_cov);

...

CPose3DQuatPDFGaussian p7 = CPose3DQuatPDFGaussian(p6); // Explicit constructor

2.2. 3D+Quat to 3D+YPR

2.2.1 Transformation

As mentioned in §1.2.1.1, the existence of degenerate cases in the yaw-pitch-roll representation forces
us to consider special cases in many formulas, as it happens in this case when a quaternion must be
converted into these angles.

Firstly, assuming a normalized quaternion, we define the discriminant ∆ as:

∆ = qrqy − qxqz (2.10)

Then, in most situations we will have |∆| < 1/2, hence we can recover the yaw (φ), pitch (χ) and
roll (ψ) angles as:


φ = tan−1

(
2
qrqz+qxqy

1−2(q2y+q2z)

)
χ = sin−1 (2∆)

ψ = tan−1
(

2
qrqx+qyqz

1−2(q2x+q2y)

)
which can be obtained from trigonometric identities and the transformation matrices associated to a
quaternion and a triplet of angles yaw-pitch-roll (see §2.3–2.4). On the other hand, the special cases
when |∆| ≈ 1/2 can be solved as:

∆ = −1/2 ∆ = 1/2

φ = 2 tan−1 qx
qr

χ = −π/2
ψ = 0

φ = −2 tan−1 qx
qr

χ = π/2
ψ = 0

(2.11)

2.2.1.1 Implementation in MRPT

Transforming a 6D pose from a quaternion to a yaw-pitch-roll representation is achieved transparently
via an implicit transform constructor:

15

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

#include <mrpt/poses/CPose3D.h>

#include <mrpt/poses/CPose3DQuat.h>

using namespace mrpt:: poses;

CPose3DQuat p7;

...

CPose3D p6 = p7; // Transformation

2.2.2 Uncertainty

Given a Gaussian distribution over a 7D pose in quaternion form with mean p̄7 and being cov(p7) its
7× 7 covariance matrix, we can estimate the 6× 6 covariance matrix of the equivalent yaw-pitch-roll-
based form by means of:

cov(p6) =
∂p6(p7)

∂p7
cov(p7)

∂p6(p7)

∂p7

>
(2.12)

where the Jacobian matrix has the following block structure:

∂p6(p7)

∂p7
=

(
I3 03×4

03×3
∂(φ,χ,ψ)(qr,qx,qy ,qz)

∂qr,qx,qy ,qz

)
6×7

(2.13)

In turn, the bottom-right sub-Jacobian matrix must account for two consecutive transformations:
normalization of the Jacobian (since each element has an uncertainty, but we need it normalized for
the transformation formulas to hold), then transformation to yaw-pitch-roll form. That is:

∂(φ, χ, ψ)(qr, qx, qy, qz)

∂qr, qx, qy, qz
=
∂(φ, χ, ψ)(q′r, q

′
x, q
′
y, q
′
z)

∂q′r, q
′
x, q
′
y, q
′
z

∂(q′r, q
′
x, q
′
y, q
′
z)(qr, qx, qy, qz)

∂qr, qx, qy, qz
(2.14)

where the second term in the product is the Jacobian of the quaternion normalization (see §1.2.2.2).
Here, and in the rest of this report, it can be replaced by an identity Jacobian I4 if it is known for
sure that the quaternion is normalized.

Regarding the first term in the product, it is the Jacobian of the functions in Eq. 2.11–2.11, taking
into account that it can take three different forms for the cases χ = 90◦, χ = −90◦ and |χ| 6= 90◦.

2.2.2.1 Implementation in MRPT

This conversion can be achieved by means of an explicit transform constructor, as shown below:

#include <mrpt/poses/CPose3DQuat.h>

#include <mrpt/poses/CPose3DQuatPDFGaussian.h>

using namespace mrpt:: poses;

using namespace mrpt::math;

CPose3DQuat p7_mean = ...

CMatrixDouble77 p7_cov = ...

CPose3DQuatPDFGaussian p7(p7_mean ,p7_cov);

...

CPose3DPDFGaussian p6 = CPose3DPDFGaussian(p7); // Explicit constructor

16

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

2.3. 3D+YPR to matrix

2.3.1 Transformation

The transformation matrix associated to a 6D pose given in yaw-pitch-roll form has this structure:

P(x, y, z, φ, χ, ψ) =


x

R(φ, χ, ψ) y
z

0 0 0 1

 (2.15)

where the 3×3 rotation matrix R can be easily derived from the fact that each of the three individual
rotations (yaw, pitch and roll) operate consecutively one after the other, i.e. over the already modified
axis. This can be achieved by right-side multiplication of the individual rotation matrices:

Rz(φ) =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 Yaw rotates around Z (2.16)

Ry(χ) =

 cosχ 0 sinχ
0 1 0

− sinχ 0 cosχ

 Pitch rotates around Y (2.17)

Rx(ψ) =

 1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 Roll rotates around X (2.18)

thus, concatenating them in the proper order (Rx, then Ry, then Rz) we obtain the complete rotation
matrix:

R(φ, χ, ψ) = Rz(φ)Ry(χ)Rx(ψ) (2.19)

=

 cosφ cosχ cosφ sinχ sinψ − sinφ cosψ cosφ sinχ cosψ + sinφ sinψ
sinφ cosχ sinφ sinχ sinψ + cosφ cosψ sinφ sinχ cosψ − cosφ sinψ
− sinχ cosχ sinψ cosχ cosψ


A transformation matrix P is always well-defined and does not suffer of degenerate cases, but its

large storage requirements (4 × 4 = 16 elements) makes more advisable to use other representations
such as 3D+YPR (3+3=6 elements) or 3D+Quat (3+4=7 elements) in many situations. An important
exception is the case when computation time is critical and the most common operation is composing
(or inverse composing) a pose with a 3D point, where matrices require about half the computation
time than the other methods. On the other hand, composing a pose with another pose is a slightly
more efficient operation to carry out with a 3D+Quat representation.

In any case, when dealing with uncertainties, transformation matrices are not a reasonable choice
due to the quadratic cost of keeping their covariance matrices. The most common representation of a
6D pose with uncertainty in the literature are 3D+Quat forms (e.g. see [5]), thus we will not describe
how to obtain covariance matrices of a transformation matrix here. Note however that Jacobians of
matrices are sometimes handy as intermediaries (see §7 and §10).

17

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

2.3.1.1 Implementation in MRPT

The transformation matrix of any yaw-pitch-roll-based 6D pose stored in a CPose3D class can be
obtained as follows:

#include <mrpt/poses/CPose3D.h>

using namespace mrpt::math;

using namespace mrpt:: poses;

CPose3D p;

CMatrixDouble44 M = p.getHomogeneousMatrixVal ();

2.4. 3D+Quat to matrix

2.4.1 Transformation

The transformation matrix associated to a 6D pose given as a 3D translation plus a quaternion is
simply given by:

P(x, y, z, qr, qx, qy, qz) =


q2
r + q2

x − q2
y − q2

z 2(qxqy − qrqz) 2(qzqx + qrqy) x

2(qxqy + qrqz) q2
r − q2

x + q2
y − q2

z 2(qyqz − qrqx) y

2(qzqx − qrqy) 2(qyqz + qrqx) q2
r − q2

x − q2
y + q2

z z

0 0 0 1

 (2.20)

2.4.1.1 Implementation in MRPT

In this case the interface of CPose3DQuat is exactly identical to that of the yaw-pitch-roll form, that
is:

#include <mrpt/poses/CPose3DQuat.h>

using namespace mrpt::math;

using namespace mrpt:: poses;

CPose3DQuat p;

CMatrixDouble44 M = p.getHomogeneousMatrixVal ();

2.5. Matrix to 3D+YPR

2.5.1 Transformation

If we consider the 4 × 4 transformation matrix for a 6D pose in 3D+YPR form (see Eq. (2.15) and
(2.19)):

18

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

P(x, y, z, φ, χ, ψ)

=


cosφ cosχ cosφ sinχ sinψ − sinφ cosψ cosφ sinχ cosψ + sinφ sinψ x
sinφ cosχ sinφ sinχ sinψ + cosφ cosψ sinφ sinχ cosψ − cosφ sinψ y
− sinχ cosχ sinψ cosχ cosψ z

0 0 0 1


=


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

�0 �0 �0 �1


where we seek a closed-form expression for the following function:

p6(p12) : R3×4 → R6

 p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 →



x
y
z
φ
χ
ψ

 (yaw)
(pitch)
(roll)

it is obvious that the 3D translation part can be recovered by simply:


x = p14

y = p24

z = p34

Regarding the three angles yaw (φ), pitch (χ) and roll (ψ), they must be obtained in two steps in
order to properly handle the special cases (refer to the gimbal lock problem in §1.2.1.1). Firstly, pitch
is obtained from:

pitch : χ = atan2

(
−p31,

√
p2

11 + p2
21

)
(2.21)

Next, depending on whether we are in a degenerate case (|χ| = 90◦) or not (|χ| 6= 90◦), the
following expressions must be applied1:

χ = −90◦ −→
{
yaw : φ = atan2(−p23,−p13)
roll : ψ = 0

(2.22)

|χ| 6= 90◦ −→
{
yaw : φ = atan2(p21, p11)
roll : ψ = atan2(p32, p33)

(2.23)

χ = 90◦ −→
{
yaw : φ = atan2(p23, p13)
roll : ψ = 0

(2.24)

1At this point, special thanks go to Pablo Moreno Olalla for his work deriving robust expressions from Eq. (2.19)
that work for all the special cases.

19

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

2.5.1.1 Implementation in MRPT

Given a matrix M, the CPose3D representation can be obtained via an explicit transform constructor:

#include <mrpt/poses/CPose3D.h>

using namespace mrpt::math;

using namespace mrpt:: poses;

CMatrixDouble44 M;

...

CPose3D p = CPose3D(M);

2.5.2 Uncertainty

Let a Gaussian distribution over a SE(3) pose in matrix form be specified by a p̄12 mean and let
cov(p12) be its 12× 12 covariance matrix (refer to §7.2 for an explanation of where “12” comes from).
We can estimate the 6× 6 covariance matrix cov(p6) of the equivalent yaw-pitch-roll form by means
of:

cov(p6) =
∂p6(p12)

∂p12
cov(p12)

∂p6(p12)

∂p12

>
(2.25)

where the Jacobian matrix has the following block structure:

∂p6(p12)

∂p12
=

 03×9 I3

∂{φ, χ, ψ}
∂vec(R)

03×3


6×12

(2.26)

where R is the 3× 3 SO(3) rotational part of the pose p̄12 and the vec(·) operator (column major) is
defined in §7.1.

The remaining Jacobian block is defined as:

∂{φ, χ, ψ}
∂vec(R)

=

 J11 0 0 J14 0 0 0 0 0
J21 0 0 J24 0 0 0 J28 0
0 0 0 0 0 0 0 J38 J39


3×12

(2.27a)

J11 = −p21

k
(2.27b)

J14 =
p11

k
(2.27c)

J21 =
p11 p32√

k (k + p32
2)

(2.27d)

J24 =
p21 p32√

k (k + p32
2)

(2.27e)

J28 = −
√
k

k + p32
2

(2.27f)

J38 =
p33

p32
2 + p33

2
(2.27g)

J39 = − p32

p32
2 + p33

2
(2.27h)

k = p11
2 + p21

2 (2.27i)

20

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

2.6. Matrix to 3D+Quat

2.6.1 Transformation

A numerically stable method to convert a 3× 3 rotation matrix into a quaternion is described in [2],
which includes creating a temporary 4× 4 matrix and computing the eigenvector corresponding to its
largest eigenvalue. However, an alternative, more efficient method which can be applied if we are sure
about the matrix being orthonormal is to simply convert it firstly to a yaw-pitch-roll representation
(see §2.5) and then convert it to a quaternion representation (see §2.1).

2.6.1.1 Implementation in MRPT

Given a matrix M, the CPose3DQuat representation can be obtained via an explicit transform construc-
tor:

#include <mrpt/poses/CPose3DQuat.h>

using namespace mrpt::math;

using namespace mrpt:: poses;

CMatrixDouble44 M;

...

CPose3DQuat p = CPose3DQuat(M);

21

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

3. Composing a pose and a point

This chapter reviews how to compute the global coordinates of a point a given a pose p and the point
coordinates relative to that coordinate system a′, as illustrated in Figure 1.1, that is, the pose chaining
a = p⊕ a′.

3.1. With poses in 3D+YPR form

3.1.1 Composition

In this case the solution is to firstly compute the 4×4 transformation matrix of the pose using Eq. 2.19,
then proceed as described in §3.3.

3.1.1.1 Implementation in MRPT

A pose-point composition can be evaluated by means of:

#include <mrpt/poses/CPose3D.h>

#include <mrpt/math/lightweight_geom_data.h>

using namespace mrpt:: poses;

using namespace mrpt::math;

CPose3D q;

TPoint3D in_p , out_p;

...

q.composePoint(in_p , out_p);

3.1.2 Uncertainty

Given a Gaussian distribution over a 6D pose in 3D+YPR form with mean p̄6 = (x̄ ȳ z̄ φ̄ χ̄ ψ̄)>

and being cov(p6) its 6× 6 covariance matrix, and being ā′ = (ā′x ā
′
y ā
′
z)
> and cov(a′) the mean and

covariance of the 3D point a′, respectively, and assuming that both distributions are independent,
then the approximated covariance of the transformed point a = fpr(p6,a) = p6 ⊕ a′ is given by:

cov(a) =
∂fpr(p6,a)

∂p6
cov(p6)

∂fpr(p6,a)

∂p6

>
+
∂fpr(p6,a)

∂a
cov(a′)

∂fpr(p6,a)

∂a

>
(3.1)

The Jacobian matrices are:

22

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

∂fpr(p6,a)

∂p6

∣∣∣∣
3×6

=

 j14 j15 j16

I3 j24 j25 j26

j34 j35 j36

 (3.2)

∂fpr(p6,a)

∂a

∣∣∣∣
3×3

= R(φ̄, χ̄, ψ̄) See Eq.(2.19) (3.3)

with these entry values:

j14 = −ā′x sin φ̄ cos χ̄+ ā′y(− sin φ̄ sin χ̄ sin ψ̄ − cos φ̄ cos ψ̄) + ā′z(− sin φ̄ sin χ̄ cos ψ̄ + cos φ̄ sin ψ̄)

j15 = −ā′x cos φ̄ sin χ̄+ ā′y(cos φ̄ cos χ̄ sin ψ̄) + ā′z(cos φ̄ cos χ̄ cos ψ̄)

j16 = ā′y(cos φ̄ sin χ̄ cos ψ̄ + sin φ̄ sin ψ̄) + ā′z(− cos φ̄ sin χ̄ sin ψ̄ + sin φ̄ cos ψ̄)

j24 = ā′x cos φ̄ cos χ̄+ ā′y(cos φ̄ sin χ̄ sin ψ̄ − sin φ̄ cos ψ̄) + ā′z(cos φ̄ sin χ̄ cos ψ̄ + sin φ̄ sin ψ̄)

j25 = −ā′x sin φ̄ sin χ̄+ ā′y(sin φ̄ cos χ̄ sin ψ̄) + ā′z(sin φ̄ cos χ̄ cos ψ̄)

j26 = ā′y(sin φ̄ sin χ̄ cos ψ̄ − cos φ̄ sin ψ̄) + ā′z(− sin φ̄ sin χ̄ sin ψ̄ − cos φ̄ cos ψ̄)

j34 = 0

j35 = −ā′x cos χ̄− ā′y sin χ̄ sin ψ̄ − ā′z sin χ̄ cos ψ̄

j36 = ā′y cos χ̄ cos ψ̄ − ā′z cos χ̄ sin ψ̄

An approximate version of the Jacobian w.r.t. the pose has been proposed in [15] for the case

of very small rotations. It can be derived from the expression for
∂fpr(p6,a)

∂p6
above by replacing all

sinα ≈ 0 and cosα ≈ 1, leading to:

∂fpr(p6,a)

∂p6

∣∣∣∣
3×6

≈

 −ā′y ā′z 0

I3 ā′x 0 −ā′z
0 −ā′x ā′y

 (For small rotations only!!) (3.4)

3.1.2.1 Implementation in MRPT

There is not a direct method to implement a pose-point composition with uncertainty, but the two
required Jacobians can be obtained from the method composePoint():

#include <mrpt/poses/CPose3D.h>

using namespace mrpt:: poses;

using namespace mrpt::math;

CPose3D q;

CMatrixFixedNumeric <double ,3,3> df_dpoint;

CMatrixFixedNumeric <double ,3,6> df_dpose;

q.composePoint(lx ,ly,lz,gx ,gy,gz , &df_dpoint , &df_dpose);

3.2. With poses in 3D+Quat form

3.2.1 Composition

Given a pose described as p7 = [x y z qr qx qy qz]
>, we are interested in the coordinates of a =

[ax ay az]
> such as a = p7⊕a′ for some known input point a′ = [a′x a

′
y a
′
z]
>. The solution is given by:

23

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

a = fqr(p,a′) (3.5)

where the function fqr(·) is defined as:

fqr(p,a′) =

 x+ a′x + 2
[
−(q2

y + q2
z)a
′
x + (qxqy − qrqz)a′y + (qrqy + qxqz)a

′
z

]
y + a′y + 2

[
(qrqz + qxqy)a

′
x − (q2

x + q2
z)a
′
y + (qyqz − qrqx)a′z

]
z + a′z + 2

[
(qxqz − qrqy)a′x + (qrqx + qyqz)a

′
y − (q2

x + q2
y)a
′
z

]
 (3.6)

3.2.1.1 Implementation in MRPT

A pose-point composition can be evaluated by means of:

#include <mrpt/poses/CPose3D.h>

#include <mrpt/math/lightweight_geom_data.h>

using namespace mrpt:: poses;

using namespace mrpt::math;

CPose3DQuat q;

TPoint3D in_p , out_p;

...

q.composePoint(in_p , out_p);

3.2.2 Uncertainty

Given a Gaussian distribution over a 7D pose in quaternion form with mean p̄7 and being cov(p7)
its 7 × 7 covariance matrix, and being ā′ and cov(a′) the mean and covariance of the 3D point a′,
respectively, the approximated covariance of the transformed point a = p7 ⊕ a′ is given by:

cov(a) =
∂fqr(p,a)

∂p
cov(p7)

∂fqr(p,a)

∂p

>
+
∂fqr(p,a)

∂a
cov(a′)

∂fqr(p,a)

∂a

>
(3.7)

The Jacobian matrices are:

∂fqr(p,a)
∂p

∣∣∣
3×7

=

 1 0 0

0 1 0
∂fqr(p,a)

∂[qr qx qy qz]

0 0 1

 (3.8)

with the auxiliary term
∂fqr(p,a)

∂[qr qx qy qz] including the normalization Jacobian (see §1.2.2.2):

∂fqr(p,a)

∂[qr qx qy qz]
= 2

 −qzay + qyaz qyay + qzaz −2qyax + qxay + qraz −2qzax − qray + qxaz
qzax − qxaz qyax − 2qxay − qraz qxax + qzaz qrax − 2qzay + qyaz
−qyax + qxay qzax + qray − 2qxaz −qrax + qzay − 2qyaz qxax + qyay


×

∂(q′r, q
′
x, q
′
y, q
′
z)(qr, qx, qy, qz)

∂qr, qx, qy, qz
(3.9)

The other Jacobian is given by:

∂fqr(p,a)
∂a

∣∣∣
3×3

= 2

 1
2 − q

2
y − q2z qxqy − qrqz qrqy + qxqz

qrqz + qxqy
1
2 − q

2
x − q2z qyqz − qrqx

qxqz − qrqy qrqx + qyqz
1
2 − q

2
x − q2y

 (3.10)

24

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

3.2.2.1 Implementation in MRPT

There is not a direct method to implement a pose-point composition with uncertainty, but the two required
Jacobians can be obtained from the method composePoint():

#include <mrpt/poses/CPose3DQuat.h>

#include <mrpt/math/CMatrixFixedNumeric.h>

using namespace mrpt:: poses;

using namespace mrpt::math;

CPose3DQuat q;

CMatrixFixedNumeric <double ,3,3> df_dpoint;

CMatrixFixedNumeric <double ,3,7> df_dpose;

q.composePoint(lx ,ly,lz,gx ,gy,gz , &df_dpoint , &df_dpose);

3.3. With poses in matrix form

Given a 4 × 4 transformation matrix M corresponding to a 6D pose p and a point in local coordinates a′ =
[a′x a

′
y a
′
z], the corresponding point in global coordinates a = [ax ay az] can be computed easily as:

a = p⊕ a′
ax
ay
az
1

 = M


a′x
a′y
a′z
1

 (3.11)

where homogeneous coordinates (the column matrices) have been used for the 3D points – see also Eq. (1.3.

25

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

4. Points relative to a pose

In the next sections we will review how to compute the relative coordinates of a point a′ given a pose p and
the point global coordinates a, as illustrated in Figure 1.1, that is, a′ = a	 p.

4.1. With poses in 3D+YPR form

4.1.1 Inverse transformation

The relative coordinates of a point with respect to a pose in this parameterization can be computed by first
obtaining the matrix form of the pose §2.3, then using it as described in §4.3.

4.1.1.1 Implementation in MRPT

Given a 6D-pose as an object of type CPose3D, one can invoke its method inverseComposePoint() which, in
one of its signatures, reads:

#include <mrpt/poses/CPose3D.h>

#include <mrpt/math/lightweight_geom_data.h>

using namespace mrpt:: poses;

using namespace mrpt::math;

CPose3D q;

TPoint3D in_p , out_p;

...

q.inverseComposePoint(in_p , out_p);

4.1.2 Uncertainty

In this case it’s preferred to transform the 3D pose to a 3D+Quat, then perform the transformation as described
in the following section.

4.2. With poses in 3D+Quat form

4.2.1 Inverse transformation

Given a 7D-pose p7 = [x y z qr qx qy qz]> and a point in global coordinates a = [ax ay az]
>, the point

coordinates relative to p7, that is, a′ = a	 p7, are given by:

a′ = fqri(a,p7) =

 (ax − x) + 2
[
−(q2y + q2z)(ax − x) + (qxqy + qrqz)(ay − y) + (−qrqy + qxqz)(az − z)

]
(ay − y) + 2

[
(−qrqz + qxqy)(ax − x)− (q2x + q2z)(ay − y) + (qyqz + qrqx)(az − z)

]
(az − z) + 2

[
(qxqz + qrqy)(ax − x) + (−qrqx + qyqz)(ay − y)− (q2x + q2y)(az − z)

]
(4.1)

26

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

4.2.1.1 Implementation in MRPT

Given a 7D-pose as an object of type CPose3DQuat, one can invoke its method inverseComposePoint() which,
in one of its signatures, reads:

#include <mrpt/poses/CPose3DQuat.h>

#include <mrpt/math/lightweight_geom_data.h>

using namespace mrpt:: poses;

using namespace mrpt::math;

CPose3DQuat q;

TPoint3D in_p , out_p;

...

q.inverseComposePoint(in_p , out_p);

4.2.2 Uncertainty

Given a Gaussian distribution over a 7D pose in 3D+Quar form with mean p̄7 and being cov(p7) its 7 × 7
covariance matrix, and assuming that a 3D point follows an (independent) Gaussian distribution with mean ā
and 3× 3 covariance cov(a), we can estimate the covariance of the transformed local point a′ as:

cov(a′) =
∂fqri(a,p)

∂p7
cov(p7)

∂fqri(a,p)

∂p7

>
+
∂fqri(a,p)

∂a
cov(a)

∂fqri(a,p)

∂a

>
(4.2)

where the Jacobian matrices are given by:

∂fqri(a,p)

∂a
=

 1− 2(q2y + q2z) 2qxqy + 2qrqz −2qrqy + 2qxqz
−2qrqz + 2qxqy 1− 2(q2x + q2z) 2qyqz + 2qrqx
2qxqz + 2qrqy −2qrqx + 2qyqz 1− 2(q2x + q2y)


3×3

(4.3)

and, if we define ∆x = (ax − x), ∆y = (ay − y) and ∆z = (az − z), we can write the Jacobian with respect to
the pose as:

∂fqri(a,p)

∂p
=

 2q2y + 2q2z − 1 −2qrqz − 2qxqy 2qrqy − 2qxqz

2qrqz − 2qxqy 2q2x + 2q2z − 1 −2qrqx − 2qyqz
∂fqrir(a,p)

∂p

−2qrqy − 2qxqz 2qrqx − 2qyqz 2q2x + 2q2y − 1


3×7

(4.4)

with:

∂fqrir(a,p)

∂p
= 2

 −qy∆z + qz∆y qy∆y + qz∆z qx∆y − 2qy∆x− qr∆z qx∆z + qr∆y − 2qz∆x
qx∆z − qz∆x qy∆x− 2qx∆y + qr∆z qx∆x+ qz∆z −qr∆x− 2qz∆y + qy∆z
qy∆x− qx∆y qz∆x− qr∆y − 2qx∆z qz∆y + qr∆x− 2qy∆z qx∆x+ qy∆y


·
∂(q′r, q

′
x, q
′
y, q
′
z)(qr, qx, qy, qz)

∂qr, qx, qy, qz
(4.5)

where the second term in the product is the Jacobian of the quaternion normalization (see §1.2.2.2).

4.2.2.1 Implementation in MRPT

As in the previous case, here we it can be also employed the method inverseComposePoint() which if provided
the optional output parameters, will return the desired Jacobians:

27

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

#include <mrpt/poses/CPose3DQuat.h>

#include <mrpt/math/lightweight_geom_data.h>

using namespace mrpt:: poses;

using namespace mrpt::math;

CPose3DQuat q;

TPoint3D g, l;

CMatrixFixedNumeric <double ,3,3> dfi_dpoint;

CMatrixFixedNumeric <double ,3,7> dfi_dpose;

...

q.inverseComposePoint(

g.x,g.y,g.z, // Input (global coords)

l.x,l.y,l.z, // Output (local coords)

&dfi_dpoint , // 3x3 Jacobian

&dfi_dpose // 3x7 Jacobian

);

4.3. With poses as matrices

Given a 4 × 4 transformation matrix M corresponding to a 6D pose p and a point in global coordinates
a = [ax ay az], the corresponding point in local coordinates a′ = [a′x a

′
y a
′
z] is given by:

a′ = a	 p
a′x
a′y
a′z
1

 = M−1


ax
ay
az
1

 (4.6)

where homogeneous coordinates (the column matrices) have been used for the 3D points. An efficient way to
compute the inverse of a homogeneous matrix is described in §6.3

4.4. Relation with pose-point direct composition

There is an interesting result that naturally arises from the matrix form explained in the previous section. By
definition, we have:

a = p⊕ a′ ↔ a′ = a	 p (4.7)

Then, starting with a = p⊕ a′ and using the matrix form, we can proceed as follows:

a = p⊕ a′

A = PA′ (Representation as matrices)

P−1A = P−1PA′

P−1A = A′

(p)⊕ a = a′ (Back to ⊕/	 notation)

(p)⊕ a = a	 p (Using Eq. 4.7)

where (p) stands for the inverse of a pose p. Thus, the result is that any inverse pose composition can be
transformed into a normal pose composition, by switching the order of the two arguments (a and p in this case)
and inverting the latter. Note that the inverse of a pose is a topic discussed in §6.

28

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

5. Composition of two poses

Next sections are devoted to computing the composed pose p resulting from a concatenation of two 6D poses
p1 and p2, that is, p = p1 ⊕ p2. An example of this operation was shown in Figure 1.2.

5.1. With poses in 3D+YPR form

5.1.1 Pose composition

There is not simple equation for pose composition for poses described as triplets of yaw-pitch-roll angles, thus it
is recommended to transform them into either 3D+Quad or matrix form (see, §2.1 and §2.3, respectively), then
compose them as described in the following sections and finally convert the result back into 3D+YPR form.

5.1.1.1 Implementation in MRPT

Pose composition for 3D+YPR poses is implemented via overloading of the “+” C++ operator (using matrix
representation to perform the intermediary computations), such as composing can be simply writen down as:

#include <mrpt/poses/CPose3D.h>

using namespace mrpt:: poses;

CPose3D p1,p2;

...

CPose3D p = p1 + p2; // Pose composition

5.1.2 Uncertainty

Let N (p̄1
6, cov(p1

6)) and N (p̄2
6, cov(p2

6)) represent two independent Gaussian distributions over a pair of 6D
poses in 3D+YPR form. Note that superscript indexes have been employed for notation convenience (they do
not denote exponentiation!).

Then, the probability distribution of their composition pR
6 = p1

6 ⊕ p2
6 can be approximated via linear error

propagation by considering a mean value of:

p̄R
6 = fpc(p̄1

6, p̄
2
6) = p̄1

6 ⊕ p̄2
6 (5.1)

and a covariance matrix given by:

cov(pR
6) =

∂fpc(p,q)

∂p

∣∣∣∣p=p1
6

q=p2
6

cov(p1
6)
∂fpc(p,q)

∂p

∣∣∣∣>p=p1
6

q=p2
6

+
∂fpc(p,q)

∂q

∣∣∣∣p=p1
6

q=p2
6

cov(p2
6)
∂fpc(p,q)

∂q

∣∣∣∣>p=p1
6

q=p2
6

(5.2)

29

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

The problematic part is obtaining a closed form expression for the Jacobians
∂fpc(p,q)

∂p and
∂fpc(p,q)

∂q since,

as mentioned in the previous section, there is not a simple expression for the function fpc(·, ·) that maps pairs
of yaw-pitch-roll angles to the corresponding triplet of their composition.

However, a solution can be found following this path: first, the 3D+YPR poses pi
6 will be converted to

3D+Quat form pi
7, which are then composed such as pR

7 = p1
6 ⊕ p2

6, and finally that pose is converted back to
3D+YPR form to obtain pR

6 .
The chain rule can be applied to this sequence of transformations, leading to:

∂fpc(p,q)

∂p

∣∣∣∣p=p1
6

q=p2
6

=
∂p6(p7)

∂p7

∣∣∣∣
p7=pR

7

∂fqc(p,q)

∂p

∣∣∣∣p=p1
7

q=p2
7

∂p7(p6)

∂p6

∣∣∣∣
p6=p1

6

(5.3)

∂fpc(p,q)

∂q

∣∣∣∣p=p1
6

q=p2
6

=
∂p6(p7)

∂p7

∣∣∣∣
p7=pR

7

∂fqc(p,q)

∂q

∣∣∣∣p=p1
7

q=p2
7

∂p7(p6)

∂p6

∣∣∣∣
p6=p2

6

(5.4)

where the three chained Jacobians are described in Eq.(2.13), Eq.(5.8) and Eq.(2.9), respectively.

5.1.2.1 Implementation in MRPT

The composition is easily performed via an overloaded “+” operator, as can be seen in this code:

#include <mrpt/poses/CPose3DPDFGaussian.h>

using namespace mrpt:: poses;

CPose3DPDFGaussian p6a(p6_mean_a , p6_cov_a);

CPose3DPDFGaussian p6b(p6_mean_b , p6_cov_b);

...

CPose3DPDFGaussian p6 = p6a + p6b; // Pose composition (both mean and covariance)

5.2. With poses in 3D+Quat form

5.2.1 Pose composition

Given two poses p1 = [x1 y1 z1 qr1 qx1 qy1 qz1]> and p2 = [x2 y2 z2 qr2 qx2 qy2 qz2]>, we are interested in their
composition p = p1 ⊕ p2.

Operating, this pose can be found to be:

p =



x
y
z
qr
qx
qy
qz


= fqn (fqc(p1,p2)) = fqn


fqr(p1, [x2 y2 z2]>)

qr1qr2 − qx1qx2 − qy1qy2 − qz1qz2
qr1qx2 + qr2qx1 + qy1qz2 − qy2qz1
qr1qy2 + qr2qy1 + qz1qx2 − qz2qx1
qr1qz2 + qr2qz1 + qx1qy2 − qx2qy1

 (5.5)

with the function fqr(·) already defined in Eq. 3.6 and fqn being the quaternion normalization function, discussed
in §1.2.2.2.

5.2.1.1 Implementation in MRPT

Pose composition for 3D+Quat poses is implemented via overloading of the “+” operator, such as composing
can be simply writen down as:

30

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

#include <mrpt/poses/CPose3DQuat.h>

using namespace mrpt:: poses;

CPose3DQuat p1 ,p2;

...

CPose3DQuat p = p1 + p2; // Pose composition

5.2.2 Uncertainty

LetN (p̄1, cov(p1)) andN (p̄2, cov(p2)) represent two independent Gaussian distributions over a pair of 6D poses
in quaternion form. Then, the probability distribution of their composition p = p1 ⊕ p2 can be approximated
via linear error propagation by considering a mean value of:

p̄ = p̄1 ⊕ p̄2 (5.6)

and a covariance matrix given by:

cov(p) =
∂fqn
∂p

∣∣∣∣
p=p1

∂fqc(p1,p2)

∂p1
cov(p1)

∂fqc(p1,p2)

∂p1

>
∂fqn
∂p

∣∣∣∣>
p=p1

+
∂fqn
∂p

∣∣∣∣
p=p2

∂fqc(p1,p2)

∂p2
cov(p2)

∂fqc(p1,p2)

∂p2

>
∂fqn
∂p

∣∣∣∣>
p=p2

(5.7)

The Jacobians of the pose composition function fqc(·) are given by:

∂fqc(p1,p2)

∂p1

∣∣∣∣
7×7

=


∂fqr(p1,[x2 y2 z2]

>)
∂p1

∣∣∣
3×7

qr2 −qx2 −qy2 −qz2
04×3 qx2 qr2 qz2 −qy2

qy2 −qz2 qr2 qx2
qz2 qy2 −qx2 qr2

 (5.8)

∂fqc(p1,p2)

∂p2

∣∣∣∣
7×7

=


∂fqr(p1,[x2 y2 z2]

>)
∂[x2 y2 z2]>

∣∣∣
3×3

03×4

qr1 −qx1 −qy1 −qz1
04×3 qx1 qr1 −qz1 qy1

qy1 qz1 qr1 −qx1
qz1 −qy1 qx1 qr1

 (5.9)

Note that the partial Jacobians used in these expressions were already defined in Eq. (3.8)-(3.10), and that
the Jacobian of the normalization function fqn is described in §1.2.2.2.

5.2.2.1 Implementation in MRPT

The composition is easily performed via an overloaded “+” operator:

#include <mrpt/poses/CPose3DQuatPDFGaussian.h>

using namespace mrpt:: poses;

CPose3DQuatPDFGaussian p7a(p7_mean_a , p7_cov_a);

CPose3DQuatPDFGaussian p7b(p7_mean_b , p7_cov_b);

...

CPose3DQuatPDFGaussian p7 = p7a + p7b; // Pose composition (both mean and covariance)

31

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

5.3. With poses in matrix form

5.3.1 Pose composition

Given a pair of 4× 4 transformation matrices M1 and M2 corresponding to two 6D poses p1 and p2, we can
compute the matrix M for their composition p = p1 ⊕ p2 simply as:

M = M1M2 (5.10)

5.3.1.1 Implementation in MRPT

In this case, operate just like with ordinary matrices:

#include <mrpt/math/lightweight_geom_data.h>

using namespace mrpt::math;

CMatrixDouble44 M1, M2;

...

CMatrixDouble44 M = M1 * M2; // Matrix multiplication

32

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

6. Inverse of a pose

Given a pose p, we define its inverse (denoted as 	p) as that pose that, composed with the former, gives the
null element in SE(3). In practice, it is useful to visualize the inverse of a pose as how the origin of coordinates
”is seen”, from that pose.

6.1. For a 3D+YPR pose

In this case it’s preferred to transform the 3D pose to either a 3D+Quat or a matrix form, invert the pose in
that form (as described in the next sections) and convert back to 3D+YPR.

6.1.0.1 Implementation in MRPT

Obtaining the inverse of a 6D-pose of type CPose3D is implemented with the unary - operator which internally
uses the cached 4× 4 transformation matrix within CPose3D objects:

#include <mrpt/poses/CPose3D.h>

using namespace mrpt:: poses;

CPose3D q;

CPose3D q_inv = -q;

6.2. For a 3D+Quat pose

6.2.1 Inverse

The inverse of a pose p7 = [x y z qr qx qy qz]
> comprises two parts which can be computed separately. If we

denote this inverse as p?7 = [x? y? z? q?r q
?
x q

?
y q

?
z]>, its rotational part is simply the conjugate quaternion of the

original pose, while the 3D translational part must be computed as the relative position of the origin [0 0 0]>

as seen from the pose p7, that is:

p?7 =



x?

y?

z?

q?r
q?x
q?y
q?z


= fqi(p7) =


fqri([0 0 0]>,p7)

qr
−qx
−qy
−qz

 (6.1)

where fqri(a,p) was defined in Eq. (4.1).

33

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

6.2.1.1 Implementation in MRPT

Obtaining the inverse of a 7D-pose of type CPose3DQuat is implemented with the unary - operator:

#include <mrpt/poses/CPose3DQuat.h>

using namespace mrpt:: poses;

CPose3DQuat q;

CPose3DQuat q_inv = -q;

6.2.2 Uncertainty

Let N (q̄, cov(q)) represent the Gaussian distributions of a 7D-pose q in 3D+Quat form. Then, the probability
distribution of the inverse pose qi = 	qi can be approximated via linear error propagation by considering a
mean value of:

q̄i = 	q̄ (6.2)

and a covariance matrix:

cov(qi) =
∂fqi
∂q

cov(q)
∂fqi
∂q

>
(6.3)

with the Jacobian:

∂fqi
∂q

=

(
∂fqri([0 0 0]>,q)

∂q

04×3 D

)
(6.4a)

D =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ∂(q′r, q
′
x, q
′
y, q
′
z)(qr, qx, qy, qz)

∂qr, qx, qy, qz
(6.4b)

where the sub-Jacobian on the top has been already defined in Eq. (4.4) and the normalization Jacobian is
defined §1.2.2.2.

6.2.2.1 Implementation in MRPT

The Gaussian distrution of an inverse 3D+Quat pose can be computed simply by:

#include <mrpt/poses/CPose3DQuatPDFGaussian.h>

using namespace mrpt:: poses;

CPose3DQuatPDFGaussian p1 = ...

CPose3DQuatPDFGaussian p1_inv = -p1;

6.3. For a transformation matrix

From the description of inverse pose at the begining of this chapter, and given that the null element in SE(3)
in matrix form is the identity I4, it’s clear that the inverse of pose defined by a matrix M is simply M−1, since
M−1M = I.

34

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

The inverse of a homogeneous matrix can be computed very efficiently by simply transposing its 3 × 3
rotation part (which actually requires just 3 swaps) and using the following expressions for the fourth column
(the translation):

M−1 =

(
i j k t
0 0 0 1

)−1
=


i1 j1 k1 x
i2 j2 k2 y
i3 j3 k3 z
0 0 0 1


−1

=


i1 i2 i3 −i · t
j1 j2 j3 −j · t
k1 k2 k3 −k · t
0 0 0 1

 (6.5)

where a · b stands for the dot product. See also §7.3 for derivatives of this transformation, under the form of
matrix derivatives.

35

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

7. Derivatives of pose transformation matrices

7.1. Operators

The following operators are extremely useful when dealing with derivatives of matrices:

• The vec operator. It stacks all the columns of an M ×N matrix to form a MN × 1 vector. Example:

vec

([
1 2 3
4 5 6

])
=


1
4
2
5
3
6

 (7.1)

• The Kronecker operator, or matrix direct product. Denoted as A ⊗ B for any two matrices A and
B of dimensions MA × NA and MB × NB , respectively, it gives a tensor product of the matrices as an
MAMB ×NANB matrix. That is,

A⊗B =

 a11B a12B a13B ...
a21B a22B a23B ...

...

 (7.2)

• The transpose permutation matrix. Denoted as TM,N, these are simple permutation matrices of size
MN ×MN containing all 0s but for just one 1 at each column or row, such as for any M ×N matrix A
it holds:

TN,Mvec(A) = vec(A>) (7.3)

• The hat (wedge) operator (·)∧, maps a 3× 1 vector to its corresponding skew-symmetric matrix:

ω =

 x
y
z

 ω∧ =

 0 −z y
z 0 −x
−y x 0

 (7.4)

• The vee operator (·)∨, is the inverse of the hat map: 0 −z y
z 0 −x
−y x 0

∨ =

 x
y
z

 (7.5)

, such that (ω∧)∨ = ω.

36

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

7.2. On the notation

Previous chapters have discussed three popular ways of representing 6D poses, namely, 3D+YPR, 3D+Quat
and 4 × 4 transformation matrices. In the following we will be only interested in the matrix form, which will
be described here once again to stress the relevant facts for this chapter.

A pose (rigid transformation) in three-dimensional Euclidean space can be uniquely determined by means
of a 4× 4 matrix with this structure:

T =

(
R t

01×3 1

)
(7.6)

where R ∈ SO(3) is a proper rotation matrix (see §1.1) and t = [tx ty tz]
> ∈ R3 is a translation vector. In

general, any invertible 4 × 4 matrix belongs to the general linear group GL(4,R), but matrices in the form
above belongs to SE(3), which actually is the manifold SO(3) × R3 embedded in the more general GL(4,R).
The point here is to notice that the manifold has a dimensionality of 12: 9 coordinates for the 3× 3 matrix plus
other 3 for the translation vector.

Since we will be interested here in expressions involving derivatives of functions of poses, we need to define a
clear notation for what a derivative of a matrix actually means. As an example, consider an arbitrary function,
say, the map of pairs of poses p1, p2 to their composition p1 ⊕ p2, that is, f⊕ : SE(3)× SE(3) 7→ SE(3). Then,
what does the expression

∂f⊕(p1, p2)

∂p1
(7.7)

means? If pi were scalars, the expression would be a standard 1-dimensional derivative. If they were vectors,
the expression would become a Jacobian matrix. But they are poses, thus some kind of convention on how a
pose is parameterized must be made explicit to understand such an expression.

As also considered in other works, e.g. [16], poses will be treated as matrices. When dealing with derivatives
of matrices it is convention to implicitly assume that all the involved matrices are actually expanded with the
vec operator (see §7.1), meaning that derivatives of matrices become standard Jacobians. However, for matrices
describing rigid motions we will only expand the top 3 × 4 submatrix; the fourth row of 7.6 can be discarded
since it is fixed.

To sum up: poses appearing in a derivative expressions are replaced by their 4 × 4 matrices, but when
expanding them with the vec operator, the last row is discarded. Poses become 12-vectors. Although this
implies a clear over-parameterization of an entity with 6 DOFs, it turns out that many important operations
become linear with this representation, enabling us to obtain exact derivatives in an efficient way.

Recovering the example in Eq.7.7, if we denote the transformation matrix associated to pi as Ti, we have:

∂f⊕(p1, p2)

∂p1
=
∂f⊕(T1,T2)

∂T1

∣∣∣∣
12×12

(7.8)

It is instructive to explicitly unroll at least one such expression. Using the standard matrix element subscript
notation, i.e:

M =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

���:
0m41 ���:

0m42 ���:
0m43 ���:

1m44

 (7.9)

and denoting the resulting matrix from f⊕(p1, p2) as F:

37

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

∂f⊕(p, q)

∂p
=
∂F(P,Q)

∂P
=

∂vec(F(P,Q))

∂vec(P)
(7.10)

=
∂[f11f21f31f12f22...f33f14f24f34]

∂[p11p21p31p12p22...p33p14p24p34]
=


∂f11
∂p11

∂f11
∂p21

... ∂f11
∂p34

...
∂f34
∂p11

∂f34
∂p21

... ∂f34
∂p34


12×12

(7.11)

7.3. Useful expressions

Once defined the notation, we can give the following list of useful expressions which may arise when working
with derivatives of transformations, as when dealing with optimization problems – see §10.3.

7.3.1 Pose-pose composition

Let f⊕ : SE(3) × SE(3) 7→ SE(3) denote the pose composition operation, such as f⊕(A,B) = A ⊕ B (refer to
§1.1 and §5). Then we can take derivatives of f⊕(A,B) w.r.t. both involved poses A and B.

If we denote the 4× 4 transformation matrix associated to a pose X as:

TX =

(
RX tX
01×3 1

)
(7.12)

the matrix multiplication TATB can be expanded element by element and, rearranging terms, it can be easily
shown that:

∂f⊕(A,B)

∂A
=

∂TATB

∂TA
= TB

> ⊗ I3 (a 12× 12 Jacobian) (7.13)

∂f⊕(A,B)

∂B
=

∂TATB

∂TB
= I4 ⊗RA (a 12× 12 Jacobian) (7.14)

These Jacobians are provided in MRPT via mrpt::poses::Lie::SE<3>, methods jacob dAB dA() and
jacob dAB dB(), respectively.

7.3.2 Pose-point composition

Let g⊕ : SE(3)×R3 7→ R3 denote the pose-point composition operation such as g⊕(A, p) = A⊕ p (refer to §3).
Then we can take derivatives of g⊕(A, p) w.r.t. either the pose A or the point p.

We obtain in this case:

∂g⊕(A, p)

∂p
=

∂TAp

∂p
=
∂(RAp + tA)

∂p
= RA (a 3× 3 Jacobian) (7.15)

∂g⊕(A, p)

∂A
=

∂TAp

∂TA
=
(
p> 1

)
⊗ I3 (a 3× 12 Jacobian) (7.16)

7.3.3 Inverse of a pose

The inverse of a pose A is given by the inverse of its associated matrix TA, which always exists and has a closed
form expression (see §6.3). Its derivative can be shown to be:

38

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

∂
(
TA
−1)

∂TA
=

(
T3,3 09×3

I3 ⊗ (−tA
>) −RA

>

)
(a 12× 12 Jacobian) (7.17)

Remember that T3,3 stands for a transpose permutation matrix (of size 9 × 9 in this case), as defined in
§7.1.

7.3.4 Inverse pose-point composition

Employing the above defined Jacobians and the standard chain rule for derivatives one can obtain arbitrarily
complex Jacobians. As an example, it will derived here the derivative of pose-point inverse composition, that
is, given a pose A and a point p, obtaining p	A, or A−1p (see §4).

Operating:

∂
(
TA
−1p

)
∂p

Eq.(7.15)
= (RA)−1 = RA

> (a 3× 3 Jacobian) (7.18)

∂
(
TA
−1p

)
∂TA

Chain rule
=

∂
(
TA
−1p

)
∂(TA

−1)

∂
(
TA
−1)

∂TA

Eq.(7.16) &
Eq.(7.17)

=
[(

p> 1
)
⊗ I3

](T3,3 03×9
I3 ⊗ (−tA

>) −RA
>

)
(7.19)

=
(

I3 ⊗
(
(p− tA)>

)
−RA

>) (a 3× 12 Jacobian) (7.20)

39

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

8. Concepts on Lie groups

8.1. Definitions

Before addressing the practical applications of looking at rigid motions as a Lie group, we need to provide
several mathematical definitions which are fundamental to understand the subsequent discussion (for example,
what a Lie group actually is!). A more in-deep treatment of some of the topics covered in this chapter can be
found in [9, 19].

8.1.1 Mathematical group

A group G is a structure consisting of a finite or infinite set of elements plus some binary operation (the group
operation), which for any two group elements A,B ∈ G is denoted as the multiplication AB.

A group is said to be a group under some given operation if it fulfills the following conditions:

1. Closure. The group operation is a function G×G 7→ G, that is, for any A,B ∈ G, we have AB ∈ G.

2. Associativity. For A,B,C ∈ G, (AB)C = A(BC).

3. Identity element. There must exists an identity element I ∈ G, such as IA = AI = A for any A ∈ G.

4. Inverse. For any A ∈ G there must exist an inverse element A−1 such as AA−1 = A−1A = I.

Examples of simple groups are:

• The integer numbers Z, under the operation of addition.

• The sets of invertible N ×N matrices GL(N,R), or the 3D special orthogonal group SO(3) (recall §1.1)
are groups under the operation of standard matrix multiplication.

8.1.2 Manifold

An N -dimensional manifold M is a topological space where every point p ∈M is endowed with local Euclidean
structure. Another way of saying it: the neighborhood of every point p is homeomorphic1 to RN .

From an intuitive point of view, it means that, in an infinitely small vicinity of a point p the space looks
“flat”. A good way to visualize it is to think of the surface of the Earth, a manifold of dimension 2 (we can
move in two perpendicular directions, North-South and East-West). Although it is curved, at a given point it
looks “flat”, or a R2 Euclidean space (refer to Fig. 8.1).

1A function that maps from M to RN is homeomorphic if it is a bicontinuous function, that is, both f(·) and its
inverse f(·)−1 are continuous.

40

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

Figure 8.1: An illustration of the elements introduced in the text: a sample 2-dimensional manifold M
(embedded in 3D-space), a point on it x ∈M , the tangent space at x, denoted TxM and the algebra
m, the vectorial base of that space.

8.1.3 Smooth manifolds embedded in RN

A D-dimensional manifold is a smooth manifold embedded in the RN space (N ≥ D) if every point p ∈ M is
contained by U ⊆M , defined by some function:

ϕ : Ω 7→ U (8.1)

RN 7→M (8.2)

where Ω is an open subset of RN which contains the origin of that space (i.e. 0N).
Additionally, the function ϕ must fulfill:

1. Being a homeomorphism (i.e. ϕ(·) and ϕ(·)−1 are continue).

2. Being smooth (C∞).

3. Its derivative at the origin ϕ′(0N) must be injective.

The function ϕ() is a local parameterization of M centered at the point p, where:

ϕ(0N) = p , p ∈M (8.3)

The inverse function:

ϕ−1 : U 7→ Ω (8.4)

M 7→ RN (8.5)

is called a local chart of M, since provides a “flattened” representation of an area of the manifold.

41

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

8.1.4 Tangent space of a manifold

A D-dimensional manifold M embedded in RN (with N ≥ D) has associated an N -dimensional tangent space
for every point p ∈ M . This space is denoted as TxM and in non-singular points has a dimensionality of D
(identical to that of the manifold). See Fig. 8.1 for an illustration of this concept.

Informally, a tangent space can be visualized as the vector space of the derivatives at p of all possible
smooth curves that pass through p, e.g. TxM contains all the possible “velocity” vectors of a particle at p and
constrained to M .

8.1.5 Lie group

A Lie group is a (non-empty) subset G of RN that fulfills:

1. G is a group (see §8.1.1).

2. G is a manifold in RN (see §8.1.3).

3. Both, the group product operation (· : G 7→ G) and its inverse (−1 : G 7→ G) are smooth functions.

8.1.6 Linear Lie groups (or matrix groups)

Let the set of all N × N matrices (invertible or not) be denoted as M(N,R). We also define the Lie bracket
operator [·, ·] such as [A,B] = AB −BA for any A,B ∈M(N,R).

Then, a theorem from Von Newman and Cartan reads ([9], p.397):

Theorem 1. A closed subgroup G of GL(N,R) is a linear Lie group (thus, a smooth manifold in RN2

). Also,
the set g:

g = {X ∈M(N,R)|etX ∈ G, ∀t ∈ R} (8.6)

is a vector space equal to TIG (the tangent space of G at the identity entity I), and g is closed under the Lie
bracket.

It must be noted that, for any square matrix M, the exponential map eM is well defined and coincides with
the matrix exponentiation, which in general has this (always convergent) power series form:

eM =

∞∑
k=0

1

k!
Mk (8.7)

For the purposes of this report, the interesting result of the theorem above is that the group SO(3) (proper
rotations in R3) can be also viewed now as a linear Lie group, since it is a subgroup of GL(3,R). Regarding
the group of rigid transformations SE(3), since it is isomorphic to a subset of GL(4,R) (any pose in SE(3) can
be represented as a 4× 4 matrix), we find out that it is also a linear Lie group [9].

8.1.7 Lie algebra

A Lie algebra2 is an algebra m together with a Lie bracket operator [·, ·] : m×m 7→ m such as for any elements
a, b, c ∈ m it holds:

[a, b] = −[b, a] (Anti-commutativity) (8.8)

[c, [a, b]] = [[c, a] , b] + [a, [c, b]] (Jacobi identity) (8.9)

2For our purposes, an algebra means a vector space A plus a bilinear multiplication function: A×A 7→ A.

42

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

It follows that [a, a] = 0 for any a ∈ m.
An important fact is that the Lie algebra m associated to a Lie group M happens to be the tangent space

at the identity element I, that is:

m = TIM (For M being a Lie group) (8.10)

8.1.8 Exponential and logarithm maps of a Lie group

Associated to a Lie group M and its Lie algebra m there are two important functions:

• The exponential map, which maps elements from the algebra to the manifold and determines the local
structure of the manifold:

exp : m 7→M (8.11)

• The logarithm map, which maps elements from the manifold to the algebra:

log : M 7→ m (8.12)

The next chapter will describe these functions for the cases of interest in this report.

43

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

9. SE(3) as a Lie group

9.1. Properties

For the sake of clarity, we repeat here the description of the group of rigid transformations in R3 already given
in §7.2. This group of transformations is denoted as SE(3), and its members are the set of 4× 4 matrices with
this structure:

T =

(
R t

01×3 1

)
(9.1)

with R ∈ SO(3), t = [tx ty tz]
> ∈ R3 and group product the standard matrix product.

Some facts on this group (see for example, [9], §14.6):

• SE(3) is a 6-dimensional manifold (i.e. has 6 degrees of freedom). Three correspond to the 3D translation
vector and the other three to the rotation.

• SE(3) is isomorphic to a subset of GL(4,R).

• Since SE(3) is embedded in the more general GL(4,R), from §8.1.6 we have that it is also a Lie group.

• SE(3) is diffeomorphic to SO(3) × R3 as a manifold, where each element is described by 3 · 3 + 3 = 12
coordinates (see §7.2).

• SE(3) is not isomorphic to SO(3) × R3 as a group, since the group multiplications of both groups are
different. It is said that SE(3) is a semidirect product of the groups SO(3) and R3.

9.2. Lie algebra of SO(3)

Since SE(3) has the manifold structure of the product SO(3)×R3, it makes sense to define first the properties
of SO(3), which is also a Lie group (by the way, RN can be also considered a Lie group for any N ≥ 1).

The group SO(3) has an associated Lie algebra so(3), whose base are three skew symmetric matrices, each
corresponding to infinitesimal rotations along each axis:

44

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

so(3) = {Gso(3)
i }i=1,2,3 (9.2)

G
so(3)
1 = e∧1 =

 0 0 0
0 0 −1
0 1 0

 e1 =

 1
0
0

 (9.3)

G
so(3)
2 = e∧2 =

 0 0 1
0 0 0
−1 0 0

 e2 =

 0
1
0

 (9.4)

G
so(3)
3 = e∧3 =

 0 −1 0
1 0 0
0 0 0

 e3 =

 0
0
1

 (9.5)

(9.6)

Notice that this means that an arbitrary element in so(3) has three coordinates (each coordinate multiplies

a generator matrix {Gso(3)
1 ,G

so(3)
2 ,G

so(3)
3 }) so it can be represented as a vector in R3.

We have used above the so-called ”hat” and ”vee” operators (see §7.1).

9.3. Lie algebra of SE(3)

The group SE(3) has an associated Lie algebra se(3), whose base are these six 4×4 matrices, each corresponding
to either infinitesimal rotations or infinitesimal translations along each axis:

se(3) = {Gse(3)
i }i=1...6 (9.7)

G
se(3)
{1,2,3} =

 G
so(3)
{1,2,3}

0
0
0

0 0

 (9.8)

G
se(3)
4 =

 03×3

1
0
0

0 0

 (9.9)

G
se(3)
5 =

 03×3

0
1
0

0 0

 (9.10)

G
se(3)
6 =

 03×3

0
0
1

0 0

 (9.11)

Recall that this means that an arbitrary element in se(3) has six coordinates (each coordinate multiplies a
generator matrix) so it can be represented as a vector in R6. In this consists what is called the “linearization”
of the manifold SE(3).

45

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

9.4. Exponential and logarithm maps

As defined in §8.1.8, the exponential and logarithm maps transform elements between Lie groups and their
corresponding Lie algebras. In this report we sometimes denote the exp and log functions as operating on
vectors and returning vectors, respectively, of the corresponding dimensions (3 for SO(3), 6 for SE(3)). Those
vectors are the coordinates in the vector spaces of matrices defined by the corresponding Lie algebras.

9.4.1 For SO(3)

9.4.1.1 Exponential map

Axis-angle to Matrix

The map:

exp : so(3) 7→ SO(3) (9.12a)

ω 7→ R3×3 (9.12b)

is well-defined, surjective, and corresponds to the matrix exponentiation (see Eq. (8.7)), which has the closed-
form solution: the Rodrigues’ formula from 1840 [1], that is

eω ≡ matexp(ω∧) = I3 +
sin θ

θ
ω∧ +

1− cos θ

θ2
(ω∧)2 (9.13)

where the angle θ = |ω| and ω∧ is the skew symmetric matrix (see the definition of the hat operator in Eq.(7.4))
generated by the 3-vector ω.

We can define a unit vector, representing the axis of rotation, as n = ω
|ω| = (n1, n2, n3)> with respect to a

fixed Cartesian coordinate system, and the angle of rotation θ = |ω| around this axis. One can show that the
Rodrigues’ formula (eq. 9.13) for the rotation matrix R(n, θ) representing rotation around axis n about the
angle θ in the coordinate form can be written as:

R(n, θ) =

 cos θ + n21(1− cos θ) n1n2(1− cos θ)− n3 sin θ n1n3(1− cos θ) + n2 sin θ
n1n2(1− cos θ) + n3 sin θ cos θ + n22(1− cos θ) n2n3(1− cos θ)− n1 sin θ
n1n3(1− cos θ)− n2 sin θ n2n3(1− cos θ) + n1 sin θ cos θ + n23(1− cos θ)

 (9.14)

It is also useful to derive the following representation of rotation matrix:

R(n, θ) = PR(z, θ)P−1 (9.15)

where P is an orthogonal matrix, i.e. P−1 = P>, and R(z, θ) is a standard rotation matrix around z- axis
about angle θ:

P =


n3n1√
n2
1+n

2
2

−n2√
n2
1+n

2
2

n1

n3n2√
n2
1+n

2
2

n1√
n2
1+n

2
2

n2

−
√
n21 + n22 0 n3

 , R(z, θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (9.16)

Axis-angle to Quaternion

The exponential map can be also directly mapped as a unit quaternion (qr qx qy qz)
> as follows [10]:

46

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

exp : so(3) 7→ SO(3) (9.17a)

ω 7→ SU(2) (9.17b)

eωq =


(1, 0, 0, 0)> , if ω = (0, 0, 0)>cos

|ω|
2
,

sin
|ω|
2

|ω|
ω


>

, otherwise
(9.17c)

9.4.1.2 Logarithm map

Matrix to Axis-angle

The map:

log : SO(3) 7→ so(3) (9.18a)

R3×3 7→ ω (9.18b)

is well-defined for rotation angles θ ∈ (0, π), surjective, and is the inverse of the exp function defined above.
From Rodrigues’ formula (eq. 9.14) or from rotation matrix factorization and trace properties (eq. 9.15) it
follows that:

cos θ =
1

2
(tr(R)− 1) (9.19)

sin θ = (1− cos2 θ)1/2 =
1

2

√
(3− tr(R))(1 + tr(R))

where sin θ ≥ 0 is a consequence of the convention for the range of the rotation angle, θ ∈ [0, π].
If sin θ 6= 0, i.e. θ 6= {0, π}, from eq. 9.14:

log(R) =
θ

2 sin θ

(
R−R>

)
, tr(R) 6= {−1, 3}

ω = [log(R)]
∨

=
θ

2 sin θ
(R32 −R23, R13 −R31, R21 −R12)> (9.20)

If sin θ = 0, then θ = 0 or θ = π. In both cases (from eq. 9.14) Rij = Rji, and ω can not be determined by
eq. 9.20. However, the angle θ is derived from eq. 9.19, and inserting it to the Rodrigues’ formula 9.13:

ω is undetermined if θ = 0,

ω

|ω|
= n =

(
ε1

√
1

2
(1 +R11), ε2

√
1

2
(1 +R22), ε3

√
1

2
(1 +R33)

)>
, if θ = π (9.21)

where the individual signs εi = ±1 (if ni 6= 0) are determined up to an overall sign (since R(n, π) = R(n,−π))
via the following relation:

εiεj =
Rij√

(1 +Rii)(1 +Rjj)
, for i 6= j, Rii 6= −1, Rjj 6= −1 (9.22)

There is an alternative approach for the case θ = π, which determines the axis of rotation n for the angles
θ ≈ π without numerical issues. We define matrix:

47

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

S ≡ R + R> + (1− trR)I3 (9.23)

Then the Rodrigues’ equation in coordinate form (eq. 9.13) yields:

njnk =
Sjk

3− tr(R)
, tr(R) 6= 3 (9.24)

To determine n up to an overall sign, we simply set j = k in eq. (9.24), which fixes the value of n2j . If sin θ 6= 0,
the overall sign of n is determined by eq. (9.20). If sin θ = 0 then there are two cases. For θ = 0 (corresponding
to the identity rotation), S = 0 and the rotation axis n is undefined. For θ = π, the ambiguity in the overall
sign of n is immaterial, since R(n, π) = R(n,−π).

Quaternion to Axis-angle

The logarithm map can be also directly given from a unit quaternion q = (qr qx qy qz)
> = (qr,q

>
v)> as

follows [10]:

log : SO(3) 7→ so(3) (9.25a)

SU(2) 7→ ω (9.25b)

ω =
2 arccos(qr)

|qv|
qv (9.25c)

9.4.2 For SE(3)

9.4.2.1 Exponential map

Let

v =

(
t
ω

)
(9.26)

denote the 6-vector of coordinates in the Lie algebra se(3), comprising two separate 3-vectors: ω, the vector
that determine the rotation, and t which determines the translation. Furthermore, we define the 4× 4 matrix:

A(v) =

(
ω∧ t
0 0

)
(9.27)

Then, the map:

exp : se(3) 7→ SE(3) (9.28)

is well-defined, surjective, and has the closed form:

ev ≡ eA(v) =

(
eω
∧

Vt
0 1

)
(9.29)

V = I3 +
1− cos θ

θ2
ω∧ +

θ − sin θ

θ3
(ω∧)2 (9.30)

with θ = |ω| and eω
∧

defined in Eq.(9.13) and ω∧ using the hat operator introduced in §7.1.

48

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

9.4.2.2 Logarithm map

The map:

log : SE(3) 7→ se(3) (9.31)

A(v) 7→ v

is well-defined and can be computed as [20]:

v =

(
t′

ω

)
=


x′

y′

z′

ω1

ω2

ω3


ω = [log R]

∨
(see Eq. 9.20) (9.32)

t′ = V−1t (with V in Eq. 9.30) (9.33)

where R and t are the 3 × 3 rotation matrix and translational part of the SE(3) pose. Note that V−1 has a
closed-form expression [8]:

V−1 = I3 −
1

2
ω∧ +

(
1− θ cos(θ/2)

2 sin(θ/2)

)
θ2

(ω∧)2 (9.34)

9.4.2.3 Pseudo-exponential map

Let v be a 6-vector of coordinates in the Lie algebra se(3), per Eq. 9.26, comprising a vector that determines
the rotation (ω) and another one for the translation (t).

We can define the “pseudo-exponential” of v by leaving the translation part intact, and evaluating the
matrix exponential for the SO(3) part only, that is:

pseudo-exp(v) =

(
eω
∧

t
01×3 1

)
(9.35)

The interest in this modified version of the exponential map is that it leads to Jacobians that are more
efficient to evaluate than those of the real matrix exponential. Note that this defines a valid retraction on
SE(3), as long as the corresponding “pseudo-logarithm” is also used to map SE(3) poses to local tangent space
coordinates.

Compare Eq. 9.35 to Eq. 9.29 to see why this leads to simpler Jacobians.

9.4.2.4 Pseudo-logarithm map

Given a SE(3) pose T:

T =

(
R3×3 dt3×1
0 0 0 1

)
(9.36)

we can compute the “pseudo-logarithm” of T by taking the regular matrix logarithm to the rotational part
(3× 3), and leaving the translation vector intact, that is:

pseudo-log(T)∨|6×1 =

(
dt3×1

log(R)∨

)
(9.37)

49

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

9.4.3 Implementation in MRPT

The class mrpt::poses::CPose3D implements both the exponential and logarithm maps for both SO(3) and
SE(3) up to MRPT version 1.5.x. Since MRPT 2.0, the pseudo-exponential and pseudo-logarithm maps are
available in the namespace mrpt::poses::Lie::SE<n>, with n=2 or 3:

#include <mrpt/poses/CPose3D.h>

#include <mrpt/poses/CPose2D.h>

#include <mrpt/poses/Lie/SE.h>

mrpt:: poses::Lie::SE <3>:: tangent_vector v;

// ...

mrpt:: poses:: CPose3D p = mrpt::poses::Lie::SE <3>::exp(v);

mrpt:: poses:: CPose3D p;

// ...

mrpt:: poses::Lie::SE <3>:: tangent_vector v = mrpt::poses::Lie::SE <3>::log(p);

50

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

10. Optimization problems on SE(3)

Now that the main concepts needed to handle SE(3) as a manifold have been established in the previous
chapters §§7–9, in this chapter we focus on the ultimate goal of all that theoretical dissertation: being able to
solve practical numerical problems that involve estimating SE(3) poses. It is noteworthy that this problem was
already addressed back in 1982 in [7] for the general case of differential manifolds.

10.1. Optimization solutions are made for flat Euclidean spaces

Gradient descent, Gauss-Newton, Levenberg-Marquart and the family of Kalman filters are all invaluable meth-
ods which, at their core, perform exactly the same operation: iteratively improving a state vector x so that it
minimizes a sum of square errors between some prediction and a vector of observed data z 1.

It does not matter for our purposes which method is employed to solve a problem. All the relevant infor-
mation is that, at some stage of the optimization it is used a prediction (or system model) function f(x). The
goal is always to minimize the squared error from this prediction to the observation, that is, to minimize:

S(x) = (f(x)− z)>(f(x)− z) = |f(x)− z|2 (10.1)

To achieve this, x is updated iteratively by means of small increments:

x← x + δ (10.2)

Increments δ are obtained (in all the methods mentioned above) by solving the equation:

∂S(x + δ)

∂δ

∣∣∣∣
δ=0

= 0 (10.3)

since a null derivative means a minimum in the error function S(·). Notice how the Jacobian is evaluated at
δ = 0, that is, at the vicinity of the present estimation x. Typically, the steps Eq.(10.3) and Eq.(10.2) are
iterated until convergence or for a fixed number of iterations.

At this point, it must be raised the problem of employing any of these methods when SE(3) poses are part
of the state vector x being estimated: all these optimization methods are designed to work on flat Euclidean
spaces, i.e. on RN . If we wanted to optimize a state vector that contains (one or more) poses, we would have
to store it, as a vector, in one of the parameterizations explained in this report, namely:

1. A 3D+YPR – each pose comprises 6 elements in x.

2. A 3D+Quat – each pose comprises 7 elements in x.

3. A full 4× 4 matrix – each pose comprises 16 elements in x.

4. The top 3× 4 submatrix – each pose comprises 12 elements in x.

None of them are an ideal solution, and some are a really bad idea:

1In fact, the widely used Extended Kalman filter does not iterate, but it can be seen as doing just one Gauss-Newton
iteration [3].

51

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

1. The first case achieves minimum storage requirements (6 elements for a 6D pose), but there might not exist
closed-form Jacobians for all possible pose-pose chained operations, and also the update rule x← x + δ
means that the three angles may go out of their valid ranges (need to renormalize the state vector after
each update). Furthermore, there exists the problem of gimbal lock (§1.2.1.1) where one DOF is lost.
When there are free DOFs, an optimization method may try to move along the degenerated set of solutions
and get stuck.

2. In the second case, Jacobians are always well-defined, but there is one extra DOF, which has the above-
mentioned problems.

3. In the third and fourth cases, Jacobians are always well-defined but there are even more extra DOFs,
making the problem even worse. The storage requirements are also an important drawback.

To sum up: storing poses in a state vector and trying to optimize them is not a good idea. In spite of
the fact that the 3D+Quat parameterization is bad to a lesser degree, still being usable (in fact, it led to good
results in computer vision [5]), a more robust and general approach is described in the next section.

10.2. An elegant solution: to optimize on the manifold

Although the idea is not new at all (see [7]), carrying out optimization directly on the manifold while keeping
a 3D-YPR or 3D-Quat parameterization in the state vector is a solution which is gaining popularity in the
robotics and computer vision community in recent years (e.g. [11, 16]).

Following the notation of [11, 12], the only changes required to the optimization method are to replace the
expressions on the left column by their counterparts on the right (the so-called “boxplus” notation �):

δ? ← ∂S(x + δ)

∂δ

∣∣∣∣
δ=0

= 0 =⇒ ε? ← ∂S(x � ε)
∂ε

∣∣∣∣
ε=0

= 0 (10.4)

x← x + δ? =⇒ x← x � ε? (10.5)

where x ∈ M is the state vector of the problem, which lies on some N -dimensional manifold M (a Lie group,
actually), ε ∈ RN is the increment in the linearization of the manifold around x (using M ’s Lie algebra as a
vector base), and the “boxplus” operator � : M ×RN 7→M is a generalization of the normal addition operator
+ for Euclidean spaces.

There are two possible ways to implement �, both of them perfectly valid: Let x,x′ ∈ M be elements of
the manifold of the problem M , and ε ∈ RN an increment in its linearized approximation. Then:

x′ = x � ε =⇒ x′ = xeε (10.6)

xeε being the “product” as defined by the manifold group operation, and eε being the exponential map of
the Lie group M (§9). It is important to highlight that the topological structure of x may be the product
of many elemental topological substructures (e.g. storing two 3D points and three SE(3) poses would give a
R3 × R3 × SE(3) × SE(3) × SE(3) structure). Therefore, if the estimated vector contains parts in Euclidean
space, the group product falls back to common addition (as it would be in the original optimization method).

In GraphSLAM problems, the “boxminus” operator (�) is also required:

y � x = log(x−1y) (10.7)

52

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

10.3. Useful manifold derivatives

Below follow some Jacobians that usually appear in optimization problems when using the on-manifold opti-
mization approach described in the previous section. The formulas below plus the chain rule of Jacobians will
be probably enough to obtain ready-to-use expressions for a large number of optimization problems in robotics
and computer vision.

Before reading this section, make sure of taking a look at the notation conventions for matrix derivatives
explained in §7 (e.g. where does the dimensionality of 12 comes from?).

10.3.1 Jacobian of the SE(3) exponential generator

This is the most basic Jacobian, since the term eε appears in all the on-manifold optimization problems. Note
that the derivative is taken at ε = 0 for the reasons explained in the previous section. These are ones of the few
genuinely new Jacobians in this chapter. Most of what follows then is obtained by combining several Jacobians,
as those in §7, via the chain rule.

10.3.1.1 SO(3) in matrix form

Taking derivatives of the exponential map (see Eq.(9.13)) at the Lie algebra coordinates ε = 0 we obtain:

∂eω

∂ω

∣∣∣∣
ω=0

≡ ∂vec(eω)

∂ω

∣∣∣∣
ω=0

=

 −e∧1
−e∧2
−e∧3

 (A 9× 3 Jacobian) (10.8)

with e1 = [1 0 0]>, e2 = [0 1 0]> and e3 = [0 0 1]>. The dimensionality “9” comes from the vector-stacked
view (the vec(·) operator) of the rotation matrix.

10.3.1.2 SO(3) in quaternion form

We need to take derivatives of the exponential map in quaternion form in Eq.(9.17). For convenience, we will
express eωq (ω) in Eq.(9.17) as a function of ω and θ = |ω| such that eωq (ω, θ), which will result in simpler
(factorized) Jacobian expression than that of direct approach:

∂eωq
∂ω

∣∣∣∣
ω=0

=
∂eωq (ω, θ)

∂{ωx, ωy, ωz, θ}
∂{ωx, ωy, ωz, θ}
∂{ωx, ωy, ωz}

(A 4× 3 Jacobian) (10.9a)

=



0 0 0 − sin(|ω|2)
2

sin(|ω|2)
|ω| 0 0 ωx

(
cos(|ω|2)

2 |ω| −
sin(|ω|2)
|ω|2

)
0

sin(|ω|2)
|ω| 0 ωy

(
cos(|ω|2)

2 |ω| −
sin(|ω|2)
|ω|2

)
0 0

sin(|ω|2)
|ω| ωz

(
cos(|ω|2)

2 |ω| −
sin(|ω|2)
|ω|2

)


(4×4)

 I3

ωx

|ω|
ωy

|ω|
ωz

|ω|


(4×3)

(10.9b)

In the Sophus C++ library [17], this Jacobian is available as the method SO3::Dx exp x(omega), with a
slight variable reordering, i.e. in Sophus, quaternions are stored as (qx, qy, qz, qr) instead of (qr, qx, qy, qz).

10.3.1.3 SE(3) in matrix form

Taking derivatives of the exponential map (see Eq.(9.4.2.1)) at the Lie algebra coordinates ε = 0 we obtain:

53

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

∂eε

∂ε

∣∣∣∣
ε=0

≡ ∂vec(eε)

∂ε

∣∣∣∣
ε=0

=


03×3 −e∧1
03×3 −e∧2
03×3 −e∧3
I3 03×3

 (A 12× 6 Jacobian) (10.10)

with e1 = [1 0 0]>, e2 = [0 1 0]> and e3 = [0 0 1]>. Notice that the resulting Jacobian is for the ordering
convention of se(3) coordinates shown in Eq.(9.26), i.e. ε = (dx, dy, dz,ω

>)>.

10.3.2 Jacobian of the SO(3) logarithm

This Jacobian will end up appearing wherever we take derivatives of a function which at some point takes as
argument a rotation matrix (3 × 3) and computes the vee operator of its logarithm map §9.4.1.2, e.g. while
optimizing pose graphs in Graph-SLAM with the “boxminus” operator (see Eq. 10.7).

Given an input rotation matrix R:

R =

 R11 R12 R13

R21 R22 R23

R31 R32 R33


it can be shown that:

∂ log(R)∨

∂R

∣∣∣∣
3×9

=



 0 0 0 0 0 1
2 0 − 1

2 0
0 0 − 1

2 0 0 0 1
2 0 0

0 1
2 0 − 1

2 0 0 0 0 0

 , if cos θ > 0.999999...

 a1 0 0 0 a1 b 0 −b a1
a2 0 −b 0 a2 0 b 0 a2
a3 b 0 −b a3 0 0 0 a3

 , otherwise

(10.11)

where the order of the 9 components is assumed to be column-major (R11, R21, ...) and:

cos θ =
tr(R)− 1

2

sin θ =
√

1− cos2 θ a1
a2
a3

 =
[
R−R>

]∨ θ cos θ − sin θ

4 sin3 θ
=

 R32 −R23

R13 −R31

R21 −R12

 θ cos θ − sin θ

4 sin3 θ

b =
θ

2 sin θ

10.3.3 Jacobian of D � ε = eε ⊕D (left-multiply option)

Let D ∈ SE(3) be a pose with associated transformation matrix:

T(D) =

(
dc1 dc2 dc3 dt

0 0 0 1

)
(10.12)

Following the convention of left-composition for the infinitesimal pose eε described in §10.2, we are interested
in the derivative of eε ⊕D w.r.t ε:

54

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

∂eεD

∂ε

∣∣∣∣
ε=0

=
∂AD

∂A

∣∣∣∣
A=I4=eε

∂eε

∂ε

∣∣∣∣
ε=0

(10.13)

=
[
T(D)> ⊗ I3

] ∂eε
∂ε

∣∣∣∣
ε=0

(10.14)

=


03×3 −d∧c1
03×3 −d∧c2
03×3 −d∧c3
I3 −d∧t

 (A 12× 6 Jacobian) (10.15)

Note: This Jacobian is implemented in MRPT in CPose3D::jacob dexpeD de().

10.3.4 Jacobian of D � ε = D ⊕ eε (right-multiply option)

Let D ∈ SE(3) be a pose with associated transformation matrix:

T(D) =

(
dc1 dc2 dc3 dt

0 0 0 1

)
=

(
R(D) dt

0 1

)
(10.16)

We are here interested in the derivative of D⊕ eε w.r.t ε, which can be obtained from the results of §7.3.1
and §10.3.1):

∂Deε

∂ε

∣∣∣∣
ε=0

=
∂AB

∂B

∣∣∣∣
A=D,B=I4

∂eε

∂ε

∣∣∣∣
ε=0

(10.17)

= [I4 ⊗R(D)]


03×3 −e∧1
03×3 −e∧2
03×3 −e∧3
I3 03×3

 (10.18)

=


03×1 −dc3 dc2

09×3 dc3 03×1 −dc1

−dc2 dc1 03×1
R(D) 03×3

 (A 12× 6 Jacobian) (10.19)

Note: This Jacobian is implemented in MRPT in CPose3D::jacob dDexpe de().

10.3.5 Jacobian of eε ⊕D ⊕ p

This is the composition of a pose D with a point p, an operation needed, for example, in Bundle Adjustment
implementations [18] (with the convention of points relative to the camera being D ⊕ p, that is, D being the
inverse of the actual camera position).

Let p ∈ R3 be a 3D point, and D ∈ SE(3) be a pose with associated transformation matrix:

T(D) =


d11 d12 d13 dtx
d21 d22 d23 dty
d31 d32 d33 dtz
0 0 0 1

 =

(
dc1 dc2 dc3 dt

0 0 0 1

)
=

(
RD dt

0 0 0 1

)
(10.20)

We are interested in the derivative of eε ⊕D⊕ p w.r.t ε:

55

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

∂(eεD)⊕ p

∂ε

∣∣∣∣
ε=0

=
∂A⊕ p

∂A

∣∣∣∣
A=eεD=D

∂eεD

∂ε

∣∣∣∣
ε=0

(10.21)

(Using Eq.(7.16) & §10.3.3) =
((

p> 1
)
⊗ I3

)
03×3 −d∧c1
03×3 −d∧c2
03×3 −d∧c3
I3 −d∧t

 (10.22)

=
(

I3 − [D⊕ p]
∧) (A 3× 6 Jacobian) (10.23)

10.3.6 Jacobian of p	 (eε ⊕D)

This is the relative position of a point p relative to a pose D, an operation needed, for example, in Bundle
Adjustment implementations [18] (with the convention of points relative to the camera being p	D, that is, D
being the real position of the cameras).

Let p = [px py pz]
> ∈ R3 be a 3D point, and D ∈ SE(3) be a pose with associated transformation matrix:

T(D) =


d11 d12 d13 dtx
d21 d22 d23 dty
d31 d32 d33 dtz
0 0 0 1

 =

(
dc1 dc2 dc3 dt

0 0 0 1

)
=

(
RD dt

0 0 0 1

)
(10.24)

We are interested in the derivative of p	 (eε ⊕D) w.r.t ε:

∂p	 (eεD)

∂ε

∣∣∣∣
ε=0

=
∂p	A

∂A

∣∣∣∣
A=eεD=D

∂eεD

∂ε

∣∣∣∣
ε=0

=
(

I3 ⊗
(
(p− dt)

>) −RD
>)


03×3 −d∧c1
03×3 −d∧c2
03×3 −d∧c3
I3 −d∧t

 (Using Eq.(7.20) & §10.3.3)

=

 −RD
>

d21pz − d31py −d11pz + d31px d11py − d21px
d22pz − d32py −d12pz + d32px d12py − d22px
d23pz − d33py −d13pz + d33px d13py − d23px

 (10.25)

(A 3× 6 Jacobian)

10.3.7 Jacobian of A⊕ eε ⊕D

Let A,D ∈ SE(3) be two poses, such as D is defined as in the previous section, and R(A) is the 3× 3 rotation
matrix associated to A.

When optimizing a pose D which belongs to a sequence of chained poses (A⊕D), we will need to evaluate:

∂AeεD

∂ε

∣∣∣∣
ε=0

=
∂AB

∂B

∣∣∣∣
B=e0D=D

∂eεD

∂ε

∣∣∣∣
ε=0

(10.26)

= [I4 ⊗R(A)]
∂eεD

∂ε

∣∣∣∣
ε=0

(10.27)

=


03×3 −R(A)d∧c1
03×3 −R(A)d∧c2
03×3 −R(A)d∧c3
R(A) −R(A)d∧t

 (A 12× 6 Jacobian) (10.28)

56

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

10.3.8 Jacobian of A⊕ eε ⊕D ⊕ p

This expression may appear in computer-vision problems, such as in relative bundle-adjustment [15]. Let p ∈ R3

be a 3D point and A,D ∈ SE(3) be two poses, such as R(A) is the 3× 3 rotation matrix associated to A and
the rows and columns of D referred to as:

T(D) =

(
dc1 dc2 dc3 dt

0 0 0 1

)
=


dr1
> dtx

dr2
> dty

dr3
> dtz

0 0 0 1

 (10.29)

Then, the Jacobian of the chained poses-point composition w.r.t. the increment in the pose D (on the
manifold) is:

∂AeεDp

∂ε

∣∣∣∣
ε=0

= R(A)

 I3

0 p · dr3 + dtz −(p · dr2 + dty)
−(p · dr3 + dtz) 0 p · dr1 + dtx

p · dr2 + dty −(p · dr1 + dtx) 0

 (10.30)

(A 3× 6 Jacobian)

where a ·b stands for the scalar product of vectors. Note that for both A and D being very close to the identity
in SE(3), the following approximation can be used:

∂AeεDp

∂ε

∣∣∣∣
ε=0

≈
(

I3 − [p + dt]
∧) (A 3× 6 Jacobian)

10.3.9 Jacobian of p	 (A⊕ eε ⊕D)

This expression may also appear in computer-vision problems, such as in relative bundle-adjustment [15]. Let
p ∈ R3 be a 3D point and A,D ∈ SE(3) be two poses, such as R(A) is the 3× 3 rotation matrix associated to
A, the rows and columns of D are referred to as in the previous section, and:

T(A)T(D) =

(
R(AD) tAD

0 0 0 1

)
(10.31)

Then, the Jacobian of interest can be obtained by chaining Eq. 10.26 and Eq. 7.20:

∂(AeεD)−1p

∂ε

∣∣∣∣
ε=0

=
[

I3 ⊗ (p− tAD)> −R(AD)>
]

03×3 −R(A)d∧c1
03×3 −R(A)d∧c2
03×3 −R(A)d∧c3
R(A) −R(A)d∧t

 (A 3× 6 Jacobian)

(10.32)

10.3.10 Jacobian of ((P2 ⊕ eε2)	 (P1 ⊕ eε1))	D

While solving Graph-SLAM problems in SE(3), one needs to optimize the global poses P1 and P2 given a
measurement D of the relative pose or P2 with respect to P1, i.e. D = P2 	 P1 or D = P−11 P2. The
corresponding error function to be minimized can be written as (P2 	 P1) 	D or D−1P−11 P2. Therefore, we
need the Jacobians of the latter expression with respect to manifold increments of P1 and P2.

Normally, we take the logarithm of that error and then apply the vee operator to it to retrieve a 6-vector
describing the error. Using the chain rule of Jacobians, we have:

57

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

∂ log(D−1(P1e
ε1)−1P2)∨

∂ε1

∣∣∣∣
ε1=0

=

∂ log(D−1e−ε1P−11 P2)∨

∂ε1

∣∣∣∣
ε1=0

=
∂ log(T)∨

∂T

∣∣∣∣
T=D−1P−1

1 P2︸ ︷︷ ︸
See Eq. 10.35

∂f⊕(A,B)

∂A

∣∣∣∣A=D−1

B=P−1
1 P2︸ ︷︷ ︸

See Eq. 7.13

(
−∂D−1eε1

∂ε1

∣∣∣∣
ε1=0

)
︸ ︷︷ ︸

See Eq. 10.19

(10.33)

and:

∂ log(D−1P−11 P2e
ε2)∨

∂ε2

∣∣∣∣
ε2=0

=
∂ log(T)∨

∂T

∣∣∣∣
T=D−1P−1

1 P2︸ ︷︷ ︸
See Eq. 10.35

∂Aeε2

∂ε2

∣∣∣∣ε2=0
A=D−1P−1

1 P2︸ ︷︷ ︸
See Eq. 10.19

(10.34)

Both Jacobians above are 6× 6.

10.3.11 Jacobian of the SE(3) pseudo-logarithm

Given the definition of SE(3) pseudo-logarithm in §9.4.2.4, this Jacobian can then be defined as simply:

∂pseudo-log(T)∨

∂T

∣∣∣∣
6×12

=

(
03×9 I3

∂ log(R)∨

∂R
03×3

)
(10.35)

where the Jacobian in Eq. 10.11 has been used.

58

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

A. Applications to computer vision

This appendix provides some useful expressions related to (and making use of) the Jacobian derived in chapters
§§7–10 which are useful in computer vision applications.

A.1. Projective model of an ideal pinhole camera – h(p)

Given a point p ∈ R3 relative to a projective camera, with the following convention for the axes of the camera:

Figure A.1: The convention used in this report on the axes of a pinhole projective camera.

and given the 3× 3 matrix of intrinsic camera parameters:

M =

 fx 0 cx
0 fy cy
0 0 1

 −→


fx: Focal distance, in ’x’ pixel units.
fy: Focal distance, in ’y’ pixel units.
cx: Image central point (x, in pixel units).
cy: Image central point (y, in pixel units).

(A.1)

then, the pixel coordinates (u, v) of the projection of the 3D point p = [px py pz]
> is given (without distortions)

by the function h : R3 7→ R2, with the well known expression:

h(p) = h

 px
py
pz

 =

(
cx + fx

px
pz

cy + fy
py
pz

)
(A.2)

In a number of computer vision problems we will need the Jacobian of this projection function by the
coordinates of the point w.r.t. the camera, which is straightforward to obtain:

∂h(p)

∂p
=

(
fx/pz 0 −fxpx/p2z

0 fy/pz −fypy/p2z

)
(A.3)

59

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

A.2. Projection of a point: eε ⊕A⊕ p

Given a pose A ∈ SE(3) (with rotation matrix denoted as RA) and a point p ∈ R3 relative to that pose, we
want here to derive the Jacobians of the projection of eε⊕A⊕p on a pinhole camera, that is, of the expression
h(eε ⊕ A ⊕ p). Recall that eε means the SE(3) Lie group exponentiation of an auxiliary variable ε which
represents a small increment around A in the manifold.

Let g = [gx gy gz]
> denote A⊕p. Applying the chain rule of Jacobians and employing Eq. (7.15), Eq. (10.23)

and Eq. (A.3) we arrive at:

∂h(eε ⊕A⊕ p)

∂p
=

∂h(p′)

∂p′

∣∣∣∣
p′=A⊕p=g

∂eε ⊕A⊕ p

∂p
(A.4)

=
∂h(p′)

∂p′

∣∣∣∣
p′=A⊕p=g

∂A⊕ p

∂p
(A.5)

=

(
fx/gz 0 −fxgx/g2z

0 fy/gz −fygy/g2z

)
RA (A 2× 3 Jacobian) (A.6)

and:

∂h(eε ⊕A⊕ p)

∂ε
=

∂h(p′)

∂p′

∣∣∣∣
p′=A⊕p=g

∂eε ⊕A⊕ p

∂ε
(A.7)

=

(
fx/gz 0 −fxgx/g2z

0 fy/gz −fygy/g2z

)(
I3 − [g]

∧) (A.8)

=

 fx
gz

0 −fx gxg2z −fx gxgyg2z
fx(1 +

g2x
g2z

) −fx gygz
0

fy
gz
−fy gyg2z −fy(1 +

g2y
g2z

) fy
gxgy
g2z

fy
gx
gz

 (A 2× 6 Jacobian)

60

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

A.3. Projection of a point: p	 (eε ⊕A)

The previous section Jacobians are applicable to optimization problems where the convention is to estimate the
inverse camera poses (that is, the point to project, w.r.t. the camera, is A⊕ p). In this section we address the
alternative case of poses being the actual camera positions (that is, the point to project, w.r.t. the camera, is
p	A).

The expression we want to obtain the Jacobians of is in this case: h(p	 (eε ⊕A)). Using Eq. (7.18), and
Eq. (A.3), and denoting l = [lx ly lz]

> = p	A, we arrive at:

∂h(p	 (eε ⊕A))

∂p
=

∂h(p′)

∂p′

∣∣∣∣
p′=p	A=l

∂p	 (eε ⊕A)

∂p
(A.9)

=
∂h(p′)

∂p′

∣∣∣∣
p′=p	A=l

∂p	A

∂p
(A.10)

=

(
fx/lz 0 −fxlx/l2z

0 fy/lz −fyly/l2z

)
R>A (A 3× 3 Jacobian) (A.11)

and:

∂h(p	 (eε ⊕A))

∂ε
=

∂h(p′)

∂p′

∣∣∣∣
p′=p	A

∂p	 (eε ⊕A)

∂ε
(A.12)

=

(
fx/lz 0 −fxlx/l2z

0 fy/lz −fyly/l2z

)
∂p	 (eε ⊕A)

∂ε
(A.13)

with this last term given by Eq. (10.25).

61

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

B. Expressions for SE(2) GraphSLAM

Poses in 2D, SE(2) = R2 × SO(2), have a much simpler structure than their three-dimensional counterparts,
SE(3) = R3 × SO(3), therefore it is in order aiming at simpler, more efficient, expressions for solving SLAM
problems in 2D. This section explains the formulas used for SE(2) graph-SLAM within the MRPT framework.

B.1. SE(2) definition

A pose (rigid transformation) in two-dimensional Euclidean space can be uniquely determined by means of a
3× 3 homogeneous matrix with this structure:

T2 =

(
R2 t

01×2 1

)
=

 cosφ − sinφ x
sinφ cosφ y

0 0 1

 (B.1)

where the three degrees of freedom of the 2D transformation are the (x, y) translation and the rotation of φ
radians.

The R2 belongs to the group SO(2), and T2 to SE(2).

B.2. Manifold local coordinates and retraction

Just like we defined the exponential and logarithm map for SE(3) in §9.4, we can define similar operations for
SE(2).

Rigorously, the exponential and logarithm maps for SE(2) are defined as shown in §B.2.1–B.2.1 below, but
in practice the simpler pseudo maps in §B.2.3–B.2.4 are more efficient to evaluate and work as a valid retraction
and local coordinate map, respectively. Therefore, the latter will be used in subsequent sections.

B.2.1 SE(2) exponential map

Let

v =

(
t′

φ

)
=

 x′

y′

φ

 ∈ se(2) (B.2)

denote the 3-vector of local coordinates in the Lie algebra se(2), comprising a 2-vector t′ for a translation, which
is different than the actual plain SE(2) translation t = (x, y), and a rotation φ. Next we define the 3×3 matrix:

A(v) =

(
[φ]∧ t′

0 0

)
=

 0 −φ x′

φ 0 y′

0 0 0

 (B.3)

Then, the map:

62

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

exp : se(2) 7→ SE(2) (B.4)

is well-defined, surjective, and has the closed form:

ev ≡ eA(v) =

(
e[φ]

∧
V2t

′

0 1

)
(B.5)

V2 = I2 +
1− cosφ

φ2
[φ]∧ +

φ− sinφ

φ3
([φ]∧)2 (B.6)

with e[φ]
∧

the matrix exponential and [φ]∧ =

(
0 −φ
φ 0

)
.

B.2.2 SE(2) logarithm map

The map:

log : SE(2) 7→ se(2) (B.7)

A(v) 7→ v

is well-defined and can be computed as:

v =

(
t′

φ

)
=

 x′

y′

φ


t = V−12 t′ (with V2 in Eq. B.6) (B.8)

Note that V−12 has a closed-form expression:

V−12 = I2 −
1

2
[φ]∧ +

(
1− φ cos(φ/2)

2 sin(φ/2)

)
φ2

([φ]∧)2 (B.9)

B.2.3 SE(2) pseudo-exponential map

Since rotations in SE(2) are only parameterized by one scalar (φ), it becomes more convenient to use a 3-vector
to model local coordinates in the tangent space to the manifold, and to directly use t′ = t (see sections above).
Therefore:

pseudo-exp : se(2) 7→ SE(2) (B.10) x′

y′

φ

 =

 x
y
φ

 (B.11)

such that the Jacobian of the pseudo-exponential map becomes the identity:

∂pseudo-exp(v)

∂v
≡ I3 (B.12)

63

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

B.2.4 SE(2) pseudo-logarithm map

As a consequence of the equations above, we define:

pseudo-log : SE(2) 7→ se(2) (B.13) x
y
φ

 =

 x′

y′

φ

 (B.14)

whose Jacobian is also the identity:

∂pseudo-log(T2)

∂{x, y, φ}
= I3 (B.15)

B.2.5 SE(2) Jacobian of D � ε = D ⊕ eε (right-multiply option)

Let D ∈ SE(2) be the 2D pose (xD, yD, φD), and ε = (εx εy εφ)> an increment on se(2). We are interested in
the derivative of D⊕ eε w.r.t ε, which can be shown to be (expanding the multiplication of the corresponding
matrices):

∂Deε

∂ε

∣∣∣∣
ε=0

=

 cosφD − sinφD 0
sinφD cosφD 0

0 0 1


3×3

(B.16)

B.2.6 Jacobians for SE(2) pose composition A⊕B

Let A,B ∈ SE(2) be the 2D poses (xA, yA, φA), and (xB , yB , φB), respectively. We are interested in the
derivatives of the composed pose A⊕B w.r.t both poses. By expanding the matrix products it is easy to show
that:

∂f⊕(A,B)

∂A
=

 1 0 −xB sinφA − yB cosφA
0 1 xB cosφA − yB sinφA
0 0 1


3×3

(B.17)

and:

∂f⊕(A,B)

∂B
=

 cosφA − sinφA 0
sinφA cosφA 0

0 0 1


3×3

(B.18)

B.2.7 SE(2) Jacobian of ((P2 ⊕ eε2)	 (P1 ⊕ eε1))	D

While solving Graph-SLAM in SE(2), we need to optimize the global poses P1 and P2 given a measurement
D of the relative pose or P2 with respect to P1, i.e. D = P2 	 P1 or D = P−11 P2. The corresponding error
function to be minimized can be written as (P2 	 P1) 	 D or D−1P−11 P2. Therefore, we need the Jacobians
of the latter expression with respect to manifold increments of P1 and P2. For SE(2), we will assume that the
error vector is the pseudo-logarithm of the pose mismatch above.

Using the chain rule of Jacobians, we have:

64

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

∂ log(D−1(P1e
ε1)−1P2)∨

∂ε1

∣∣∣∣
ε1=0

=

∂ log(D−1e−ε1P−11 P2)∨

∂ε1

∣∣∣∣
ε1=0

=

��
���

���
���

�:I3
∂ log(T2)∨

∂T

∣∣∣∣
T=D−1P−1

1 P2

∂f⊕(A,B)

∂A

∣∣∣∣A=D−1

B=P−1
1 P2︸ ︷︷ ︸

See Eq. B.17

(
−∂D−1eε1

∂ε1

∣∣∣∣
ε1=0

)
︸ ︷︷ ︸

See Eq. B.16

(B.19)

and:

∂ log(D−1P−11 P2e
ε2)∨

∂ε2

∣∣∣∣
ε2=0

=

���
���

���
���:

I3
∂ log(T2)∨

∂T

∣∣∣∣
T=D−1P−1

1 P2

∂Aeε2

∂ε2

∣∣∣∣ε2=0
A=D−1P−1

1 P2︸ ︷︷ ︸
See Eq. B.16

(B.20)

65

A tutorial on SE(3) transformation parameterizations and
on-manifold optimization

MAPIR Group

Technical report #012010

Dpto. de Ingenieŕıa de
Sistemas y Automática
http://mapir.isa.uma.es/

Bibliography

[1] C. Altafini. The de Casteljau algorithm on SE(3). Nonlinear control in the year 2000, pages 23–34, 2000.

[2] I.Y. Bar-Itzhack. New method for extracting the quaternion from a rotation matrix. Journal of guidance,
control, and dynamics, 23(6):1085–1087, 2000.

[3] BM Bell and FW Cathey. The iterated Kalman filter update as a Gauss-Newton method. IEEE Transac-
tions on Automatic Control, 38(2):294–297, 1993.

[4] J. Bloomenthal and J. Rokne. Homogeneous coordinates. The Visual Computer, 11(1):15–26, 1994.

[5] A.J. Davison, I. Reid, N. Molton, and O. Stasse. MonoSLAM: Real-Time Single Camera SLAM. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(6):1052–1067, 2007.

[6] Juan-Antonio Fernández-Madrigal and José-Luis Blanco. Simultaneous Localization and Mapping for Mo-
bile Robots: Introduction and Methods. IGI Global, sep 2012.

[7] D. Gabay. Minimizing a differentiable function over a differential manifold. Journal of Optimization Theory
and Applications, 37(2):177–219, 1982.

[8] Jean Gallier and Dianna Xu. Computing exponentials of skew-symmetric matrices and logarithms of
orthogonal matrices. International Journal of Robotics and Automation, 18(1):10–20, 2003.

[9] J.H. Gallier. Geometric methods and applications: for computer science and engineering. Springer verlag,
2001.

[10] F Sebastian Grassia. Practical parameterization of rotations using the exponential map. Journal of graphics
tools, 3(3):29–48, 1998.

[11] C. Hertzberg. A framework for sparse, non-linear least squares problems on manifolds. Master’s thesis,
Universität Bremen, Bremen, Germany, 2008.

[12] Christoph Hertzberg, René Wagner, Udo Frese, and Lutz Schröder. Integrating generic sensor fusion
algorithms with sound state representations through encapsulation of manifolds. Information Fusion,
14(1):57–77, 2013.

[13] B.K.P. Horn. Some Notes on Unit Quaternions and Rotation, 2001.

[14] S.J. Julier. The scaled unscented transformation. In Proceedings of the American Control Conference,
volume 6, pages 4555–4559, 2002.

[15] G. Sibley. Relative bundle adjustment. Technical report, Department of Engineering Science, Oxford
University, Tech. Rep, 2009.

[16] H. Strasdat, JMM Montiel, and A.J. Davison. Scale Drift-Aware Large Scale Monocular SLAM. 2010.

[17] Hauke Strasdat and Steven Lovegrove. Sophus, 2011.

[18] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle adjustment—a modern synthesis. Vision
algorithms: theory and practice, pages 153–177, 2000.

[19] V.S. Varadarajan. Lie groups, Lie algebras, and their representations. Prentice-Hall, 1974.

[20] Y. Wang and G.S. Chirikjian. Nonparametric second-order theory of error propagation on motion groups.
The International journal of robotics research, 27(11-12):1258, 2008.

66

	Rigid transformations in 3D
	Basic definitions
	Common parameterizations
	3D translation plus yaw-pitch-roll (3D+YPR)
	3D translation plus quaternion (3D+Quat)
	4 4 transformation matrices

	Equivalences between representations
	3D+YPR to 3D+Quat
	Transformation
	Uncertainty

	3D+Quat to 3D+YPR
	Transformation
	Uncertainty

	3D+YPR to matrix
	Transformation

	3D+Quat to matrix
	Transformation

	Matrix to 3D+YPR
	Transformation
	Uncertainty

	Matrix to 3D+Quat
	Transformation

	Composing a pose and a point
	With poses in 3D+YPR form
	Composition
	Uncertainty

	With poses in 3D+Quat form
	Composition
	Uncertainty

	With poses in matrix form

	Points relative to a pose
	With poses in 3D+YPR form
	Inverse transformation
	Uncertainty

	With poses in 3D+Quat form
	Inverse transformation
	Uncertainty

	With poses as matrices
	Relation with pose-point direct composition

	Composition of two poses
	With poses in 3D+YPR form
	Pose composition
	Uncertainty

	With poses in 3D+Quat form
	Pose composition
	Uncertainty

	With poses in matrix form
	Pose composition

	Inverse of a pose
	For a 3D+YPR pose
	For a 3D+Quat pose
	Inverse
	Uncertainty

	For a transformation matrix

	Derivatives of pose transformation matrices
	Operators
	On the notation
	Useful expressions
	Pose-pose composition
	Pose-point composition
	Inverse of a pose
	Inverse pose-point composition

	Concepts on Lie groups
	Definitions
	Mathematical group
	Manifold
	Smooth manifolds embedded in RN
	Tangent space of a manifold
	Lie group
	Linear Lie groups (or matrix groups)
	Lie algebra
	Exponential and logarithm maps of a Lie group

	SE(3) as a Lie group
	Properties
	Lie algebra of SO(3)
	Lie algebra of SE(3)
	Exponential and logarithm maps
	For SO(3)
	For SE(3)
	Implementation in MRPT

	Optimization problems on SE(3)
	Optimization solutions are made for flat Euclidean spaces
	An elegant solution: to optimize on the manifold
	Useful manifold derivatives
	Jacobian of the SE(3) exponential generator
	Jacobian of the SO(3) logarithm
	Jacobian of D= eD (left-multiply option)
	Jacobian of D= D e (right-multiply option)
	Jacobian of eD p
	Jacobian of p (eD)
	Jacobian of A eD
	Jacobian of A eD p
	Jacobian of p (A eD)
	Jacobian of ((P2 e2) (P1 e1)) D
	Jacobian of the SE(3) pseudo-logarithm

	Applications to computer vision
	Projective model of an ideal pinhole camera – h(p)
	Projection of a point: eA p
	Projection of a point: p (eA)

	Expressions for SE(2) GraphSLAM
	SE(2) definition
	Manifold local coordinates and retraction
	SE(2) exponential map
	SE(2) logarithm map
	SE(2) pseudo-exponential map
	SE(2) pseudo-logarithm map
	SE(2) Jacobian of D= D e (right-multiply option)
	Jacobians for SE(2) pose composition A B
	SE(2) Jacobian of ((P2 e2) (P1 e1)) D

