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Abstract

Light Detection and Ranging (LiDAR)-based simultaneous localization and mapping (SLAM) is a core technology for
autonomous vehicles and robots. One key contribution of this work to 3D LiDAR SLAM and localization is a fierce
defense of view-based maps (pose graphs with time-stamped sensor readings) as the fundamental representation of
maps. As will be shown, they allow for the greatest flexibility, enabling the posterior generation of arbitrary metric maps
optimized for particular tasks, for example, obstacle avoidance and real-time localization. Moreover, this work in-
troduces a new framework in which mapping pipelines can be defined without coding, defining the connections of a
network of reusable blocks much like deep-learning networks are designed by connecting layers of standardized el-
ements. We also introduce tightly-coupled estimation of linear and angular velocity vectors within the Iterative Closest
Point (ICP)-like optimizer, leading to superior robustness against aggressive motion profiles without the need for an
IMU. Extensive experimental validation reveals that the proposal compares well to, or improves, former state-of-the-art
(SOTA) LiDAR odometry systems, while also successfully mapping some hard sequences where others diverge. A
proposed self-adaptive configuration has been used, without parameter changes, for all 3D LiDAR datasets with sensors
between 16 and 128 rings, and has been extensively tested on 83 sequences over more than 250 km of automotive, hand-
held, airborne, and quadruped LiDAR datasets, both indoors and outdoors. The system flexibility is demonstrated with
additional configurations for 2D LiDARs and for building 3D NDT-like maps. The framework is open-sourced online:
https://github.com/MOLAorg/mola.
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1. Introduction (Cadena et al., 2016). When only the most recently-
observed parts of the environment are kept, the term od-
ometry is used instead, hence we will leave the category
SLAM for those approaches that are aware of loop closures
(Grisetti et al., 2010). That is, odometry methods provide
local accurate estimation of relative motion in the short
term, while SLAM must also ensure global consistency of
both, the trajectory and the world model.

Therefore, when LiDAR is the unique sensor in an
odometry system it is called LIDAR odometry (LO). The
main component presented in this work falls into that
category. LO can be used alone or as part of a larger system,

3D LiDAR is among the most widely-used sensors in
contemporary mobile robots, autonomous vehicles, and
Unmanned Aerial Vehicles (UAV) (Elhousni and Huang,
2020; Lee et al., 2023). While vision and RADAR are also
relevant technologies and may become essential for many
tasks, LIDAR will likely remain a core sensor for years to
come (Roriz et al., 2022) due to a number of intrinsic
advantages: direct and accurate 3D sensing with wide field
of view, robustness against varying sunlight conditions,
reduced computation demand to obtain dense point clouds,
etc. (as illustrated in Figure 1).

Among all the potential applications of LiDAR sensing,
this work focuses on the problems of pose tracking and Department of Engineering, University of Almeria, La Cafiada, Spain
mapping. We call localization to pose tracking on a prebuilt .
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Figure 1. Example point cloud built from the presented LiDAR
odometry system: a view of Esplanade Gaston Monnerville
(Paris) from the Luxembourg Garden automotive dataset in
Dellenbach et al. (2022). This is part of a multi-layer metric map,
illustrated in Figure 10.

leading to full metric SLAM, for example, Cartographer in
Hess et al. (2016), or multi-robot SLAM systems, for ex-
ample, multi S-Graphs in Fernandez-Cortizas et al. (2024).
In the literature, we can find how additional sensors have
been successfully integrated with LO, leading to LiDAR
Inertial Odometry (LIO) (Shan et al., 2020; Xu et al.,
2022a), Visual Inertial Odometry (VIO) (Forster et al.,
2016; Leutenegger et al., 2015), or Visual Lidar-Inertial
Odometry (VLIO) (Shan et al., 2021). However, we will
show that, for most conditions found in practice, our system
is able to achieve good performance and accuracy relying on
LiDAR alone, notwithstanding that even better results
might arise from multimodal sensor fusion.

The present work defends that LO and SLAM systems
can be built in a way that maximizes the reusability of their
components, making them more flexible and easier to
modify by end users, while also allowing resulting world
models (“maps”) to be built minimizing the loss of in-
formation with respect to raw sensor data. Two core ideas
arise from these goals: (i) odometry and SLAM pipelines,
together with their associated data structures, should be
refactored into their smallest reusable components, al-
lowing building whole systems from scratch by wiring
them together and setting their parameters much like Deep
Neural Networks (DNN) are designed by stacking prebuilt
elements; (ii) disregarding the specific map type or features
used by a particular LO or SLAM system, the most ver-
satile map data structure is a view-based map (dubbed
“simple maps” in our framework), where a sparse set of
key-frames are retained together with their fundamental
information, for example, raw sensor observations and
kinematic state of the vehicle. The first usage of the term
view-based SLAM can be found in the 2000s (Eustice
et al., 2005; Konolige et al., 2010), although the idea can
be traced back to the ground-breaking work Lu and Milios
(1997) which served as the seed for an extremely suc-
cessful approach to mapping dubbed Graph-SLAM
(Grisetti et al., 2010). A more recent application of this
idea of keeping the raw sensor information in graph-based
SLAM can be found within Google’s Cartographer (Hess
et al., 2016) open-source implementation (refer to “assets
writer”), although not mentioned in the original
publication.

Therefore, building upon the two ideas above, this
work introduces an open-source software ecosystem to
the community. Note that none of the presented algo-
rithms are based on learning methods, although the
modular nature of the framework allows their integra-
tion as future works. To sum up, the key contributions of
this work are:

® A software ecosystem providing reusable components
for building point cloud processing pipelines without
coding, including generation of voxel maps, occupancy
2D or 3D grid maps, and feature detection.

® A reference pipeline for LO with 3D LiDARs, well
tested against more than 80 public dataset sequences.

®* A method to easily integrate vehicle velocity as an
unknown within ICP loops, allowing better point cloud
undistortion, subject to a constant velocity assumption
during each sensor sweep.

® A simple method to let ICP take into account prior
uncertainty, including that from a constant velocity
motion model or other sources of odometry, for example,
wheel encoders or an IMU.

® A loop-closure algorithm to generate globally consistent
maps from the LO outcome, optionally including
georeferencing.

* A uniform API (Application Programming Interface) to
access a large variety of robotics datasets, simplifying
and easing benchmarking SLAM methods.

The rest of the article is organized as follows. Section 2
reviews previous works closely related to the presented
contributions. Next, the proposed architecture and their
individual parts are introduced in detail in Section 3.
Experimental validation is provided in three parts: Section
4 presents extensive quantitative performance metrics of
the proposed SLAM system, Section 5 illustrates in a
qualitative way some use cases of our system, including
situations and datasets where other SOTA systems diverge,
and Section 6 shows localization results with previously-
built maps. Furthermore, ablation studies are presented in
Section 7 and we wrap up with conclusions in Section 8.

2. Related work

This section analyzes many of the past research directly
related to the main topic of this paper: LIDAR odometry
or SLAM. LiDAR works have been divided into od-
ometry, loop-closure, and localization, with an addi-
tional brief subsection on graph SLAM. We will put a
focus on those ideas that have been recurrently proposed
in the literature due to their good results, especially
those in which our system is based on. An extensive
review of these fields is out of the scope of the present
work; interested readers may refer to existing surveys
such as Cadena et al. (2016), Bresson etal. (2017), or Xu
et al. (2022b); or to Durrant-Whyte and Bailey (2006)
and Bailey and Durrant-Whyte (2006) for a summary of
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foundational ideas on which modern SLAM methods
were built upon.

2.1. LiDAR odometry (LO)

The goal of a LO system is taking successive LiDAR scans
and estimating the vehicle pose changes in between them.
At the core of most proposed systems there exist modified
versions of the Iterative Closest Point (ICP) algorithm (Besl
and McKay, 1992), which solves that nonlinear problem in
an iterative fashion, finding successive approximations for
the sough relative pose between two input point clouds,
looking for potential point-to-point pairings at each itera-
tion. That process is often called scan matching or point
cloud registration.

We can extract four key findings from past related works.
First of all, existing approaches can be classified according
to whether they try to match the latest observation against
other past individual observations (the scan-to-scan ap-
proach), or against an incrementally-built local map (the
scan-to-model or scan-to-map approach). It has been ex-
perimentally found that scan-to-scan works extremely well
for 2D LiDARSs, whereas the uneven distribution of mea-
sured points in 3D LiDARs favors the scan-to-model ap-
proach, as demonstrated with recent successful works like
Cartographer (Hess et al., 2016), IMLS-SLAM (Deschaud,
2018), or KISS-ICP (Vizzo et al., 2023). Following this line,
the system proposed in this work hence also adheres to the
scan-to-model design (see Section 3.4).

Second, it is well known that trying to use ICP to register
the raw points from a 3D LiDAR leads to extremely poor
results. This can be explained by the uneven distribution of
sampled points in the environment, with a higher density of
near points that then dominate the cost function of the ICP
optimization stage. This fact, together with the common use
of LiDARs with a circular scanning pattern, leads to de-
generate ICP solutions where nearby rings are aligned with
nearby rings, disregarding the contribution from points
sampled from distant parts of the environment. To overcome
this problem, downsampling has been extensively used in
the literature. One of the first successful LO systems,
LOAM, introduced in Zhang and Singh (2014), splits the
input clouds into two distinct subsets (corners and planar
patches), performing a subsampling to keep only a maxi-
mum of 2 edge or 4 planar points per planar scan. This
seminal work led to many variations, such as Lego-LOAM
in Shan and Englot (2018) or PaGO-SLAM in Seo et al.
(2022) which exploited an explicit ground plane segmen-
tation. One of the most prominent derived works is Fast-
LIO2 (Xu et al., 2022a), which leverages tightly-coupled
IMU-LiDAR integration with efficient data structures for
fast and accurate mapping without the need to extract
features. Other recent works (Deschaud, 2018; Vizzo et al.,
2023) employ voxel-based sampling, where raw points are
first classified into 3D voxel data structures and then a single
representative point is extracted from each occupied voxel
following a given heuristic criterion (e.g., the average and

the first point). LOCUS 2.0, introduced in Reinke et al.
(2022), proposes an adaptive multi-level sampling of point
clouds to try to maintain a constant number of points per
scan. Following the same goal, another recent work dubbed
SIMPLE (Bhandari et al., 2024) also performs spatial
subsampling, but implemented via KD-trees instead of
voxels. Efficient sampling of point clouds for registration is
a research field on its own. The libpointmatcher project,
started with Pomerleau et al. (2013), implements different
strategies, such as those proposed in Rusinkiewicz and
Levoy (2001) or in Labussicre et al. (2020). Latest works
tend to use simpler sampling schemes, but we have ex-
perimentally verified that even tiny implementation dif-
ferences in the way points are sampled (e.g., using different
hash functions in unordered voxel containers for successive
downsampling stages, which determines which is the first
point to fall into a given voxel) have a relevant impact in the
accuracy of the obtained trajectories. Therefore, our system
offers simple voxel-based sampling schemes as the default
choice, but it also offers other possibilities for the com-
munity to experiment and benchmark them, while also
being easily extensible with new sampling algorithms (see
Section 3.3), including those based on deep learning, for
example, following Lang et al. (2019).

Third, all modern approaches to LO have replaced the
original closed-form least-squares formulation in the orig-
inal ICP paper (Besl and McKay, 1992) with less efficient
but more robust alternatives. In particular, instead of leaving
the cost function to uniquely depend on the L2 distances
between pointwise pairings, two enhancements are nowa-
days common: (i) employing robustified least squares, that
is, robust kernel or loss functions as in Chebrolu et al.
(2021), Deschaud (2018), and Vizzo et al. (2023), and (ii)
using more geometric constraints apart of point-to-point
pairings. On this latter point, the most common alternative is
using point-to-plane pairings, as used in the original LOAM
(Zhang and Singh, 2014) or, more recently, in Fast-LI02
(Xuetal., 2022b) and in MAD-SLAM (Ferrari et al., 2024).
LOCUS 2.0 (Reinke et al., 2022) introduces the estimated
normals in the cost function, while another prominent work
in this sense, MULLS (Pan et al., 2021), includes several
potential geometric pairings simultaneously. A word is in
order about SIMPLE (Bhandari et al., 2024), which em-
ploys a different approach: its cost function avoids the
determination of point-to-point pairings by just adding
Gaussian-like “rewards” for each nearby point, which can
be seen as a one-to-many point pairing policy. Learning
from all this body of past works, our framework provides a
generic ICP-like optimization algorithm at its core, with
user-extensible cost functions, predefined cost functions for
point-to-point, point-to-plane or point-to-line (among
others), different robust kernels, and the possibility of
multiple correspondences (see Section 3.6).

The fourth lesson learned from past works comes from
KISS-ICP (Vizzo et al., 2023), which demonstrated that
dynamically adaptable parameters are beneficial for two
reasons: (i) they can improve the overall accuracy since
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parameters adapt automatically as the environment or the
motion profile change over time, and (ii) they reduce the
need for manually tuning parameters. From that work we
have adopted (and modified) their idea of using an adaptive
threshold for determining pairings, and extended the idea to
many other parameters along the entire processing pipeline
(see Section 3.5).

2.2. LiDAR localization

Localization with a predefined, static map and a 3D
LiDAR is a topic with less research activity than LO and
SLAM, despite the fact that one of the fundamental
reasons one may want to build a map is to use it for
navigation, which implies the ability to keep the vehicle
localized in the map frame of reference. As in any other
estimation problem, we could split classic approaches
(those not based on deep learning) into those relying on
parametric or on non-parametric distributions. The
latter typically involves using particle filtering (Thrun
et al., 2001), which are an excellent approach for ve-
hicles constrained to trajectories on SE(2), but whose
performance may degrade due to the curse of dimen-
sionality for SE(3) motion. Still, it was shown in Blanco-
Claraco et al. (2019) how it is possible to keep a vehicle
well localized in SE(3) using a particle filter, from raw
3D LiDAR data and wheels odometry, much faster than
real time. This line of work was enhanced by detecting
and tracking features (pole-like objects) in Schaefer
et al. (2021), still using particle filtering. On the other
hand, parametric methods for localization, such as Hess
etal. (2016) or Lee and Ryu (2024), typically rely on an
ICP-like optimization loop to find the best vehicle pose
at a given instant.

Since we believe that both approaches have their ap-
plicability niches, both solutions are provided in the present
framework (see Section 6).

2.3. Graph optimization

The problem of finding the global optimal for a set of rigid
transformations between a sequence of key-frames is a very
well-studied one in the robotics community, either in its
planar SE(2) or spatial SE(3) form. It has been dubbed
Graph-SLAM (Grisetti et al., 2007, 2010, 2012), pose-
graph optimization (Tian et al., 2021), or synchronization
if mostly interested in the rotational parts (Carlone et al.,
2015; Wang and Singer, 2013).

The goal of all these methods is to find the poses between
the key-frames that minimize the mismatch of (typically
sparse) relative pose observations. These techniques have
an obvious direct application to optimization-based
(Strasdat et al., 2012) odometry frameworks that follow
the frame-to-frame paradigm. Despite the present work
follows the frame-to-map model instead, we mention graph
optimization here since it becomes essential when handling
loop closures.

The most relevant graph optimization libraries are re-
viewed next, with a focus on those tailored to graph SLAM
rather than bundle adjustment. One of the earliest works in
this field is probably TORO (Grisetti et al., 2007b, 2007a,
2009), which implemented efficient gradient descent for
pose networks of arbitrary topology (multiple loop clo-
sures). Next, G20 was presented in Kiimmerle et al. (2011),
becoming extremely popular, to the point that it is still used
nowadays in SOTA frameworks. Three G20 features that
explain this success are: (i) its modular design that allowed
for arbitrary graphs to be defined, including pose-only
graphs and those required for visual bundle adjustment
(Triggs et al., 2000), (ii) the popularization of perturbation-
based optimization on Lie groups (the FH notation) (Blanco-
Claraco, 2021; Kiimmerle et al., 2011; Sola et al., 2018), and
(iii) the support for robust kernels (Chebrolu et al., 2021),
essential for outlier rejection.

Afterward, two other popular frameworks were intro-
duced: GTSAM (Dellaert, 2021), and CERES (Agarwal
et al., 2022). Both are frameworks for solving large, non-
linear optimization problems, and both feature robust ker-
nels and some degree of automated calculation of cost
function derivatives. In our loop closure subsystem (de-
scribed in Section 3.12), we chose GTSAM as the graph
optimization back-end.

2.4. LiDAR-based loop closure and SLAM

In the context of SLAM, loop closure can be defined as the
detection of when the robot has revisited a placed that is
already known, often after traversing a path that resembles a
closed loop. Topological loop closure just detects such
events, while metrical loop closure methods also identify
the relative pose between the old and the new observations.

What does actually mean a loop closure in practice, and
the way the problem is approached, are both strongly
influenced by the employed sensors. For visual SLAM with
typical pin-hole cameras, moving a camera around a small
room would lead to loop closures, while for a 3D LiDAR
with 360° of horizontal field of view one might never
consider a loop closure situation if moving in a large
warehouse if there are no severe occlusions. This variety of
situations makes this research field extremely active for
each sensor niche (Arshad and Kim, 2021; Huang, 2019;
Tsintotas et al., 2022; Wang et al., 2019).

Regarding the topic of this work, LiDAR sensors, a
recent work by Kim et al. (2021) introduced a new
rotation-invariant descriptor for performing topological
and (partial) metric localization. Similar ideas are pro-
posed in related works like LiDAR-IRIS (Wang et al.,
2020) which uses a polar representation of 3D point
clouds, or in Gupta et al. (2024).

The system presented in this work, however, does not
rely on topological loop closure detection (although it
would be integrated as future works): instead, we rely on
pure ICP-based alignment with a special ICP pipeline
different than the one used for regular LO, fed by initial
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guesses from consumer-grade GNSS, if available. This
simple approach has demonstrated good enough for all the
datasets explored in this work.

3. Proposed architecture

This section describes in detail the different parts of the
proposed system. The next subsection starts providing a
top-level overview of the key elements, and subsequently
they are explained individually from a scientific and al-
gorithmic point of view.

3.1. Overview

Pursuing the goals defined in the Introduction, we define the
basic blocks illustrated in Figure 2. Among them, three
essential types of procedural blocks or algorithms are de-
fined. First, we have the odometry and loop-closure sub-
systems. The idea of splitting SLAM into odometry (“local
mapping”) and loop-closure (“global mapping”) can be
traced back to the visual SLAM community with PTAM
(Klein and Murray, 2007) and has been adopted by most
subsequent successful solutions for visual SLAM (RTAB-
Map Labbe and Michaud (2014), ORB-SLAM Campos
et al. (2021)) or LiDAR SLAM (Cartographer Hess et al.
(2016)). These two blocks are discussed in Sections 3.4 and
3.12, respectively.

Second, we define generic metric mapping pipelines as
one of the core elements in our framework, since they are
used internally as building blocks for both, odometry and
loop-closure, apart of having additional applications. They
can be thought of as arbitrary combinations of algorithm as

1, ot
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processing nodes in a data-driven network, with data being
metric maps. Their final goal is taking raw sensory data (or a
former metric map) as inputs, and processing them to create
a new metric map (or to modify the existing one). They are
introduced in Section 3.3.

The input and output of the algorithms defined in
Figure 2 are data-related elements:

3.1.1. Raw sensor data source. This represents the source
of sensor data, which can be either a real live device or an
offline dataset. Real-world applications will normally use
the former, while benchmarking and development pre-
dominantly use the latter for convenience. Available options
in our framework are enumerated in Section 3.13.

3.1.2. Metric maps. Most existing methods in the literature
use one single metric map representation (e.g., point clouds
in Deschaud (2018) or Vizzo et al. (2023)) while others
maintain two (e.g., corner and plane points in LOAM
(Zhang and Singh, 2017) and most derived works). The
present work proposes allowing the definition of an arbi-
trary set of metric map representations and data structure
implementations. Some of them will be more useful during
real-time mapping, others during map postprocessing or
loop closing, others for obstacle avoidance, etc. More on
metric maps follows up in Section 3.2.

3.1.3. View-based maps. Dubbed “simple-maps” in our
implementation, they contain a subset of all incoming raw
sensor data, synchronized and paired with the estimated
pose according to an odometry or SLAM method to form
key-frames. More details are given in Section 3.9.

Metric map

2rs [ " raw Layers|“decirated”] Layers|“grid”]
PointsHap Type: CPointsMap  Type: COccupancyGrid20

(d)

Figure 2. Main top-level data structures and procedural components of the presented framework: (a) odometry and (b) loop-closure
subsystems, (¢) metric map generation or update pipelines, and (d) a scheme of the contents of a metric map. Refer to discussion in
Section 3.1. The contents of each subsystem are detailed in subsequent figures.
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3.1.4. Trajectories. A trajectory tis simply a collection of n
SE(3) timestamped poses, for time steps #; withi=1, ..., n:

t={(,Ti),.... (t:, T,)} )

where following the RIGID notation for poses (Nadeau,
2024), , T;=T; stands for the ith SE(3) pose of the vehicle
local reference frame with respect to the world (w), that is, in
global coordinates.

3.2. Metric maps

A metric map in the presented framework comprises a
superposition of multiple underlying individual maps called
layers, plus optional sets of planes and lines, as sketched in
Figure 2(d).

The idea is using such compound metric maps as the
fundamental data containers used as both inputs and
outputs of metric map pipelines (see Section 3.3) and as
inputs to the ICP-like optimization pipeline (see Section
3.6). The existence of different map layers is justified by
two facts:

e Layer map types are independent, for example, some
layers may be point clouds, others are occupancy voxel
maps, each with a different resolution, etc.

e Layers have diverse semantics, for example, corners,
planes, vehicles, pole-like objects, a horizontal slice of a
3D map useful for detecting walls, etc.

Such layer differentiation is useful during mapping, but
also in posterior post-processing stages. Our framework
allows the definition of new metric map types by users by
means of a virtual base interface that abstracts all common
operations of maps such as clearing, inserting sensor ob-
servations, evaluating the likelihood of a given observation,
searching for nearest neighbors, etc. Having such abstract
interface does not only allow for the extensibility and ge-
neric programming in our framework, but also enables
performing performance benchmarking to take optimal
decisions about what map type to use for each application.
Next, we enumerate the metric map types that have been
used in the experiments presented in this work:

1. Point clouds with contiguous storage layout in memory
for each point component: This group of types include
maps for simple clouds where each point only has (X, ¥,
Z) components, with an intensity (/) component (X, ¥, Z,
I), and with LiDAR ring (R) identifier and per-point
timestamps (7), that is, (X, ¥, Z, I, R, T) components.

2. Point clouds with a hashed voxels storage layout: this
map type implements 3D voxels indexed by voxel
coordinates using the optimal hash function introduced
in Teschner et al. (2003), with a hard-coded maximum
number of points. This is the most common map layer
type in most parts of the proposed system, and it is based
on similar successful implementations in past works
(Deschaud, 2018; Vizzo et al., 2023).

3. Occupancy 3D voxel map: this type of map employs the
re-implementation in Faconti (2023) of Volumetric
Dynamic B + Trees (VDB), originally introduced by
DreamWorks Animation in Museth (2013). It offers an
efficient hierarchical data structure to cover large 3D
volumes with high-resolution voxels. VDB could be
used to store any arbitrary data within voxels, but in our
framework, we so far only offer two map types: one to
store the occupancy of each voxel, and another one that
also includes its color. This map type has been used to
represent both, 2D and 3D occupancy grid maps, es-
pecially if they are sparse.

4. 3D-NDT (Normal Distribution Transform) maps, as
proposed in Magnusson et al. (2007), where a 3D sparse
voxel map stores fitted Gaussian distributions for points
in each voxel. In our implementation, voxels with a
sufficient number of points whose spatial distribution
clearly defines a plane store the mean and covariance
matrix of such points, whereas voxels with too few
samples or which are not planar enough retain all in-
dividual points. The idea is to enable our map to es-
tablish both, point-to-point pairings (for voxels which
are not planar) and point-to-plane pairings (for planar
ones). In particular, the NDT representation for a voxel
is used if o1/0, < 7, with {0}, 05, 03} the three ei-
genvalues of the voxel point distribution sorted in as-
cending order and 7 a threshold (0.05 in our
experiments). As the map is populated with incoming
observations, individual voxels may switch between the
two representations.

5. 2D grid maps with a plain contiguous memory layout:
The most efficient data structure for 2D occupancy grids
that neither, are very sparse, nor need to grow the map
limits often. These maps have been popular in mobile
robotics since Elfes (1987).

3.3. Metric map generation and update pipelines

Metric map pipelines are at the core of the flexibility offered
by the present framework. Such pipelines are defined as a
bipartite, directed graphs with two kinds of nodes: data
nodes (metric maps, as defined in Section 3.2) and action
nodes (either filters or generators). Directed edges may only
exist between data nodes and action nodes. Follow Figure 3
as a reference for the discussion below, keeping in mind that
despite map layers are represented there as point clouds,
arbitrary map types are allowed as long as they are com-
patible with their action nodes.

Generators (see Figure 3(a)) are especial actions as they
are the entry points for sensor data, transforming raw range
data, images, depth images, etc. into more elaborated data
structures, for example, point clouds with different per-point
field annotations, or plane patches normals. They can also
generate more than one output metric map layers, becoming
the ideal location where to run classification tasks, for
example, detecting edges or special objects in depth cam-
eras or LiDAR observations. We provide hooks for
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Figure 3. Metric map pipelines represent map processing
networks as bipartite graphs with two kinds of nodes: data (map
layers) and actions (generators or filters). Different connection
patterns exist: (a) generators converting raw observations into map
layers, and filters of different arity such as (b) unary, (c) binary,
or (d) ternary map filters. See discussion in Section 3.3.

implementing custom detection algorithms that need to
exploit the particular data structure for each possible input
sensor, for example, edge detection algorithms from LiDAR
range images. A generic default generator exists which just
creates a map layer of a given type (by default, a point
cloud) and inserts the observation into it by using the ab-
stract interface mentioned in Section 3.2. For 2D or 3D
LiDARs, this simply creates an unfiltered point cloud with
all sensed points in a given scan.

Filters are the other kind of action in this framework, and
are broadly defined as any arbitrary algorithm that takes at
least one map layer as input and generates or modifies other
(or the same input) layers. Our work already ships several

such filters, while also offering a plug-in system to add user-
defined ones. Some of the most important filters, used in the
LiDAR odometry pipeline presented in Section 3.7, are
briefly introduced next:

3.3.1. De-skewing. Most common LiDAR sensors today
are rotating scanners, where a significant time elapses be-
tween the first and the last points in a complete 360° scan
(typically between 50 ms and 200 ms). De-skewing or un-
distortion is a well-known scan data pre-processing stage
where the estimated vehicle motion is used to interpolate the
sensor trajectory in SE(3) over time during the scan period
in order to project all sensed points to 3D space in the most
precise way. Given a set of raw (distorted) points R =
{Sﬁ}?}:l in the sensor (“s”) frame of reference', with as-
sociated relative time-stamps ¢; such as for # = 0 the sensor
pose in the map frame is T, = {p,, R} (with p, € R3 the
translation and R, € SO(3) the orientation), with linear
velocity (v, and angular velocity e, (both in the sensor
frame “s”), simple extrapolation on SE(3) is performed to
obtain the corrected point cloud R = {r;}Y | in the map
frame:

r; RS s t; sy " i Vs sFi
_ P, ( ) )

1 03 1 03 1 1
with A the hat or wedge operator, mapping SO(3) tangent
space vectors to rotation matrices (Blanco-Claraco, 2021).

3.3.2. Time-stamp adjustment. Note that the exact moment
used as a reference for relative time-stamps in the de-
skewing filter above is not defined. Different conventions
can be found in existing implementations, with the most
common ones being using the first point or the one in the
middle as references. This decision is coupled with the exact
moment at which the vehicle pose and velocity are to be
estimated by the LO or SLAM system, and for vehicles
moving fast the difference between criteria may be in the
order of tens of centimeters. Further complications arise
from the diversity of per-point timestamp formatting in
public datasets and sensor drivers, ranging from relative
times in seconds, relative times in the fixed range [0,1], to
just using absolute time stamps. Therefore, we provide this
filter to adjust the timestamps in all incoming LiDAR scans
to ensure they observe one of a list of possible criteria.

3.3.3. Down-sampling. As shown while discussing related
LO works (Section 2.1), sub-sampling point clouds is es-
sential to achieve stable ICP-based mapping. Our frame-
work offers several down-sampling filters, ranging from
simply picking the first point within each 3D voxel for a
given uniform volumetric resolution, to keeping the average
of each such voxels, or using nonlinear spatial tessellation.

3.3.4. Spatial filtering. We also provide ternary filters to
split an incoming map layer in two categories: those points
passing a given criterion and those that do not. Filters
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include applying 3D bounding boxes (i.e., points within the
box pass the test), checking for a minimum distance to a given
point (e.g., the vehicle), or splitting by LiDAR ring number.

3.3.5. Map insertion. This fundamental binary filter takes an
input point cloud layer and an output layer of an arbitrary type
and uses the abstract API of metric maps to merge the cloud
as if it was a single observation (e.g., from a 2D or 3D
LiDAR) into the target. A primary use of this filter is local
map updating in our LO system, but it is also key for map
building in post-processing pipelines. Note that this operation
generalizes several particular algorithms depending on the
class of the target map: point cloud insertion into a voxel-
based point cloud, ray-tracing on a 2D gridmap, raytracing
and occupancy update for 3D volumetric grids, etc.

3.3.6. Dynamic object removal. This filter takes an input
layer with an occupancy voxel map and uses its occupancy
information to remove points from another point-cloud layer
belonging to voxels with a reduced occupancy likelihood,
meaning that those locations were sensed probably due to
dynamic objects moving during the mapping process. Note
that for a voxel to have a reduced occupancy probability it
needs to have been observed more often free than occupied.

3.4. LiDAR odometry module

At this point, most basic blocks have been defined so we
can introduce the architecture of the proposed LO

module. Please use Figure 4 as a guide to the following
discussion. In the figure, q[k] stands for the kinematic
state of the vehicle at the discrete time step &, and it
includes the vehicle body (“b”) pose T, € SE(3) with
respect to the local map and its linear v, and angular w,
velocities. Also, keep in mind that such architecture
remains the same for 2D or 3D mapping, for local maps as
2D gridmaps or as 3D point-clouds, etc. since those
details are provided inside the configurable “pipeline”
modules described later on.

Starting by the left of Figure 4, raw sensor observations
arrive from either an offline or live source (block #1 in the
diagram; see Section 3.13) and fed three subsystems: (i) the
kinematic state estimation subsystem (block #2), mainly in
charge of fusing sensors (wheel odometry, IMU, etc.) and
past LO outputs (q[k — 1]) to make short-term predictions
about the vehicle pose and velocity (q'[k]); (ii) a first metric
mapping pipeline (block #3; see Section 3.3), typically in
charge of building filtered and down-sampled versions of
the incoming LiDAR scans into the observation metric map
data structure (see Section 3.2); and (iii) the view-based map
(block #16), one of the main LO outputs.

As discussed earlier, this work follows a scan-to-map
design pattern since it has proven benefits for 3D LiDAR
mapping. Hence, after using raw observations to build a
metric map (block #7), it is aligned against a local metric
map (block #9), which is initialized via a special instance of
a metric map pipeline (block #5) that normally will just
create empty metric map layers. This block is run only once
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-1 k-1
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el
Observation metric map I ® Matchers i
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Figure 4. Architecture of the proposed generic optimization-based LiDAR odometry system. Each process is highly configurable and

parameterizable. See discussion in Section 3.4.
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at system start up or when it is reset. The local metric map
data structure (block #9), is selectively updated using a
custom pipeline algorithm (block #8) using one or more
layers from the observation metric map (block #7) when
certain criteria are met, as determined by a so-called local
map update decider (block #14). An independent decider
(block #15), normally with different criteria, is used to de-
termine what frames become key-frames in the output view-
based map. In general, such maps would benefit from sparser
key-frames to reduce the size and memory requirements of
final maps, while the local map tends to benefit from more
frequent updates from incoming sensor frames. However,
note that most past works (e.g., Deschaud, 2018; Vizzo et al.,
2023) update the local map for every single incoming sensor
frame. This may be optimal in driving scenarios, but our
experimental results show that this policy may make the
system in other scenarios, as analyzed in Section 7.2.

Pose tracking itself is achieved by means of an ICP-like
iterative optimizer (blocks #11 and #12), in charge of finding
the SE(3) pose q[k] that best explains the observation given a
local map. This optimization procedure is detailed in Section
3.6. For now, it is enough to abstract it as an algorithm taking
as inputs: (i) the initial guess ¢'[k] from the kinematic state
estimator, (ii) a local and a global metric map (with different
geometric entities and map layers depending on the applica-
tion), and (iii) a set of dynamic variables (block #10) to adapt
the behavior of the internal ICP pipeline (see Section 3.5).

Once the optimizer converges, a set of quality evaluation
algorithms (block #13; see Section 3.6.4) are used to estimate
the quality of the optimization. This metric, together with
other conditions (not shown in the diagram for the sake of
clarity) are then used to conditionally trigger the two decider
blocks: (i) one to accept the alignment as good enough to
append the obtained pose to the estimated trajectory (block
#4) and to update the local metric map (block #9) via the
purposely designed pipeline (block #8), and (ii) another one
(block #15) to add new key-frames to the output map (block
#16). Note that a localization-only mode exist (see Section 6),
which disables both deciders while still producing an esti-
mate of the vehicle state for each time step in q[4] by aligning
the current observation against a prebuilt local map.

When the system is initialized, all blocks in Figure 4 are
populated with objects created dynamically using class
factories as described in a human-readable configuration file
(a YAML file, Evans et al. (2017)), turning our framework
into a flexible system easily re-configurable and extensible
by end users, enabling systematic investigations on the
effects of changes in individual sub-systems.

Subsequent sections give further details on the ICP loop
and the particular configuration used for 3D LiDAR mapping.

3.5. Adaptive behavior: Dynamic variables

All software blocks in the LO system (Figure 4) have
parameters that are initialized at system start-up. Some
such parameters, however, would benefit from being dy-
namically adapted depending on sensed conditions like the

size of the environment (indoors vs outdoors) or the
motion profile (driving, handheld, drone, etc.). For ex-
ample, take the voxel-based down-sampling mechanism
used in IMLS-SLAM (Deschaud, 2018), which used a
fixed resolution of 1.0 m, adequate for driving datasets. If
the SLAM system is initialized in a small office-like en-
vironment instead, a much smaller resolution (i.e., less
down-sampling) would be needed indeed. Instead of re-
lying on manual tuning of all those parameters, our system
would automatically detect the approximate size of the
environment and initialize the local map and down-
sampling resolutions accordingly.

To make this adaptation possible, our framework offers two
features: (i) supporting mathematical expressions and basic
scripting directly in the parameter specification files, and (ii)
defining dynamic variables that can be used in such expres-
sions. On the former, we use the C++ Mathematical Expression
Toolkit Library (ExprTk) (Partow, 2015) due to its lightweight
and efficient implementation. On the latter, a set of variables are
defined so they can be used as symbols in the expressions,
which are re-evaluated for each time step, and even for each
ICP iteration within a given time step. Next, we review the most
relevant such variables and how they are updated.

3.5.1. Maximum sensor range. This is a fundamental var-
iable as it roughly indicates the size of the environment and can
be used as a hint to the required down-sampling resolution. We
define two such variables, the immediate maximum sensor
range 7. k] for time-step &, and the low-pass filtered version
Fmax|[k] using a first-order TR (Infinite Impulse Response)
discrete-time filter with z-transform transfer function:

—Tw.

,with: a=e 3)
z—a

where o is a fixed parameter (typically in the range
[0.9,0.99]) that defines the low-pass cut frequency .. for a

sensor rate 1/7.

3.5.2. Related to robot kinematic state. The latest vehicle
state q[4], including pose and linear and angular velocities in
the map frame, are available as dynamic variables. For ex-
ample, the local map update decider (block #14 in Figure 4)
checks for a minimum linear and angular distances between
map updates. Our reference pipeline for 3D LiDAR mapping
uses a heuristic formula for these distances that takes into
account both, the maximum sensor range, and the instan-
taneous robot angular velocity, reducing the number of map
updates while the sensor is experimenting higher accelera-
tions. The insight behind this policy is that, despite scan de-
skewing, sensed points may be less accurate under these
conditions since the assumption of constant velocity during
each scan sweep is probably less accurate for higher angular
velocities. Variables exposing the instantaneous robot pose (q
[£]) are also fundamental in the context of map post-
processing, for example, for distance-based filtering while
removing interferences from the vehicle itself or the person
carrying a hand-held sensor.
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3.5.3. Adaptive matching threshold. We have incorporated
the idea of a dynamic threshold, proposed in KISS-ICP, to
parameterize the data association and optimization stages of
the ICP optimization loop according to perceived changes.
As justified geometrically in Vizzo et al. (2023), given
translational and rotational corrections Ap € R® and AR €
SO(3), respectively, of the ICP optimized pose with respect
to the initial guess from the kinematic state prediction
(Section 3.8), the expected maximum point-to-point error d
can be approximated with:

5 = ||Ap| + 27max sin% [ (logAR) || 4)
where log R is the matrix logarithm, the averaged
maximum Ssensor range r,,. is described in Section
3.5.1, and (-)V is the vee-operator, the inverse of the
wedge operator used in equation (2); that is, the 3 x 3
rotation correction matrix AR is first mapped to the
tangent space via the matrix logarithm giving a 3 x 3
skew-symmetric matrix with only three degrees of
freedom, then the vee-operator simply takes out those
three values as a 3 x 1 vector.

With the idea of obtaining a threshold ¢ to scale data
association and optimization within ICP out of sequences of
o0 values over time, KISS-ICP proposes taking the standard
deviation of all J values, saturating with a minimum o,,;, to
prevent degeneration after long runs with good motion
model predictions. While quite successful for driving
scenarios, this approach lacks the ability to quickly react
against abrupt changes in conditions (e.g., large occlusions,
crossing a door moving from outdoors to an indoor area or
handheld sensors with high dynamics). In order to further
improve the adaptability of the whole system, we propose
using a closed-loop proportional negative feedback con-
troller to cope with sudden perturbations in the quality of
ICP alignments, as sketched in Figure 5. This controller
generates a multiplicative term ¢ that makes J to grow (¢’ =
cd) whenever ICP quality starts to drop, promoting the
search for additional pairings in the next time step by in-
creasing the search radius for nearest neighbors. A first-
order low pass filter, identical to equation (3), is then applied
to obtain the actual threshold o. As it is well known in
control theory, a proportional controller always exhibits an

AR —1 Motion IcP

Ap __,|model error pipeline
ICP

1 @ quality

Figure 5. The closed-loop proportional feedback controller
strategy to dynamically adapt the ICP parameters, scaled by a
threshold o, based on both, errors in motion model predictions,
and the overall ICP quality (in the range [0,1]). The calculation of
the motion model error ¢ is given in equation (4). Note that the
input set-point for the controller is 1, the ideal quality.

offset error, hence the obtained ICP quality will never reach
the set-point, but in practice most often remains in the range
[0.9, 1].

3.6. ICP optimization loop

One of the central blocks of the LO pipeline is the flexible
ICP algorithm, comprising blocks #11 and #12 in Figure 4.
As the rest of the LO system, those blocks are dynamically
created from a plain text configuration file describing the
algorithms to use for data association, optimization, what
metric map layers to use, and so on.

Our implementation is “ICP-like” in the sense that the
main components of a classical ICP loop remain (i.e., data
association, correction of the estimated transformation, and
repeat until convergence) but many key differences exist:

® Nearest neighbor search for each input point is gener-
alized into a set of matching algorithms (see Section
3.6.1).

e Several options are available as optimal pose solver
algorithms from a set of predefined correspondences (see
Section 3.6.2).

® An optional metric map pipeline algorithm can be ap-
plied inside the ICP loop itself (see Section 3.6.3).

® Dynamic variables (discussed in Section 3.5), including
the ICP iteration count, can be used to parameterize any
of the components above. This allows, for example,
modifying the search radius over ICP iterations within
one single time step (useful for loop closure).

* An optional probabilistic prior distribution of the sought
pose is accepted as input, allowing prior knowledge to
constraint the otherwise unbounded distance between
the initial guess and the final result.

® Generation of log records to debug and visually inspect
the internals of the algorithm during the different ICP
iterations has been a central feature kept in mind during
our implementation. As far as we know, no other public
ICP implementation allows inspecting the evolution of
the pairings and all other variables over ICP iterations in
a systematic way.

* Importance is given to quality evaluators with a place-
holder for such algorithms (see Section 3.6.4), funda-
mental in assessing whether a map registration is
successful or not.

Keep in mind that the same ICP structure is to be used
during online mapping (LiDAR odometry), localization,
and for loop closure (see Section 3.12), although with
different parameters and metric map layers.

A step-by-step description of the proposed ICP method is
sketched in Algorithm 1 and is explained next, where many
low-level details have been omitted for clarity. Overall, the
“I” for iterative from the original ICP method remains as a
fundamental feature required to solve such a strongly
nonlinear problem as registering two metric maps with
unknown pairings. The loop is repeated until one of two
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conditions is reached: a maximum number of iterations N,,,
(line 9 in the pseudocode) or convergence (line 23). Suc-
cessful registrations most often end up with convergence,
hence N, is set to a large enough number (V,,, > 300) to
avoid undesired search interruptions. Convergence is de-
fined as small enough changes of the translational and
rotational parts of the estimated transformation T = {p, R}
with respect to the previous step T/ = {p’, R}, that is,
whether dp < ¢, and JR < g with:

(52)
(5b)

op = |lp — pll
ok = [log(R'R)"|

and ¢, and & the corresponding thresholds, which are set to
107* and 5 - 107, respectively, in all presented experi-
ments. For each iteration, all matching algorithms are se-
quentially invoked over the two input metric maps to
populate a list of potential pairings p (lines 11-14), then
solvers are invoked using this list (lines 15-20) until a
successful result T’ is obtained (see Section 3.6.2). The
optional input hook for invoking a metric map updating
pipeline is invoked next (line 21), which enables our
claimed new feature of fluidly deskewing the input point
cloud as the estimated pose is updated within the ICP it-
erations (see Section 3.6.3). The loop is run until conver-
gence, then quality evaluation algorithms are applied (lines
29-35) and their result is returned together with the esti-
mated pose.

Algorithm 1 Generic ICP-like optimization algorithm

1: function ALIGN(m,, mg, To, Tp = {Tp, 3, } ,{M;},{S:},{Q:}, p)
2: > my and m are the local and global metric maps

3: > T is the initial guess for the SE(3) transformation from local to global

4: >T, = {Tz“ EI,} is an optional prior Gaussian for sought transformation
5: > {M;}, {S:}, {Q:}: sets of matchers, solvers, and quality evaluators.

6: > p is an optional metric map pipeline

7

8:

T «+ Ty > Initialize optimal SE(3) transform
k<« 0 > Initialize iteration counter
9: while £ < Ny, 0 do
10: UPDATEDYNAMICVARIABLES () > For matchers and solvers
11: p <+ {} > Initialize pairings with empty set
12: for each M € {M;} do > For each matcher
13: p < p U M.MATCH(m;, mg, T) > Data association
14: end for
15: for each S € {S;} do > For each solver
16: {T’,V} «+ S.soLVE(p, T}) > Optimal SE(3) solvers
17: if V then > Valid solution?
18: break > No need to try more solvers
19: end if
20: end for
21: p.APPLY(my) > Apply observation pipeline (2/2)
22: C + CHECKCONVERGENCE(T, T") > See Eq. (5)
23: T« T/ > Update estimation
24: if C then > Convergence?
25: break
26: end if
27: k+k+1 > Increment iteration counter
28: end while
29: g+ 0 ,W <+ 0 ,bad <+ False > Initialize quality metric
30: for each {Q,w;} € {Q;} do > For each quality algorithm
31: qi,bad; < Q.EVALUATE(T, m;, mg) > Evaluate metrics
32: q+ q+w;q; > Accumulate
33: bad < bad or bad,; > Logic or
34: end for
35: q<+bad? 0 : q/W > Average

36: return {T, ¢}
37: end function

> Return estimated transformation and quality

3.6.1. Matchers. Different kinds of geometric pairs can
conceivable be identified between two metric maps: point-
to-point, point-to-plane, point-to-line, plane-to-plane, etc.
Furthermore, the input local and global maps to be regis-
tered can be of different types: point clouds, grid maps,
voxel maps, etc. Therefore, our framework provides a set
of different match search algorithms depending on the
kind of geometric features to find, while the map variety
is handled via a generic nearest neighbor (NN) abstract
interface. It makes sense to have more than one matching
algorithm in multiple situations: (i) looking for succes-
sive pairings for each local map point in a prioritized list
(e.g., first, try to find a point-to-plane pairing, but if it is
not possible, then a point-to-point match), (ii) when
several metric map layers exist and each local map layer
is to be matched against a particular layer in the global
map, and (iii) when different such layers represent dif-
ferentiated geometric features (e.g., planes, edges, or
pole-like objects).

Regarding efficient parallelized implementation of
matchers, we follow the findings reported in KISS-ICP
(Vizzo etal., 2023) and SIMPLE (Bhandari et al., 2024)
about the superiority of Intel Threading Building
Blocks (TBB) (Reinders, 2007) over other alternatives
to exploit multi-core CPUs, hence our implementation
also employs that library to parallelize inner loops of
most algorithms handling point clouds. A more detailed
description of all available matchers and benchmarking
them against different metric map data structures is out
of the scope of this paper and is left for future works.

3.6.2. Solvers. Having multiple solvers is in order due to
the diversity of geometric entity combinations that can be
found by matchers. In particular, our implementation
offers the classic Horn’s method in Horn (1987) (apt for
point-to-point pairings) and a generic Gauss—Newton
solver suitable for different types of geometries. In the
following we are focusing on point-to-point pairings
since they have been shown to lead to good results (Vizzo
et al., 2023). Point-to-plane correspondences are also
used for our 3D-NDT system configuration, but their
equations are left out for space reasons and will be de-
scribed somewhere else. More diverse geometric primi-
tives are worth further investigation, for example, see
MULLS (Pan et al., 2021).

Therefore, assume p in Algorithm 1 contains a set of N
local {l,-}fy:] and global {gi}ﬁvz1 points in R? that are sup-
posed to correspond to each other. Solving for the optimal
pose T* € SE(3) that minimizes the overall L2 registration
error:

N N
* _ . e 2= ; A 2
T —srgngn 3 00— = argoin Y ()]
&(T)

(6)
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is a classic problem with well-known closed-form solutions
such as the quaternion method in Horn (1987). Unfortu-
nately, in practice all pairings are not to be trusted equally
due to the uneven and discrete nature of LIDAR sampling,
sensor noise, and the existence of dynamic objects. Al-
though our system offers Horn’s algorithm among the
possible solvers, it is far from being the optimal choice (see
Section 7.4). Recent research has proven that robust (non
least-squares) problem formulations lead to superior per-
formance in the presence of pairing outliers and local
minima, either using truncated least-squares and semi-
definite programming (SDP) relaxation (Briales and
Gonzalez-Jimenez, 2017; Yang and Carlone, 2019, 2020)
or by simply applying a robust kernel p(-) (e.g., Huber,
Geman-McClure,...) to equation (6) (Chebrolu et al., 2021):

N
™ :arngian(Hei(T)H) (M
i=1

In this work, we follow this latter approach for its simplicity
and superior efficiency in terms of running time. Furthermore,
we propose adding an additional term to the cost function
integrating an optional probability distribution reflecting any
prior knowledge about the relative map poses. In the context of
LO, this term incorporates vehicle pose predictions from the
kinematic state estimator (block #2 in Figure 4, see Section
3.8), while in the context of loop closure, it reflects uncertainty
built up along a given topological loop (see Section 3.12). In
any case, such prior information is modeled as a Gaussian
distribution with mean T, € SE(3) and covariance matrix X,,.
This prior term, denoted as e, is not affected by the robust
kernel and is introduced as a Mahalanobis distance of the vee-
operator applied to the Lie group logarithm map of the pose
mismatch, that is:

e,(T) = (logT,'T)" 8)

leading to the final robustified least-squares cost function:

T* = arg min ¢(T) ©)

Hz + ZP ”e‘

with e,(T) the point-to-point pair costs defined in equation
(6).

Solving equations (9) and (10) is a nonlinear optimi-
zation problem, hence we propose using the iterative
Gauss—Newton (GN) algorithm. Since the search space is
non-Euclidean, the Lie group perturbation-model approach
is employed (Blanco-Claraco, 2021; Sola et al., 2018)
where the unknown becomes an increment & € 5¢(3) (SE(3)
Lie group tangent Euclidean space):

(10)

= ||ep

& =arg ngn c(THE) (11)

* = THE* (12)
which using the right-hand perturbation convention:
THE=T ¢ (13)

allows us finding the required Jacobians to solve the normal
equation of each GN iteration:

HE* = —g (14)

with H and g the 6 x 6 Hessian matrix and 6 x 1 gradient
vector, respectively:

6ep _,0e, ae, T oe;
H=—L % a§+z w(||e;])? 65 w1
6e 8el
p X ep+Z\/ (Jle:l)? (16)

with Oe,/0¢ given by Blanco-Claraco (2021), equation
(10.19), w(-) the weight function of the employed robust
kernel, and:

de; 0Té*
¢ o¢

where the expression for dTe‘/6¢ can be found in
Blanco-Claraco (2021), equation (10.19) and ® is the
Kronecker product. Our implementation actually allows
matchers to include individual weights for each pairing,
which scale the corresponding Jacobians in the two
equations above, but in the present work we just as-
signed all pairings equal weights. Past works, such as
Dellenbach et al. (2022), have exploited such weighting
to give higher priority to more reliable points, hence this
feature deserves further research. The cost function and
associated Jacobians for other geometric entities in our
implementation (point-to-plane, point-to-line, etc.) are
left out of this work for space reasons and shall be
described in future works.

A configurable number of GN iterations can be run,
but note that GN is invoked inside an outer ICP loop,
hence running just one or two iterations is normally
enough: new data association for the next ICP iteration
means the cost function is likely to change so it is not
worth wasting time iterating to find what will only
become partial solutions.

= ([ 1]e 1)

(17

3.6.3. Local map update pipeline. As shown in line 21 of
Algorithm 1, an optional metric map pipeline (Section
3.3) hook can be invoked within each ICP loop iteration.
This feature is not used for loop-closure, but it is key for
sequential processing of scans in odometry. In the
default configuration for 3D LiDAR odometry (Section
3.7) this hook is used for two operations: (i) refining the
estimated vehicle linear and angular velocities, and (ii)
using such new estimated velocities to apply the de-
skewing filter (Section 3.3.1) to the final layers of the
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metric map built from the current LiDAR scan (refer to
“Observation pipeline (2/2)” in Figure 7).

Linear (v; and angular velocity  w, vectors of the
sensor, both in the sensor frame “s,” are estimated under
the assumption of constant velocity from the current
sensor pose” estimation Ty, in the ith ICP iteration and the
sensor pose from last time step (Ty),_, with a sensor

period T:

—1 _ AR Ap
((TS)kfl) TSk - |:0 0 0 1 ]4X4 (18)
1 —1
Vs = ?Ap Vs = Tsk Vs (19)
! v -1 20
W, = ?(logAR) o, =T, o (20)

In practice, this simple method makes the velocity
vectors to be estimated alongside with the vehicle incre-
mental pose, enabling fluidly de-skewing points during ICP
iterations so they better match the reference local map. As
shown in the experimental results and in the ablation study
in Section 7.3, this allows the effective tracking of abrupt
motion profiles (see, e.g., Section 4.9).

Our approach has a similar aspiration than Continuous-
Time ICP (Dellenbach et al., 2022), but there are two
differences: (i) ours does not introduce pose discontinuities
between the end of a scan and the beginning of the next one,
and (ii) ours does not need to use heuristic weights for the
different parts of the optimization (point registration errors,
final pose, and velocity vectors) since velocities are im-
plicitly defined from the iteratively refined final pose, and
the latter is unconstrained.

3.6.4. Quality estimators. Except in degenerate cases, all
solvers discussed above such as the classical quaternion
method (Horn, 1987) or the GN iterative solver will
always produce a result, correct or wrong depending on
the existence of outliers in the input pairings. It hence
becomes essential to assess whether the output relative
pose between the two metric maps is plausible or should
otherwise be discarded. In this latter case, our frame-
work discards those key-frames with an unacceptable
ICP quality. If this happens right at the beginning of
mapping, the metric map is discarded and started from
scratch again. Otherwise, amid navigation, the kine-
matic state estimator extrapolates the predicted vehicle
motion to try to recover a good pose tracking in sub-
sequent frames.

As seen in lines 29-35 of Algorithm 1, we propose
using the weighted average of a configurable set of quality
evaluation algorithms. The abstract interface of such
algorithms takes as input the two metric maps that has
been aligned and the tentative optimal relative pose found
by solvers, and returns two elements: (i) a quality metric

q; € [0, 1], and (ii) a short-circuit logic discard flag, which

shall be activated when the alignment is clearly wrong. In

that latter case, the ¢; values returned by other quality

evaluators are ignored and the registration is discarded.
We have implemented three such algorithms:

* Point-wise paired ratio: This simple method just uses
the ratio of local map points that were assigned a pairing
during data association in the last ICP iteration:

N airings
= LA 1)

Nlocal_points

This method is normally adequate for LO, although not
informative enough for loop closure assessment.

* Range reprojection: An implementation of the method
proposed in Bogoslavskyi and Stachniss (2017), based
on re-projecting 3D points into a range image for
comparison between the two maps.

® Voxel occupancy metric: A novel algorithm that takes
into account all volumetric occupancy information, and
its mismatch between both metric maps. This method
requires both maps to have an occupancy voxel layer,
which is straightforward to add in our framework by
adding such requirement to the metric map pipelines.
The key insight is that voxels that are either free or
occupied in both maps “vote” for a good quality, but
those with contradictory information “vote” for a bad
quality with a stronger weight. Inspired by Kullback-
Leibler distance, we define a heuristic loss function L(p;,
p;) taking the occupancy probabilities p; and p; of each
pair of voxels (in the range [0,1]) corresponding to the
same global coordinates for the two maps, with the shape
illustrated in Figure 6: similar occupancies have the
highest score, any of the two map voxels being unob-
served (p ~ .5) has a smaller score, and contradictory
information has a strong negative score. All N voxels are
integrated into a single scalar quality ¢ value as:

N

1 : k _k
4= Wit d=) L(pLp))

k=0

(22)

where « is a heuristic scale parameter.

Apart of these quality metrics, note that the Gauss—
Newton optimizer described in Section 3.6.2 also pro-
vides an uncertainty estimation for the solution, that is, the
Hessian matrix of the last iteration. Although normally
overconfident, its eigenvalues and eigenvectors can be also
used to assess whether a given relative pose is well-
conditioned.

3.7. Default configuration for 3D LiDARs

Once the generic architecture of the LO module and the ICP
algorithm have been shown in Figure 4 and Algorithm 1,
respectively, we introduce a particular system configuration
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Lip,p)

Figure 6. Heuristic loss function to compare voxel occupancies p;,
p; € [0, 1] from two maps i and j in the proposed alignment
quality metric in Section 3.6.4. The exact equation represented
here is L(p:, p;) = 1.5+ p; +p; — 1207 + 22pip; — 12pf.

which is dubbed lidar3d-default in the implementation and
which has been used in most experimental results. A
configuration comprises the definition of what blocks
populate the internals of generic blocks in Figure 4, along
with their parameters.

This configuration has been designed to successfully run
in as many situations as possible, hence it is not particularly
optimized for minimum tracking error but for robustness
and for its ability to run at sensor rates or faster. Config-
urations with better performance for particular sensors and
environments could be devised, but this is future work.

Observing Figure 4, there are three ICP-related blocks to
be defined (blocks #11, #12, #13) and four metric map
pipeline blocks (blocks #3, #5, #6, #8). Next we describe
how they are set-up in this configuration.

3.7.1. Local map creation pipeline. A single map layer is
created using a hashed voxel map holding point clouds, with
a maximum of 20 points per voxel, only (X,Y,Z) attributes
per point, and a voxel resolution of 1.5% of the estimated
sensor maximum range with a minimum and maximum of
0.5 m and 1.0 m, respectively. No minimum distance be-
tween points stored in each voxel is imposed.

3.7.2. Observation pipelines. Split in two parts, (1/2) and
(2/2), with contents detailed in Figure 7. Recall that the
pipeline is split to allow the first part to be invoked only
once per incoming scan, and the latter once for each ICP
iteration. As sketched in the figure, a default generator first
takes the raw sensor data and produces a point cloud map
layer (“raw”) with contiguous memory layout (see Section
3.2). If per-point timestamps are present, they are then
adjusted, with the particular convention of using the middle
of the scan as the time origin. Next, the cloud is down-
sampled and nearby points removed (FilterByRange in
the figure) to avoid polluting the map with vehicle or robot

body measurements. Next, a bounding box filter is applied
to remove nearby ceiling points, which have been shown to
lead to divergence in some scenarios. Then, this point cloud,
which underwent decimation once, is decimated once again
so we have two layers: a denser one to update the local map,
and the sparser one to be used for registration in the ICP
algorithm. This idea of using dual-resolution maps comes
from its successful implementation in KISS-ICP (Vizzo
et al., 2023). Finally, note that de-skewing happens at the
end, once for each down-sampled clouds, whereas all
former works perform this step at the beginning instead. The
reason for this alternative placement is twofold: to enable
the fluid de-skewing discussed in Section 3.6.3, and in-
creasing the efficiency since far less points are de-skewed in
comparison to performing this operation at the very be-
ginning of the pipeline. The result of first down-sampling
then de-skewing is not exactly the same than switching the
order of both operations, but in practice both methods lead
to equivalent overall trajectory quality metrics.

3.7.3. Local map update pipeline. This pipeline comprises
just one map insertion action (Section 3.3.5), taking one of
the observation map layer (the denser cloud) and merging it
into the local metric map, effectively making the map to
grow as the vehicle explores the environment.

3.7.4. ICP-related blocks. One matcher algorithm is de-
fined to find out point-to-point correspondences between the
local map and one of the observation layers (the sparser
cloud). Then, the Gauss—Newton solver described in Sec-
tion 3.6.2 is defined as the unique solver. Following KISS-
ICP (Vizzo et al., 2023), the matcher threshold and the
solver robust kernel are parameterized with a dynamic
threshold, although estimated in a different way (see Section
3.5.3). Finally, quality for LO is assessed by using the
matching ratio criterion (Section 3.6.4).

3.8. Kinematic state prediction

This role of this algorithm in the LO system (block #2 in
Figure 4) is to generate short-term pose and velocity pre-
dictions for the vehicle for each incoming LiDAR scan,
based on the history of past sensor observations and former
ICP registration outcomes. Poses are needed to make the
nonlinear iterative search within ICP to start as close to the
solution as possible, and velocities are needed to perform
the initial scan de-skewing.

We have experimented with two alternative methods: (i)
simple kinematic extrapolation using only the two last
vehicle poses, and (ii) a full probabilistic formulation based
on factor graphs optimizing over a sliding window of past
vehicle poses. Initial results showed that the simple method
gave more accurate trajectories and was less prone to di-
vergence under abrupt motions, hence we will only discuss
the former method here and will leave the latter for future
analysis.
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Figure 7. Detailed view of the “observation pipeline” blocks in Figure 4 for the “default 3D LiDAR” LO system configuration. Refer to
discussion on pipelines in general in Section 3.3 and to the rationale behind this particular pipeline in Section 3.7.

The implemented method takes only two inputs: esti-
mated poses from ICP optimization, and, optionally if
available, wheels odometry readings. Given the two last
poses Ty, and (Ty),_, with elapsed time between them of T
seconds, equations (18)—(20) give us the estimated linear (v,
and angular (@, velocities, in the local sensor frame “s.”
Then, when a kinematic state prediction is needed for an
instant , ahead of frame Tj,, velocities are left unmodified
(constant velocity model assumption) and the predicted

pose TSM is evaluated as follows. In the absence of wheel
odometry, the former pose is extrapolated assuming con-
stant velocities, that is:

= Tsk |:

while, if wheel odometry is present, its values over time are
used as a good approximation of short-term incremental
motion and such increment , Ty is just applied to the last
frame, that is, 'T‘SHI = T, Tis1.

Note that an output from this prediction method is not
available until at least two LiDAR scans have been pro-
cessed by the LO pipeline. In this initial time step, plus
when there is a long period without incoming data (either
intentional or due to temporary sensor failure), there will be
no kinematic state prediction. Unless the LO system is
started while already moving at high speed, this does not
present a particular challenge to the ICP-like optimizer.
However, our framework offers the option to define an
alternative ICP pipeline for time steps without state pre-
diction, for example, to use a much larger matching
threshold. Experimental results presented in this paper did
not need to exploit such possibility, though.

(23)

(51 sws)/\ Or sV
0]><3 1

3.9. Implementation of view-based maps

This section provides some insights into how view-based
maps (see Section 3.1) are implemented in our framework.
As stated above, these maps are the output of LO, hence
they must include all the required information to build
actual metric maps from them in the most flexible way.
Thus, each such map m is defined as a sequence of N key-
frames k;:

m = (k)Y (24)

k = (T,», (v, ), {o; j}j.j’l) 25)
with key-frames being tuples of three elements: (i) the
vehicle pose as a Gaussian distribution T; = {T;, X;}, (ii)
the estimated vehicle linear (v;) and angular (w,) velocities,
and (iii) a set of M; raw sensor observations o; ;. Vehicle
poses and velocities are given in global coordinates with an
arbitrary origin, while observations include both, raw sensor
data, and the sensor pose within the vehicle.

Within observations we include an additional met-
adata observation which, instead of coming from a real
sensor, is filled during LO. It includes information such
as the bounding box, in robocentric coordinates, of all
sensed points for each keyframe. This enables efficient
determination of unfeasible loop-closures without
having to analyze the raw sensor data (see Section
3.12). Furthermore, given that these maps may make
use of the lazy-load feature described in Section 3.13 to
make them efficient to load and parse, this metadata
enables loading from disk only those sensor frames that
actually are needed for loop-closure hypothesis
checking.
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Figure 8. Example configuration for building metric maps from view-based maps (using the application sm2mm): a basic pipeline for
building one single point cloud by accumulating decimated versions of de-skewed LiDAR scans. Refer to discussion in Section 3.10.
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Figure 9. Example configuration for building metric maps from view-based maps (using the application sm2mm): a more advanced
pipeline for classification of points into static or dynamic via volumetric probabilistic occupancy. See output examples in Figure 10 and

discussion in Section 3.10.

3.10. Converting view-based map to
metric maps

Once a view-based map is populated with key-frames, one
can use it to build a particular kind of metric map from it;
this corresponds to the task represented in Figure 2(c) while
discussing the framework overview.

Pipelines comprise three stages:

® Generators: Can be evaluated once to create empty
metric maps of a given type with a particular set of
parameters, or evaluated for each incoming frame in the
view-based map to populate a map layer from its raw
sensory data.

® Per-frame filters: The main part, where all filters in a
sequence are evaluated in a predefined order, once per
incoming map frame.

¢ Final filters: This optional stage can be used to post-
process the maps, further filtering them, etc.

The utility of such flexible design is illustrated with two
example metric map pipelines’. Possibly the simplest
pipeline for 3D LiDAR datasets, sketched in Figure 8, uses a
generator converting raw observations into a “raw” point
cloud, which is then de-skewed after adjusting per-point
timestamps to a given fixed convention. Recall de-skew in
this context is possible since estimated velocities are stored
within map key-frames (see Section 3.9). Next, scan points
are down-sampled and spatially filtered to remove obser-
vations from the vehicle body. Finally, all layers are cleared
so they start empty for the next map frame, except the map
layer used as output, where all points accumulate.

A more elaborate pipeline is presented in Figure 9, with
the goal of generating point clouds where mobile objects are
removed, which is accomplished as follows. On the left, we
have three generators: one to convert raw sensory data into
point clouds (just as in the former pipeline), plus other two
generators, each only invoked once to create two of the final
metric maps. Note that each generator will create metric
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map layers of different types and with a particular sets of
parameters (e.g., resolution and log-odds occupancy update
weights). These two maps are a point cloud (layer “map”)
and a 3D occupancy voxel map (Section 3.2). Raw points
are de-skewed and spatially filtered to remove self-body
interferences. That version of the cloud is inserted, for each

frame, into the final point cloud “map,” whereas its down-
sampled version (for efficiency reasons) is used to perform
ray-tracing and update the occupancy value of the voxel
map. Once all map frames are processed, the final filtering
stage makes use of the filter described in Section 3.3.6 to
split the map point cloud into those likely to be static and

(b) Layer:

“static”

(c) Layer: “dynamic”

(d) Layer: “voxelmap”

Figure 10. Layers of the metric map built using the pipeline of Figure 9 from the Luxembourg Garden automotive dataset in Dellenbach et al.
(2022). Note how most traces of moving pedestrians and vehicles in (a) have been correctly removed in (b). See discussion in Section 3.10.
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dynamic. As a first example of the attainable results,
Figure 10 shows the output map layers for a small fragment
of the Paris LuCo dataset (Dellenbach et al., 2022), where it
can be seen how most 3D points corresponding to pedes-
trians, vehicles, or noisy points (e.g., near the edges of light
poles), are removed from the static layer. Note that since
there is no filter implementing learning-based semantic
segmentation yet, vehicles and pedestrians that remain still
are classified as static objects.

As an additional demonstration of this dynamic
object removal pipeline we have tested it against one of
the sequences of the ERASOR dataset introduced in

Pedestrian

Lim etal. (2021). This dataset is specifically designed to
capture situations with dynamic objects such as pe-
destrians or vehicles in motion. The same parameters
were used than in the Paris LuCo dataset above, and
results are shown in Figure 11. It can be verified how all
traces of vehicles and pedestrians are correctly removed
in the “static” layer.

To sum up, the flexibility of our framework enables
generators or filters to be combined in arbitrary configu-
rations to easily manipulate and filter metric maps in ways
that have not been possible before, and all this without
coding.

Vehicle

(a) Layer: “map” (original map)

(b) Layer: “static”

(c) Layer: “dynamic”

Figure 11. Layers of the metric map built using the pipeline of Figure 9 from the sequence 00 4390 to 4530 in the ERASOR dataset
(Lim et al., 2021). The estimated vehicle trajectory is shown as a thick black solid line. Note how traces of moving pedestrians and
vehicles in (a) have been correctly removed in (b). The “dynamic” layer in (c) contains those moving objects, together with noisy points
from environment voxels that were not consistently observed as occupied with a level of confidence high enough. See discussion in

Section 3.10.
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3.11. Georeferencing view-based maps

Georeferencing a map consists in establishing the corre-
spondence between coordinates in the map frame and either
geodetic coordinates or any other global coordinate system
such as UTM (Universal Transverse Mercator).

In particular, we address the problem of georeferencing
view-based maps m (see equations (24) and (25)), or
segments of such maps, that contain frames with obser-
vations o; ; from low-cost GNSS receivers with positioning
errors in the range of meters. Apart of its utility on itself,
georeferencing segments of large maps become a valuable
tool for loop-closure detection outdoors (see Section 3.12).

Following equation (25), we assume without loss of
generality that there are N map frames with global poses
with respect to the map origin being T; =, T; € SE(3) and
where all frames contain exactly one GNSS positioning
observation o; with geodetic coordinates, that is, latitude,
longitude, and ellipsoid height. Let the first such obser-
vation, 0g, be used to determine the East-North-Up (ENU)
frame of reference with respect to which all other obser-
vations have Euclidean coordinates ,,,f; € R?; see (Blanco
et al., 2009, §4.1) for the geodetic transformation formulas.

Therefore, note that once we have run LO and have
GNSS observations, two coordinate origins coexist: the LO
metric map origin (“map”) and that for ENU coordinates
(“enu”). Georeferencing the map hence becomes finding out
the rigid transformation ,,, T,.,, € SE(3) that best explains
all observations, as sketched in Figure 12(a). The placement
of the ENU frame may be initialized from the very first
GNSS observation in the view-based map, or may be given
already by another past observation in the context of sub-
mapping (see LC in Section 3.12). We propose using factor
graphs (Murphy, 2012; Ni et al., 2007), a popular kind of
bipartite graphical model, as the ideal tool to solve such
estimation problem from noisy, possibly containing spuri-
ous, GNSS readings. As shown in Figure 12(b), the graph
unknowns are the relative pose ,,, T, and the vehicle
trajectory poses ,,, T;, in the ENU frame. The relative pose
between the latter ones will normally not change signifi-
cantly, since they were estimated using LO with a small
uncertainty, but their values are left as free variables such as,
for long trajectories, global GNSS observations are able to
correct the LO drift, up to the GNSS receiver accuracy. In
particular, GNSS observations are specially beneficial to
reduce the larger error that exists in the vertical axis due to
LO drift in long trajectories. Two types of factors are de-
fined. First, unary GNSS factors (f;), whose error vector
€G(,,, T:) is the mismatch between the measured GNSS
ENU coordinates ,,,t; and the predicted position of the
GNSS antenna:

€6 = (o Ti ® tg) = i (26)
with #, € R? the GNSS antenna coordinates on the vehicle
(“v”). These factors use: (i) robust kernels to cope with large
errors in areas with satellite signal occlusions, and (ii) a

zero-mean Gaussian noise model based on the GNSS self-
reported accuracy. The other type of factor in Figure 12(b) is
the relative pose binary factor (fz) whose error function
€R (o Tmaps o, Ti) 1 proportional to the pose mismatch
between key-frame pose variables , T; and their pose as
stored in the simple-map:

enu

—1 \
€r = 10g <(mapTi)l (enuTmaP) enuTi) (27)

which follows from pose compositions through the two
possible paths between the frame “map” and the ith key-
frame in Figure 12(a).

We use GTSAM (Dellaert, 2021) to implement and solve
the optimization problem defined by this factor graph. The
quality of the resulting georeferencing is assessed via the
square roots of the diagonal of the marginal covariance
matrix for ,,, Ty, which reflect whether all six degrees of
freedom in SE(3) were properly constrained by observations
or not, for example, a common caveat is the “roll”” angle not
be estimated accurately when processing a map segment
with an almost perfect straight line trajectory. Adding
multiple GNSS sensors with a large baseline could be
interesting for large vehicles. Experimental results re-
garding georeferencing maps are shown in Section 5.2,
while this feature is also a building block of LC, addressed
next.

3.12. Loop closure algorithm

Having loop closing (LC) mechanisms is what makes the
difference between an odometry and a SLAM system,
capable of creating large, globally-consistent maps. LC in
our framework is not run concurrently to odometry but as a
post-processing stage. This could change in future versions,
but the fundamentals would remain the same.

Algorithm 2 Overview of the loop closure algorithm

1: function LOOP_CLOSURE(m)

2: > m is the input/output simple-map

3: S ={s;}}, < DIVIDESUBMAPS(m) > Split into sub-maps
4: for each s; € S do > For each sub-map
5: b; < BOUNDINGBOX(s;) > Evaluate bounding box
6: gi + GEOREFERENCING(s;) > Geo-reference sub-map, if possible
7 end for

8: G < BUILDSUBMAPGRAPH(S, {g; })

9: G, < BUILDKEYFRAMESGRAPH(S, {g;})

10: ifany {g;} then > Optimize poses from GNSS
11: {Gk,Gs, m} < OPTIMIZEGRAPH(G, G, m)

12: end if

13: while t rue do

14: L <+ LC_CANDIDATES(G s, {b; })

15: if |L| = O then

16: break > No more potential loop closures
17: end if

18: for each L; € L do > For each loop-closure candidate
19: {Gk,Gs,m} + PROCESS.LC(L;, G, Gs,m)

20: end for

21: {Gk,Gs,m} + OPTIMIZEGRAPH(G}, G5, m)

22: end while

23: return m > Return map with optimized key-frame poses

24: end function

In the following, please check Algorithm 2 to follow the
discussion on the top-level structure of the LC procedure.
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(a) Coordinate frames involved in georeferencing

(b) Georeferencing as a factor graph

Figure 12. The problem of georeferencing a simple-map involves
(a) finding the unknown relative pose between the ENU and
metric map frames of reference, which can be turned up into
optimizing the factor graph in (b). See discussion in Section 3.11.

First of all, the input and output of LC are both the view-
based map m (see definition in Section 3.9), comprising
key-frames with SE(3) poses with respect to some arbitrary
origin and raw sensory data (i.e., GNSS observations and
LiDAR scans). The goal of LC is to detect when key-frames
correspond to observations of the same place, even if their
global coordinates from LO are far apart, and to correct all
poses so the trajectory, and consequently the associated
metric maps, are globally consistent. The problem is at-
tacked from a hierarchical view-point by first splitting the
input map into sub-maps (line 3 in the pseudocode), for
which their local metric map bounding box (line 5) and geo-
referenced location from GNSS data (line 6, see Section
3.11) are evaluated. Note that GNSS is totally optional, but
it will indeed help constraining the posterior search for LC
candidates by reducing the uncertainty of relative poses
between key-frames that are topologically far apart. Then,
we build a two-level graph structure: on the bottom-level, a
key-frame graph (G;) has one node per map key-frame,
while on a higher level, a sub-map graph (G,) has one node
per sub-map, as sketched in Figure 13. This approach

follows a tradition of splitting large metric maps into
submaps, such as done with Tectonic SAM in Ni et al.
(2007) or with condensed factors in Grisetti et al. (2012).
Two relevant differences of our approach with respect to
those past works are: (i) the explicit distinction between
condensed factors coming from LiDAR odometry and those
from GNSS observations, and (ii) the usage of each of the
two graphs for different purposes. In particular, the low-
level graph is tightly coupled with a corresponding factor-
graph in charge of actually optimizing the global poses for
the entire map, while the higher-level sub-map graph is used
to efficiently search for LC candidates. Initially, the low-
level (key-frames) graph has a linear connection pattern,
that is, each node i is connected via a pose constraint (;_;T;)
to the immediately previous node i — 1. Exactly the same
happens on the sub-map (higher) level, where we use the
notation ;_;P; to denote relative poses between sub-maps.
These two graphs are built in lines 8-9 of Algorithm 2.
Then, if there is more than one sub-map where georefer-
encing was successful, we can exploit that information by
means of additional connections between the reference key-
frames of the first ever sub-map with GNSS data and all
others; those additional edges are labeled as ,T¢*S and
»PM5 in Figure 13 for the lower and higher levels, re-
spectively. If there are such additional GNSS constraints,
the key-frame graph is optimized using a factor graph (lines
10-12 of the pseudocode) to reduce absolute coordinate
errors from those accumulated by pure LO (unbounded), to
those of the GNSS receivers (maybe several meters, but
bounded). It is worth mentioning that optimization is run in
two passes: a first one without robust kernels, then a second
robust optimization. Note that this is the opposite of what is
typically done with SLAM frontends, where robust opti-
mization comes first to reject outliers. However, if we want
to handle loop closures with a large initial mismatch be-
tween the global poses of the two involved submaps (e.g.,
thanks to GNSS data, if available) robust kernels cannot be
applied at first, or the error would be so large that it will be
ignored as if it was an outlier.

Then, lines 13-22 comprise the loop to search for po-
tential LC candidates, evaluate and apply them if found
plausible, re-optimize all poses, and repeat until no further
feasible candidates are found. A LC candidate is a pair of
sub-maps that may correspond to the same physical place, at
least, partially. Potential candidates are determined by
evaluating the volumetric intersection ratio between the
bounding boxes of every pair of sub-maps and accepting
those above a given threshold (line 14). Given the potential
large uncertainty in the relative poses of two submaps,
metrically close to each other after a long topological loop,
we use a Monte Carlo method to draw relative pose samples
to evaluate the mathematical expectation of the intersection
ratio. To find out the probabilistic relative pose between all
sub-maps, we apply Dijkstra’s algorithm to the higher-level
graph to obtain, for each sub-map, a tree reflecting the
shortest paths to all other sub-maps. Relative poses are then
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submap #2 ~<

. (GNSS) 7
I -

Figure 13. The two-level hierarchical graph used to determine loop closures and optimize the resulting key-frames. On the bottom, all
map key-frames; on a higher level, one single frame per sub-map. Some sub-maps may include GNSS observations, allowing the
determination of their coordinates in an ENU frame of reference. Refer to discussion in Section 3.12.

computed by composing transformations following the tree
edges. Note that adding GNSS edges makes that sub-maps
that initially may be far from each other (large uncertainty in
their relative pose) now are topologically closer, hence their
relative pose based on GNSS will be used instead of the
pose composition chain throughout the lower key-frame
level. This graph-based procedure is similar to many past
works, such as Bosse et al. (2004) or Blanco et al. (2008).
Note that an alternative way to determine potential loop
closure candidates would be using descriptors for local
maps, as classically done in visual place recognition or, in
the context of LIDAR SLAM, in methods such as Scan
Context (Kim and Kim, 2018) or ScanContext++ (Kim
et al., 2021).

Each such potential LC candidate is then actually
evaluated (line 19). Our approach is based on running a
configurable ICP pipeline on the metric maps built from the
view-based maps of the sub-maps, including the final
evaluation of the registration quality (see Section 3.6.4) to
decide whether the LC seems plausible or not. If it does,
new edges are added to both graph levels with the obtained
relative pose.

A few words are in order regarding this ICP pipeline,
which is different than that in Figure 7 for LO. The first
difference is the use of two point-cloud map layers: one for
all objects near the ground plane, and another for everything
else. The ICP pipeline then includes two instances of point-
to-point matchers such that “ground” and “non-ground”
points are only attempted to be paired against points be-
longing to the same category in the other sub-maps. Even a
naive method to classify the point cloud into these two
categories such as split by z (vertical) coordinates leads to
good results, as long as local maps do not have significant
tilt and the ground floor can be successfully segmented.
More advanced methods have been used in the literature to

segment the ground points in the context of loop closure,
such as in Quatro++ (Lim et al., 2024), and could be used
instead of our naive classifier.

Regarding ICP quality assessment, here we include the
voxel occupancy-based method described in Section 3.6.4.
Furthermore, the point-cloud metric maps used for LC have
a different implementation than that used during LO: instead
of the hashed-voxels maps used for LO, we use simple
clouds with contiguous memory layout. The main moti-
vation for this is that search for nearest neighbors (NN) (one
of the dominating costs in ICP algorithms) with large search
radii is more efficient using KD-Trees (the implementation
of NN for the latter map type) than searching neighboring
voxels in hashed maps.

3.13. Dataset sources

Finally, it is worth mentioning that the former work in
Blanco (2019) already introduced data source MOLA
modules as an abstraction of either, real live sensors or
offline datasets. Such abstraction aims at enabling algorithm
implementations in MOLA to immediately work with any
ofthe supported datasets, without worrying about the details
of each dataset file and data structures, sensor intrinsic and
extrinsic calibration, ground truth (GT) axes conventions,
etc.

This work extends the former modules in two substantial
ways. First, new dataset sources have been defined, now
offering access to:

e KITTI dataset: Read LiDAR scans (with per-point
intensity field), camera images, and ground truth of
this popular dataset introduced in Geiger et al. (2013).

¢ KITTI-360 dataset: Read LiDAR scans (with intensity
field and interpolated timestamps), camera images, and
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ground truth of the dataset, introduced in Liao et al.
(2023).

MulRan dataset: Read LiDAR scans (with intensity
and timestamp fields), GNSS, IMU, and ground truth of
Kim et al. (2020).

ParisLuco dataset: Read LiDAR scans (with time-
stamps, and reconstructed per-point ring field), and
ground truth of Dellenbach et al. (2022).

EuROC MAV dataset: Read camera images and IMU
for Burri et al. (2016). This dataset is not benchmarked in
the present work since it does not contain LiDAR.
ROS 2: Support is given for reading from both, a live
system, or from bag files. Sensor messages for LIDAR
point clouds, camera images, IMU readings, wheels
odometry, and GNSS are all parsed for MOLA modules
to process them.

MRPT rawlog files: Rawlog files are an equivalent to
ROS bag files, introduced in the MRPT framework in
2005. It has been used in public datasets, for example,
Blanco-Claraco et al. (2014, 2019). Backwards com-
patibility and Operative System independence has been
ensured during the whole life of the project, hence
software written today using the latest MRPT version is
able to read all past datasets, even if generated in a

different OS or processor architecture. There exists an
import tool from ROS 1 bag files to rawlogs, hence this
MOLA input module also offers easy access to many of
the ROS 1 public datasets, for example, HILTT challenge
datasets (Helmberger et al., 2022) or the Newer College
dataset (Zhang et al., 2021).

Second, two new abstract interfaces have been im-

plemented in all the dataset sources above:

Replay control interface: If used to replay datasets
within an asynchronous network of processing nodes,
this interface allows dynamically setting the replay
speed, pausing and resuming, or fast-forwarding to a
particular time step. The application GUI makes use of
this generic interface to allow users to control the replay
of any dataset.

Random-access interface: For offline, Dbatch
processing, this interface allows randomly accessing
to the raw sensory observations in the dataset. This
enables, for example, running a given SLAM
algorithm on a dataset as fast as possible while
ensuring no frame is lost for SLAM methods running
slower than the sensor rate.

Table 1. Summary of all datasets on which the proposed system has been experimentally validated.

Total
LiDAR LiDAR Tested Total length
Dataset sensor(s) rings GNSS Motion Environment sequences scans (km)
Newer college dataset — Section OS0-128 128 - Handheld College 12 78.2k 9.8
4.9 (Zhang et al., 2021)
Newer college dataset — Section OS1-64 - Handheld  College 2 41.9k 4.7
4.9 (Ramezani et al., 2020)
MulRan — Section 4.1 (Kim 0OS1-64 v Vehicle Campus/city 12 1277k 1234
et al., 2020)
KITTI — Section 4.2 (Geiger HDL-64E 64 - Vehicle Road/urban 22 43.5k 44.24
et al., 2013)
Voxgraph — Section 4.7 0S1-64 - Drone Urban 1 2.2k 0.24
(Reijgwart et al., 2019)
HILTI 2021 — Section 4.6 0S0-64 - Drone Industrial 1 0.9k 0.08
(Helmberger et al., 2022) unit
KITTI-360 — Section 4.3 (Liao HDL-64E - Vehicle Urban 12 70.1k 58.7
et al., 2023)
ParisLuco — Section 4.4 HDL32 32 - Vehicle City 1 12.7k 4.0
(Dellenbach et al., 2022)
Almeria forests — Section 5.3 0S0-32 - Backpack  Forests 6 19.9k 1.6
(Aguilar et al., 2024)
NTU-VIRAL — Section 4.5 2 x OS1-16 - Drone Campus 9 32.6k 2.2
(Nguyen et al., 2022)
DARPA subterranean — Section VLP16 16 - ANYmal C Caves 4 143.1k 2.0
4.8 (Tranzatto et al., 2022)
UAL campus — Section 4.10 VLP16 v Vehicle Campus 1 15.5k 34
(Blanco-Claraco et al., 2019)
fr079 — Section 5.1 (Howard and SICK LRF 1 - PowerBot  Offices 1 1.2k 0.1
Roy, 2003)
Malaga CS faculty — Section 5.1 SICK LRF - Wheelchair Campus 1 4.7k 1.9
(Blanco-Claraco, 2024)
Overall: 85 594.2k  256.4
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Finally, a word is in order regarding memory management
for dataset input modules. Loading and keeping in memory
whole datasets may become unfeasible for a typical desktop
computer, for example, some individual sequences of the
MulRan dataset (Kim et al., 2020) take 29 GiB. The present
framework exploits the usage of MRPT lazy-load mechanism
in different areas, including dataset sources. Observations
that tend to be heavy in memory requirements (i.e., images,
3D LiDAR scans, and RGB + D frames) can be automatically
loaded to memory when accessed, to be unloaded once a
fixed number of additional frames have been processed. Most
MOLA dataset input modules also feature read-ahead in a
multi-thread fashion to minimize the performance impact of
such lazy-load mechanism. In practice, this creates a cache of
recently-used and about-to-be-used sensory data quickly
accessible in RAM while SLAM is processing them.

4. LiDAR odometry quantitative
experimental validation

To measure the accuracy and robustness of the proposed
system as a whole against different LIDAR scanning and
vehicle motion patterns, we performed an exhaustive
benchmarking against several public datasets that include
3D LiDAR and ground truth trajectories.

Please refer to Table 1 for an overview of all the used
datasets. Note that we selected an extensive list of public
datasets in order to cover a large variety of motion models
(vehicles, drones, hand-held, etc.) and sensor models and
resolutions. In particular, it is noteworthy that we used
exactly the same system configuration (called “default
configuration” in the following) for all 3D LiDAR
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—— MOLA-LO + LC
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(a) KAISTOL (6.1 km long)
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datasets, from 16 to 128 beams. In all cases, our system
provided accurate trajectory estimations without diverging,
while keeping execution times fast enough for running
significantly faster than the real sensor rate. That said, these
additional configurations have been also evaluated for se-
lected datasets with the aim of serving for ablation studies in
Section 7, to demonstrate a particular feature, or to illustrate
the flexibility of the proposed system:

* A 2D-LiDAR configuration, addressed in Section 5.1.

* A configuration where the local map update decider (see
Section 3.4) is not used and the map is updated for all
time steps.

® A configuration using an alternative 3D-NDT metric
map instead of plain point clouds.

In order to evaluate our solution against existing state of
the art LO methods, the next subsections provide these
quantitative error metrics:

Relative translational error (RTE) (%) and relative ro-
tational error (d/hm, that is, degrees per 100 m): these
popular metrics were defined in Geiger et al. (2013), and
measure relative pose errors, averaging for poses that are
a given distance apart. These metrics have been eval-
uated using a derived work from the original reference
metrics implementation provided by Geiger et al. (2013),
which assumed that LiDAR scans and ground-truth are
perfectly synchronized and given at the same rate. This is
not possible for all dataset sources, hence these metrics
will not be available for them.

— MOLALO
MOLALG + LC

= Ground truth
=—— MOLA-LO
MOLA-LO + LC

Ground truth
—— MOLA-LO
—— MOLALOD + LC

1000 2000 3000 4000 5000 6000 7000
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Figure 14. Estimated trajectories for the proposed LiDAR odometry system (in its default configuration) applied to the MulRan dataset,
compared to ground truth. Only one sequence is shown for each of the four locations. Estimated paths including loop closure (Section

3.12) are denoted with legend “MOLA-LO + LC.”
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¢ Absolute Trajectory Error (ATE) (m): We use the RMSE
value of the distances between time-aligned ground-truth
and estimated trajectories, after spatially aligning them
using Umeyama’a method (Umeyama, 1991). Evalua-
tion is performed using the open-sourced tool evo -
traj (Grupp, 2017).

Unless noted otherwise, metrics for alternative methods
have been taken from their original publications. The ex-
ception is KISS-ICP (Vizzo et al., 2023), which due to its
simplicity of integration into third-party systems, has been
integrated as another MOLA LO module, hence enabling
running all datasets on it and obtaining trajectories in the
same format than our proposed system, becoming an ex-
cellent baseline SOTA reference for all the datasets.

Sometimes a particular LO method diverges, which is
represented in the presented metrics as X. Divergence means
a significant drift, large enough to render the overall tra-
jectory (and map) useless. In particular, our criteria for
divergence means that at least one of the following con-
ditions hold: (i) trajectory gets “trapped” into a circular
orbit, and (ii) relative angular errors larger than 45° for short
distances (e.g., less than 10 m).

All results are exactly reproducible by interested readers
following the software instructions on the project website.
Since all of our proposed methods and software im-
plementations are deterministic, there will be no differences
in the results disregarding different CPU speed or number of
parallel cores.

4.1. MulRan dataset

This multimodal dataset comprises Ouster OS1-64 LiDAR
data, consumer-grade GNSS, and precise ground truth for
12 driving sequences (Kim et al., 2020). All sequences
include several loop closures, except the longest ones
(Sejong{01, 02, 03}) which only include one, although
the longest loop in all the benchmarked datasets (>20 km).

We have compared our LO system in two configurations,
(1) its default one and (ii) its 3D-NDT version, against two
other state-of-the-art LO methods: KISS-ICP (Vizzo et al.,
2023) using its default settings, and SiMpLE (Bhandari
et al., 2024) using their parameter set optimized for this
dataset. Note that only SiMpLE has parameters optimized
for this particular dataset, while our two configurations and
KISS-ICP use the same parameters for all datasets. MOLA
wrappers have been provided for both methods to provide
a fair comparison in terms of identical API to provide
input raw data and to collect estimated trajectories. The
MOLA dataset source (see Section 3.13) for MulRan
takes care of removing LiDAR scans at the beginning or
end of each sequence that have no associated ground
truth. In this way, we can use the KITTI evaluation
metrics (RTE and RRE) apart of APE (see metrics def-
initions in Section 4). Consumer-grade GNSS observa-
tions are not used by our LO system, but they are while

Methods
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Figure 15. Summary of absolute translational error (ATE) for the
MulRan dataset.

applying the loop-closure post-processing stage (ex-
plained in Section 3.12).

Sample trajectories from our method are shown in
Figure 14, compared to GT. It can be seen that the output
from loop closure is nearly indistinguishable from GT. A
quantitative benchmark is provided in Table 2, where all
three metrics (RTE, RRE, APE) are provided, together with
average run times per LiIDAR scan (measured on an Intel i7-
8700 at 3.20 GHz). A graphical summary of ATE metrics is
also provided in Figure 15. All LO methods are faster than
the sensor rate (10 Hz), hence all of them would be able to
run onboard in real-time. An interesting observation is that
there is not always a best performing method for a given
sequence, since different methods may have the lowest
values for one given metric only: LO methods would rank in
a different order depending on the metric of interest. That
said, for this dataset we can see how our 3D-NDT con-
figuration clearly outperforms the others, despite not being
specifically tuned for this dataset as SIMpLE is. Our SLAM
version (reflected as “MOLA LO + LC” in the table)
achieves, obviously, better results than the pure LO
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Figure 16. Estimated trajectories for the proposed LiDAR odometry system (“MOLA-LO”) applied to the KITTI odometry dataset,
compared to ground truth. Trajectories denoted as “MOLA-LO + LC” include loop-closure. See discussion in Section 4.2.

methods, hence their values are not marked in bold since the  importance. It comprises 11 training sequences (numbered

method is qualitatively different. 00-10) with public ground truth and other 11 evaluation
sequences with undisclosed ground truth trajectories.
4.2. KITTI-odometry dataset Available sensors in this driving dataset include 3D Li-

DAR (a Velodyne HDL-64E) and two pairs of forward-
The KITTI odometry dataset (Geiger et al., 2013) was the facing cameras.
first widely spread benchmark for LiDAR and visual The trajectories estimated by our system (with its default
odometry and SLAM methods, hence its popularity and configuration) for the 11 training sequences are shown in
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\ 4.3. KITTI-360 dataset
This automotive dataset is a follow-up of the first KITTI

06 T Methods
EEE Ours (3D-NDT)
E=3 Ours (Default)
05 L‘ 3 SiMpLE (online)
= B SiMpLE (offline)
3 KISS-ICP
B IMLS-SLAM

0o 0‘2 0‘4 CJ:E O'El 1o 1‘2 L4
RTE (%)
Figure 17. Relative translational error (RTE) (%) for the training
sequences in the KITTI visual-LiDAR odometry dataset.

Figure 16 for the LO-only module and for the SLAM system
(including loop closure), compared with ground truth.
Quantitative results are shown in Table 3 and graphically in
Figure 17. A larger number of alternative methods are
compared in this case due to the popularity of this particular
dataset. Note that two configurations of SIMpLE (Bhandari
et al., 2024) have been included (“online” and “offline”),
with one of them being faster and the other more accurate.
However, note that none would be able to run at sensor rate
(10 Hz). Excepting IMLS-SLAM and SiMpLE, all others
are fast enough to run in real-time at the sensor rate or faster.

Regarding the accuracy of the estimated trajectories for
LO methods, it can be seen in Table 3 that the slower and
more precise configuration of SIMpLE is slightly better than
the rest, although accuracy metrics for these SOTA methods
are all quite similar, as demonstrated by an almost perfect tie
in the average RTE metric used to evaluate all training (RTE
~ 0.55%) and all testing sequences (RTE ~ 0.61-0.62%).

Note that all shown results for KISS-ICP, SiMpLE, and
our system, have been run using the same MOLA KITTI
dataset source (see Section 3.13), which includes the 0.205°
vertical angle correction of all original dataset scans due to a
miscalibration; see Deschaud (2018). Another well-known
issue with KITTI is the wrong ground truth in part of se-
quence 08, which explains the relative elevated apparent
errors of all methods in that sequence.

Regarding the results on the evaluation sequences (11—
21), for which ground truth is not publicly available, at the
time of writing our system ranks 13™ among all LIDAR-only
methods (out of 140 total submissions), and 6™ among those
with an open source implementation, according to the project
website®,

dataset, including more sensors (fish-eye cameras, 2D Li-
DAR, and IMU) and longer driving sequences in suburban
scenarios (Liao et al., 2023).

Trajectories estimated by our system are shown in Figure 18,
while quantitative performance results, compared to KISS-ICP
as SOTA baseline, are summarized in Table 4. As can be seen in
the table, where we evaluated the ATE metric, our system
achieves better accuracy than KISS-ICP in 6 out of 8 sequences.
Regarding our SLAM method with loop closures, and given that
most KITTI-360 sequences, except for 03, 07, and 10, have
multiple loop-closures, obtained ATE is further reduced. This
dataset also includes 4 evaluation sequences without public
ground truth for benchmarking on the “trajectory estimation”
public leaderboard website’, where our SLAM solution ranks
3™ out of 5 submissions at the time of writing. In this lead-
erboard, more modem than the original KITTI, the metric that
determines the classification is APE, and the results available
online are: CT-ICP2 with LiDAR SLAM in Dellenbach et al.
(2022) (0.50 m), SOFT2 with stereo visual SLAM in Cvisi¢
et al. (2022) (0.70 m), our SLAM system (0.72 m), ORB-
SLAM2 with stereo visual SLAM in Mur-Artal and Tardos
(2017) (1.92 m), and SUMA++ with LIDAR SLAM in Chen
et al. (2019) (3.13 m).

4.4. ParisLuco dataset

This automotive dataset was presented in Deschaud (2018)
and comprises one single continuous driving sequence with
two loops around the Luxembourg Garden in Paris, while
grabbing 3D LiDAR scans from a Velodyne HDL-32.
Figure 19(a) shows the trajectories estimated by the ref-
erence SOTA method KISS-ICP, our LO method, and our
full SLAM solution including loop closure detection, along
with ground truth. It can be seen that both LO methods
perform very similarly, with the SLAM solution being, as
expected, much closer to ground truth. Looking at the
quantitative ATE metrics, in Table 5, it can be seen that both
LO methods have similar accuracy, with KISS-ICP having a
small advantage in this case. It is interesting to analyze
where these trajectory errors tend to accumulate. As it
typically occurs with 3D LiDAR LO, errors accumulate
faster in the vertical direction (perpendicular to the ground
plane), as can be clearly seen in the trajectory component
plots in Figure 19(b), where absolute horizontal errors are in
the order of 1 m while vertical errors reach a maximum of
100 m. Loop closures, naturally, bound these vertical errors,
reducing them to a maximum of ~45 m.

4.5. NTU VIRAL: two 3D LiDARs

This airborne dataset was presented in Nguyen et al. (2022),
and comprises nine sequences (three in each of three sce-
narios) of visual, inertial, and LiDAR data as a drone flights
within the range of a motion capture system that serves as
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Figure 18. Estimated trajectories for the proposed LiDAR odometry system (“MOLA-LO”) applied to the KITTI-360 odometry
dataset, compared to ground truth. Trajectories denoted as “MOLA-LO + LC” include the post-processing loop-closure stage. See
discussion in Section 4.3.
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accurate ground truth. Two Velodyne VLP-16 scanners are
installed in the drone, one in an horizontal position (as
typically placed in automotive datasets) and another one
facing vertically towards the ground. Hence, this dataset is
ideal to benchmark visual or LIDAR odometry algorithms,
possibly making use of high-rate inertial data, in the
challenging conditions of drone flight, where linear and
angular accelerations tend to be more abrupt than in au-
tomotive datasets. The dataset was used in recent works like
Nguyen et al. (2024) to evaluate tightly-coupled LiDAR-
inertial methods. Table 6 compares the performance of
SOTA visual-LiDAR-inertial methods reported in Nguyen
et al. (2024) to our solution and KISS-ICP, although they do
not make use of neither inertial data, nor images. Loop-
closure was not evaluated in this dataset since the range of
motion is in the order of magnitude of the LiDAR range,
hence there are no loop closures.

From the accuracy metrics, it is clear that methods using
inertial sensors (LIOSAM and VIRAL SLAM) have the
best performance, although we believe that the smarter
sampling of LiDAR scans using edge and plane key points

Table 4. Absolute translational error (ATE) (rmse values in meters
as reported by “evo_ape -a”) for the KITTI-360 dataset. Bold
means best accuracy in each sequence and category.

Method 00 03 04 05 06 07 09 10
KISS-ICP 550m 0.62m 585m 3.05m 1045m 422m 1230m 590m
Vizzo et al.
(2023)
MOLA-LO 281m 0.72m 489m 239m 637m 822m 1078 m 1.75m
(ours)
MOLA-LO 0.72m 0.72m 489m 1.02m 4.03m 822m 4.67m 175m
+LC

(ours)

=== Ground truth
— KISSICP

= MOLA-LO
MOLA-LO + LC

600

500

300 200 100 0 100
v (m)

200 300

(a) Trajectories

(Nguyen et al., 2021b) plays a more significant role in
achieving better accuracy than using an IMU; this topic
would require further research. In contrast, LO methods
KISS-ICP and ours, using only one (horizontal) LiDAR,
have trajectory errors at least one order of magnitude larger
than the aforementioned LIO methods, with KISS-ICP
performing poorer in this case. Analyzing the spatial tra-
jectories, it becomes clear that vertical movements of the
drone are where these two methods perform worst, which
can be explained by the simplistic uniform sampling of
point clouds (instead of searching for specific features),
which makes hard to distinguish vertical motions from
remaining static. With this insight in mind, we provide an
example of the flexibility of the present framework by
adding two additional experiments evaluating MOLA-LO
(the last two rows in Table 6). First, we put at test the
capability of our system to handle several LiDARs, by
enabling both vertical and horizontal LiDARs as inputs,
with the idea of helping determining vertical motions. Our
system (recall Figure 4 and the default pipeline in Figure 7)
then waits for two consecutive scans before populating the
observation metric map, taking into account the time offset
between both scans to accurately de-skew both in a spatially
coherent way. The rest remains exactly the same for the
“MOLA-LO (2 LiDARSs)” experiment shown in the table.
As can be seen, using this vertical scanner indeed improves
accuracy, but it is still far from LIO techniques. Note that all
these results for MOLA-LO use the same configuration than
in all other automotive datasets, with an automatic deter-
mination of the minimum points range to be filtered to
prevent observations of the vehicle body. In this par-
ticular dataset, the smaller size of the drone makes that
these rules actually prevent using valid information

Ground truth
200 = KISSICP
MOLA-LO
MOLA-LO + LC

100 === Ground truth

— KISSICP
MOLALO
MOLALO

1000

(b) Trajectory components

Figure 19. Estimated trajectories for the proposed LIDAR odometry system (“MOLA-LO”) applied to the Paris LuCo dataset, compared to
KISS-ICP, and to ground truth. Trajectories denoted as “MOLA-LO + LC” include loop-closure. See discussion in Section 4.4.



Blanco-Claraco

1583

about nearby objects, but we did not manually tune this filter
to ensure all datasets are run with the same configuration.
Then, in a second experiment we modified the default
pipeline in Figure 7 to create two local maps: “near map” and
“far map,” for nearby and distant points, respectively. ICP
pipeline blocks are then configured to search for potential
pairings between nearby LiDAR scan points and the “near
map,” and between all LiDAR points and the “far map”
(interested readers can check the details in the configuration
YAML file 1idar3d-near-far.yaml available online).
This configuration corresponds to the last row in the table. As
can be seen, this method now has errors in the order of
magnitude of LIO techniques, even surpassing LIOSAM on
some particular sequences. Finally, using a smarter sampling
of feature points would probably further improve the results,
but this point is left for future works.

4.6. HILTI 2021 dataset

This dataset, presented in Helmberger et al. (2022), com-
prises several challenging sequences indoors and mixed
indoor-outdoor scenarios recorded with an Ouster OS0-64

Table 5. Absolute translational error (ATE) (rmse values in meters
as reported by “evo_ape -a”) for the Paris LuCo dataset, in

which there is only one sequence. Bold means best accuracy in

each sequence and category.

Avr. time
Method Paris LuCo (m) per frame (ms)
KISS-ICP 21.2 24
Vizzo et al. (2023)
MOLA-LO (default) (ours) 22.1 23
MOLA-LO (3D-NDT) (ours) 12.3 88
MOLA-LO (default) + LC 2.38 50

(ours)

LiDAR. From the published sequences, only two of them
have full SE(3) ground truth. From those two, we selected the
largest sequence (the Drone Testing Area) for benchmarking
our LO system. The resulting trajectories are illustrated in
Figure 20. Quantitatively, we measured the rmse ATE for
MOLA-LO against ground truth obtaining 0.18 m, slightly
better than KISS-ICP (Vizzo et al., 2023) which obtains an
ATE of 0.21 m. It is noteworthy that our system fails to
converge for some of the other sequences in this dataset
(whose ground truth is not publicly released), where feature-
extraction or multi-modality seem essential for robustly cope
with scenarios like narrow, featureless indoor spaces.

4.7. Voxgraph dataset

This aerial dataset, presented in Reijgwart et al. (2019),
comprises one sequence of a drone flight outdoors,
equipped with an Ouster OS1-64 LiDAR and featuring
RTK-based ground truth. We compare the ATE metric
achieved by several LO SOTA methods in Table 7, where it
can be seen that both KISS-ICP and ours achieve a sig-
nificant better accuracy, with KISS-ICP having a small
advantage in this case. The estimated trajectory for our
method and the partially-available ground truth are illus-
trated in Figure 21. Note that ATE metrics have been only
evaluated for those segments of the trajectory with corre-
sponding ground truth. As in the HILTI Drone Testing
Arena sequence (Section 4.6), loop closure is not required
due to the small size of the environment, hence we only
evaluate LO methods.

4.8. DARPA subterranean dataset

We now evaluate our LO method against the dataset pre-
sented in Tranzatto et al. (2022) by Team Cerberus, winners
of the subterranean 2021 DARPA challenge. The public

Table 6. Absolute translational error (ATE) (rmse values in meters as reported by “evo_ape -a”) for the NTU Viral dataset. Bold means

best accuracy in each sequence.

EEE NYA SBS Avr. time
Method 01 02 03 01 02 03 01 02 03 per frame
LIOSAM 0.075m 0.069m 0.10lm 0.076m 0.090m 0.137m 0.089m 0.083m 0.140m <100 ms
(1 LiDAR + IMU)
Shan et al. (2020)
VIRAL SLAM 0.060 m 0.058m 0.037m 0.051m 0.043m 0.032m 0.048m 0.062m 0.054m <100 ms
(2 LiDARs + IMU)
Nguyen et al. (2021a)
KISS-ICP (1 LiDAR) 2383 m 1586 m 1.055m 0.359m x 1339 m 1.353m 1435m 1.037m 31.0 ms
Vizzo et al. (2023)
MOLA-LO (ours) 1484 m 1.639m 1.046 m 0.746m 1256m 0424m 036lm 1.015m 1.066m 31.6ms
(1 LiDAR)
MOLA-LO (ours) 0.780m 1.574m 0.725m 0.755m 0595 m 0427m 0344m 1.000m 0914 m 40.0 ms
(2 LiDARs)
MOLA-LO (ours) 0.100m 0362m 0.17Sm 0220m 0220m 0.121m 0.118 m 0.123m 0.115m 69.4 ms

(2 LiDARs +2 maps)




1584

The International Journal of Robotics Research 44(9)

— WoLLo
— = Groand 1

(m)

-10

¥ fmy
10

(a) 3D trajectory

10
=== Ground truth
—— MOLA-LO
0
~ 10

790 800 810 820 830
+1.6305770000e8

t(s)
(b) Trajectory components

Figure 20. Estimated trajectories for the proposed LiDAR odometry system (“MOLA-LO”) applied to the RPG drone testing arena
sequence of drone testing area HILTI-2021 dataset, compared to ground truth.

Table 7. Absolute translational error (ATE) (rmse values in meters
as reported by “evo_ape -a”) for the Voxgraph dataset. Bold
means best accuracy.

Method Voxgraph (sequence: t0)
LOAM Zhang and Singh (2017) 2.64 m

Voxgraph Reijgwart et al. (2019) 0.83 m

KISS-ICP Vizzo et al. (2023) 0.253 m

MOLA-LO (default) (ours) 0.265 m

MOLA-LO (3D-NDT) (ours) 0.250 m

dataset comprises 3D LiDAR, vision, and IMU readings
from four legged robots as they faced the final event of the
challenge. Robots in these sequences alternate periods of
inactivity with walking as they autonomously explore a
series of cave-like scenarios. ANYmal C legged robots were
used, equipped with one Velodyne VLP-16 each. We only
used LiDAR scans from these dataset, which contains four
sequences, one per robot, and ground truth trajectories
extracted by scan matching against a ground truth envi-
ronment point cloud from survey-quality scanners.

Since loop closures are not relevant in these scenarios,
only LO methods were evaluated. Two SOTA representa-
tive methods, KISS-ICP (Vizzo et al., 2023) and SiMpLE
(Bhandari et al., 2024), have been run side by side with our
system by using MOLA wrapper modules to ensure iden-
tical conditions for input data. KISS-ICP was run with its
default parameters, just like system, run with its default
configuration and pipelines (Section 3.7). In turn, for
SiMpLE we used its slowest and most accurate configu-
ration (“offline”), already evaluted for KITTI in Section 4.2.

The quantitative results are summarized in Table 8.
KISS-ICP diverges in all sequences. SIMpLE diverges in
the anymal 4 sequence, achieving good accuracy in the
others. Our system does not diverge in any of the sequences,
performs faster than SiMpLE, and achieves better ATE
trajectory metrics in 3 out of 4 sequences, demonstrating its
robustness and viability for non-automotive, unstructured
scenarios. As can be seen in the 3D trajectory views and
component analysis in Figure 22, our method reconstructs

== = Ground truth
—— MOLA-LO

20

10

10
-20

-30

0 20 40 60 80
x (m)

Figure 21. Estimated trajectory by our LO system for the
VoxGraph dataset, together with the (partial) ground truth. See
discussion in Section 4.7.

accurate trajectories, with the only weak point worth
mentioning being the drift accumulated in the vertical
component (z axis), especially for sequences anymal 1
and anymal 4;in fact, the largest part of RMSE ATE for
those sequences comes from such z component. Smarter
selection of down-sampled points would probably alleviate
this drift, a topic that shall be studied in future works.

4.9. Newer college dataset

This dataset consists of several sequences acquired in New
College (Oxford) with a handheld device comprising a 3D
LiDAR, a high-frequency IMU, and cameras, with the in-
tention of becoming a benchmark for visual-inertial odom-
etry and LiDAR-inertial odometry techniques. The first two
sequences (01 and 02) used an Ouster OS0-64 and were
presented in Ramezani et al. (2020), with walks covering the
college Great Quad, Garden Quad, and the Bowling Green,
long enough to justify the use of a full SLAM solution with
loop closures. Later on, 12 additional sequences using an
Ouster OS1-128 sensor were presented in Zhang et al. (2021),
with more diverse scenarios and difficulty levels, organized
by intentionally-introduced high dynamic translations and
rotations to create challenging conditions.
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Table 8. Absolute translational error (ATE) (rmse values in meters as reported by “evo_ape -a”) for the DARPA Subterranean Final
Event dataset. Bold means best accuracy in each sequence. Divergence is shown as X.

Method anymal 1 anymal 2 anymal 3 anymal 4 Avr. time
KISS-ICP X(88.57 m) %(4918.14 m) x(2148.04 m) %(22.45 m) 1.4 ms
Vizzo et al. (2023)

SiMpLE (offline) 0.44 m 0.48 m 0.28 m x(18.46 m) 54.2 ms
Bhandari et al. (2024)

MOLA-LO (ours) 2.80 m 0.24 m 0.16 m 315 m 13.1 ms

Our LO method has been evaluated against the SOTA
method KISS-ICP (Vizzo et al., 2023), with quantitative
results summarized in Table 9, where it can be seen that our
system has a better accuracy in 11 out of the 14 sequences, 8
of them with ATE reductions larger than 50%. Moreover,
KISS-ICP diverges in 3 of the hardest sequences (“Maths
Hard” (MH), “Underground Hard” (UH), “Stairs” (ST))
while MOLA-LO achieves ATE better than 0.12 m in all of
them. It is worth mentioning that none of the two bench-
marked LO methods make use of the IMU data. Other works,
like Pfreundschuh et al. (2024), have recently reported even
better accuracy in novel methods exploiting the intensity
channel of LiDAR points together with inertial measure-
ments, but for the sake of fair benchmarking we limit the
present comparison to methods relying solely on 3D points.

Trajectories obtained by our LO method, and by the
loop-closure post-processing stage, are illustrated in Figures
23 and 24, together with ground truth. In order to understand
why the sequences labeled as “hard” are harder to cope with,
we show the translational (x, y, z) and orientation (yaw,
pitch, roll) components of the trajectory estimated for one
such sequence (“Maths hard”), along with ground truth, in
Figure 25. Observe how, in time steps corresponding to ¢ =
140 s, t= 180 s, and ¢ = 225 s, the sensor is rotated at a high
speed in different combinations of orientations and trans-
lations. The introduction of the joint estimation of the
velocity vector within the ICP loop itself (see Section 3.6.3)
has revealed essential to cope with these sudden disruptions
of the constant velocity assumption.

4.10. UAL VLP-16 campus dataset

Finally, the proposed LO system, the full SLAM system
including loop closure, and the SOTA method KISS-ICP
(Vizzo et al., 2023) have been benchmarked in the auto-
motive dataset reported in Blanco-Claraco et al. (2019),
where an electric vehicle is driven around the University of
Almeria campus while grabbing scans from a Velodyne
VLP-16. Ground truth trajectory is available from RTK
GNSS 3D positioning. Estimated trajectories are shown in
Figure 26, where it can be seen that, as already explained
above, the largest part of the obtained ATE values is caused
by accumulation of errors in the vehicle altitude above the
initial ground level. Such error is drastically reduced by
handling loop closures, as can be seen in Figure 26(b).
Regarding a quantitative analysis of errors, they are

available in Table 10, with our system exhibiting ~30%
less ATE than the baseline method (KISS-ICP), while still
being able to run LO ~ 6 times faster than the sensor rate.

5. Qualitative demonstrations

After experimentally measuring the accuracy of our pro-
posal for several public 3D LiDAR datasets with known
ground truth, we now provide evidence of other qualitative
features illustrating different claims of this work. Further
claims will be also analyzed later on in a quantitative way in
Section 7 with ablation studies.

5.1. 2D LiDAR configuration

The flexibility of our framework to cope with different
sensors is here illustrated with an alternative configuration,
dubbed 1idar-2d, suitable for mapping with 2D range
finders. While all experiments shown so far comprise
building a 3D point cloud local map from 3D scans, just two
configuration changes enable the architecture in Figure 4 to
build maps from 2D sensors. First, the local map generator
(block #5 in Figure 4) is set to create an occupancy voxel
map. A plain 2D grid map would also work but, as discussed
in Section 3.2, the sparse data structure of voxel maps
avoids the need for frequent memory reallocations as the
robot explores. Second, the observation pipeline (block #3
in Figure 4) is simplified to that shown in Figure 27, that is,
there is no need to down-sample the raw sensor points twice
(for registration and for map update) due to the reduced size
of 2D scans.

This alternative configuration has been validated with the
datasets exposed below, all of them from wheeled robots
equipped with encoders from which incremental odometry
is taken as an input for the kinematic state prediction module
(Section 3.8). First, we applied the LO system to the
Freiburg building 079 (£r079) dataset (Howard and Roy,
2003), recorded by Cyrill Stachniss in 2010 with a Pioneer2
mobile robot equipped with a SICK LMS range finder. The
resulting voxel map (which is only populated at one fixed
height) is illustrated in Figure 28(a). Our method took an
average of 10.2 ms to process each scan. Note that loop
closures were not required here.

Second, we have applied the SLAM solution (LO plus
loop-closure detection) to the larger Malaga CS faculty
dataset, comprising a 1.9 km trajectory of a robotic
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Figure 22. Estimated trajectories for the proposed LiDAR odometry system (“MOLA-LO”) applied to the DARPA Subterranean Final
Event dataset, compared to ground truth. See discussion in Section 4.8.

wheelchair equipped with encoders and a 2D SICK LMS
range finder. It was recorded in 2006 and is available for
download in Blanco-Claraco (2024). The resulting con-
sistent global map is shown in Figure 28(b). As with the

former dataset, there is no ground truth for quantitative
quality assessment. Our system takes an average of 68.8 ms
per scan, including loop closure detection and global
optimization.
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Table 9. Absolute translational error (ATE) (rmse values in meters as reported by “evo_ape -a”) for the NewerCollege dataset. Bold
means best accuracy in each sequence and category. Divergence is shown as x. The version of MOLA-LO that always updates the local

map is discussed in Section 7.2.

Method 01 02 Cloister MathsEasy MathsMedium MathsHard ~ Park QuadEasy QuadMedium QuadHard Undergr.Easy UndergrMedium Undergr.Hard Stairs

KISS-ICP 0.61 m 1.78 m 0.95 m 0.07 m 0.12 m X(29.6m) 1.54m 0.10m 0.19 m 0.65 m 0.26 m 0.45m %(7.98 m) X(3407 m)

Vizzo et al.
(2023)

MOLA-LO 0.68 m 0.54 m 0.12 m 0.06 m 0.12 m
(ours)

MOLA-LO x(5.11 m) x(84.37m) 039 m 0.09 m %(4.93 m) 0.78 m 138m  0.08 m 299 m 0.10 m 0.08 m
(always
updateslocal
map)

MOLA-LO + 031 m 0.40 m 0.19 m 0.09 m 0.13m 0.31m
LC (ours)

0.11 m 090m  0.08m 0.08 m 0.12 m 0.07 m 0.08 m 0.09 m 0.11 m

0.46 m x@8.06m)  034m

03lm  0.09m 0.12m 0.16 m 0.13m 0.13m 025 m 0.42m
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Figure 23. Estimated trajectories for the proposed LiDAR odometry system (“MOLA-LO”) applied to the NewerCollege dataset,
compared to ground truth. Trajectories denoted as “MOLA-LO + LC” include the post-processing loop-closure stage discussed in
Section 3.12. Continues in Figure 24. See discussion in Section 4.9.
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Figure 24. Continuation of Figure 23 with more results for the Newer College dataset. See discussion in Section 4.9.

5.2. Georeferencing metric maps

Finding the geodetic coordinates of metric maps is possible
from a low-cost GNSS receiver given observations enough,
following the method described in Section 3.11. In this
section, we show experimental results in georeferencing
maps, based on the MulRan dataset (see Section 4.1) since it
includes both, accurate ground truth, and readings from a
low-cost GNSS device.

To illustrate georeferenciation, we took estimated tra-
jectories in the local map frame, convert them to the ENU
frame (refer to Figure 12(a)), then to Earth geocentric co-
ordinates, and finally to geodetic datums for the WGS84
standard geoid. The estimated paths for a subset of four
MulRan dataset sequences were exported to KML (Keyhole
Markup Language) and displayed on Google Earth for
visual inspection. Figure 29 shows the final results, auto-
matically generated by tools in the presented framework.
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0 === Ground truth
— MOLA-LO

roil (deg)

150 200

t(s)

== = Ground truth
—— MOLA-LO

t (s)

Figure 25. Detailed view of the maths hard (MH) sequence (Newer College dataset) in Figure 24. Observe the highly dynamic rotations
imposed to the sensor in all six degrees of freedom with the intention of making this sequence a challenge for LO methods, and how our
method keeps its estimation close to ground truth at all times. See discussion in Section 4.9.

5.3. Use as a backpack mapping system

As detailed in Aguilar et al. (2024), the proposed LO system
has been used for mapping forest areas from datasets
grabbed with a backpack kit comprising an Ouster OS0-32
as the unique sensor. Note that the system configuration was
not modified with respect to all tested datasets in Section 4
and, although these experiments did not have ground truth
for quantitative assessment, the final metric maps are
consistent, as illustrated in Figure 30 with views of 2 out of
the 6 tested sequences. This experiment shows that the LO
system is able to cope with walking patterns in uneven
terrains while mapping unstructured, natural environments.

5.4. Building different metric maps

One of the claims of this work is that different robotic tasks
are better performed using different map representations,
thus the mapping framework should be able to provide such
flexibility. To illustrate this feature, we show next how easy
is to create metric maps of different types, apart of the
commonly-used point clouds. Focusing on the post-
processing stage, once mapping is done and there is a
view-based map from the LO or SLAM system, it was
explained in Section 3.10 how such map can be converted

into metric maps. In particular, Figure 9 illustrated how to
build several map layers by accumulating 3D LiDAR scans
into a global map.

Here, we use a modification of such pipeline, shown in
Figure 31, where only one final map layer exists of a custom
type which will be changed between experiments. The final
map obtained from the Voxgraph dataset (Section 4.7) was
fed into that pipeline with two map types: an occupancy
voxel map, and a 2D digital elevation model (DEM). The
resulting maps are illustrated in Figure 32(a) and (b).
Changing a few lines in a configuration YAML file is all that
it takes to build one map type or the other.

6. Localization experiments

Localization without mapping can be performed in the
present framework in two ways: (i) with particle filtering (as
in  Blanco-Claraco et al. (2019)) wusing the
mrpt pf localization software package, or (ii)
directly with the LO pipeline introduced in Section 3.4, by
disabling map updates. In both cases, the reference map can
be given from converting a view-based map from a mapping
session into a metric map, as described in Section 3.10.
Robots moving slowly and equipped with wheels encoders
may be good fits for the particle filtering approach. For
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Figure 26. Estimated trajectories for the proposed LiDAR odometry system (“MOLA-LO”) applied to the UAL VLP-16 Campus
dataset, compared to ground truth. Trajectories denoted as “MOLA-LO + LC” include the post-processing loop-closure. See discussion

in Section 4.10.

Table 10. Absolute translational error (ATE) (rmse values in
meters as reported by “evo_ape -a”) for the UAL Campus
dataset, in which there is only one sequence. Bold means best
accuracy in each sequence and category.

UAL Avr. timeper

Method campus frame
KISS-ICP (w/o deskew) 1321 m 12.0 ms
Vizzo et al. (2023)

MOLA-LO (w/o deskew) (ours) 7.97 m 14.7 ms
KISS-ICP 10.06 m 11.2 ms
Vizzo et al. (2023)

MOLA-LO (ours) 6.65 m 14.5 ms
MOLA-LO + LC (ours) 1.00 m 21.3 ms

faster vehicles and drones, the LO pipeline is probably a
better option due to the more accurate initial predictions for
each time step given by the kinematic state prediction
module (Section 3.4).

In this section, we provide experimental results for lo-
calization using the MulRan dataset, which perfectly fits this
task since three driving sequences exist for each location.
Therefore, a metric map from the SLAM output for one such
sequence (KAISTO02) is built and used as reference map for
localizing the other two sequences of the same location
(KAISTO1 and KATISTO3). The reference global map was
built with the metric map building pipeline in Figure 8,
using a point cloud as global map. In particular, from all
point cloud maps described in Section 3.2, we selected the
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XYZIRT cloud FilterDecimateVoxels XYZIRT cloud FilterByRange XYZIRT cloud (to ICP matchers)
Raw sensor . . e —>
data source Generator e | ll L. > D@ < {to local map
.® . ** «*’ update pipeline)
.
- —
"raw" decimated pre” "decimated”

Figure 27. Contents of the “observation pipeline” blocks in Figure 4 for the “2D LiDAR” LO system configuration. Refer to discussion
on pipelines in general in Section 3.3 and to Section 5.1 for this particular pipeline.

(a) £r079 final map

(b) Milaga CS faculty final map

Figure 28. Results for the 2D LiDAR configuration. Refer to discussion in Section 5.1.

one with hashed voxels as underlying data structure, with a  ground truth, as illustrated in Figure 33. In this case, the
2 m resolution and a maximum of 20 points per voxel. initial approximated pose was given manually for each
Localization errors have been estimated using evo_ape sequence, with an error of several meters, hence the
(Grupp, 2017) between the estimated trajectories and error peak at the beginning of each sequence. Automatically
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P

(c) KAISTO3 (d) Sejong02

Figure 29. Illustrative results for metric map georeferenciation for sequences estimated by the SLAM solution and automatically
georeferenced as described in Section 5.2 from consumer-grade GNSS data (Screenshot from Google Earth v7.3.6.9326, images by:
Maxar Technologies, 2024; Airbus, 2024).

(a) Forest parcel #2 (b) Forest parcel #3

Figure 30. Final 3D maps from datasets collected in Almeria forests with a LIDAR backpack. See discussion in Section 5.3.
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Figure 31. Configuration for building metric maps of arbitrary types from view-based maps using the application sm2mm. The type of
the final map is solely determined by the “Generator” block on the bottom, without any other required change in the rest. Refer to

discussion in Section 5.4.

(a) Occupancy voxel map

(b) Digital terrain elevation model

Figure 32. Example final maps built from the Voxgraph dataset. The voxel map in (a) has been visualized as one point per voxel to favor

a clearer visualization. Refer to discussion in Section 5.4.

re-localizing from GNSS readings is possible as a more
practical alternative, but at the time of writing, this feature is
only implemented in the particle filter-based solution. The
localization RMSE with respect to ground truth in these two
experiments were 2.21 m and 2.11 m, respectively. Note,
however, that virtually all this error is attributable to ac-
cumulated residual drift in the map used as reference, since
2.13 m is precisely the RMSE ATE of the full SLAM so-
lution for sequence KAISTO02 (refer to row “MOLA-LO +
LC” in Table 2). Basically, localization accuracy is limited
by how accurate the reference map is. Note that the tested
sequences include dynamic objects (e.g., vehicle overtak-
ing), starts and stops due to traffic, etc.

7. Ablation studies
7.1. Scan deskewing

First, we want to validate that scan deskewing by means of
trajectory interpolation on SE(3) per equation (2) is good
enough and effectively leads to more accurate results. As a
benchmark, we tested our LiDAR odometry system
(without loop closure) on the UAL campus dataset in
Blanco-Claraco et al. (2019) with and without deskewing
the input scans, obtaining the results in Table 10. The

obtained ATE values with respect to ground truth with and
without deskewing are 6.65 m and 7.97 m, respectively.
Therefore, undistorting the scans reduced the ATE in a
16.6%, despite the fact that driving speed was relatively
slow in this dataset, an average of ~3 m/s (10.8 km/h or
6.7 mph). For comparison, enabling deskewing in KISS-
ICP also reduced the ATE from 13.21 mto 10.06 m, a23.8%
improvement. Therefore, we can conclude that deskewing is
absolutely a must for accurate localization, even at reduced
speeds.

7.2. Local map updates

As mentioned in Section 3.4, our system differs from others
in that we do not always update the local map for every
single time step. The reason behind this decision is that
small localization errors and imperfect scan de-skewing,
specially during abrupt angular accelerations would lead to
map insertion of misplaced points which would then serve
as (incorrect) matches for successive scans, typically
leading to unbounded error growth in localization. We
postulate that such misplaced points are more likely in high-
dynamics datasets than in those with smoother trajectories;
e.g. handheld versus automotive. This effect is expected
when input scans are subsampled before registration against
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Figure 33. Results of the localization experiments performed with MulRan dataset sequences KAISTO1 and KAISTO03 by using as
reference the map built from KAISTO02. Refer to discussion in Section 6.

0 Selective map updates
B Always updates map

0 Selective map updates
B Abvays updates map

ATE (m)

(a) Mulran (automotive) (b) Newer College Dataset (handheld)

Figure 34. Results of the ablation experiments to evaluate the proposed selective map update feature, showing how it becomes relevant
for datasets with irregular motion profiles (e.g., handheld sensors). Refer to discussion in Section 7.2.
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a local metric maps that do not fuse information from
different scans, such as the point clouds used in our default
system configuration and in many recent LIDAR odometry
approaches. Probabilistic map representations or the 3D-
NDT map described in Section 3.2 are expected to be more
stable against frequent updates.

To support our hypothesis, we performed the following
ablation experiment: we compared the trajectory error with and
without the proposed selective map update in an automotive
(Mulran) and a handheld (Newer College) dataset. The quan-
titative results were already reported in Tables 2 and 9, re-
spectively, but for the sake of a clearer visual comparison we
have represented them in Figure 34. As can be observed, up-
dating the map for every single time step is not problematic for
the automotive dataset, with trajectory errors slightly better in
some sequences and worse on others, but not leading to drastic
differences. In turn, not using our proposed selective map update
strategy for the Newer College dataset leads to a dramatic in-
crease of (at least) 50% for the ATE in 11 out of 14 sequences,
hence supporting the introduction of our selective update
strategy for robustness against high-dynamic motion profiles.

7.3. Tightly-coupled estimation of
vehicle velocities

Next, we want to evaluate the impact of the tightly-coupled
estimation of linear and angular velocities within the op-
timization loop (refer to Section 3.6.3). As baseline, we use
the proposal of keeping the velocity vectors as estimated
from the last time step, as done in the state-of-the-art method
KISS-ICP Vizzo et al. (2023). Comparison will be done
using two Newer College Dataset sequences with high
dynamics: “Maths hard” (MH) and “Underground hard”
(UH). The trajectory ATE for MH increases from 0.11 m
using the default system configuration to 0.15 m if the
feature at test is disabled. A more drastic increase of the
error occurs for the UH sequence, where an ATE of 0.086 m
becomes 2.79 m. By visualizing the estimated paths in
detail, shown in Figure 35, it can be seen that the error
comes from two sources: divergence of the estimation at
multiple points, and jerky trajectories for the rest. These
experiments demonstrate that this feature alone has a great
potential to increase the stability of LiDAR-only odometry
methods.

7.4. Horn's method

As mentioned in Section 3.6.2, the closed-form Horn’s
solution to pointwise pairings would seem to be an ideal
alternative to iterative methods such as Gauss—Newton due
to its simplicity and efficiency. However, as we demonstrate
in this section, there are two problems that render iterative
nonlinear methods as better practical solutions. We have
compared the accuracy of our default LiDAR odometry
system with another version where the Gauss—Newton
optimizer is replaced with Horn’s closed form solution (a
change that only takes adding three lines in a YAML

== Ground Truth
— KISSICP
MOLA-LO w/ o vel. estim.

o

—— MOLA-LO (default)

-10

-30

-10 -5 0 5 10 15 20 5
X (m)

Figure 35. Evaluation of the impact of the tightly-coupled
estimation of velocity vectors as part of the ablation study in
Section 7.3 for the “Underground hard” sequence of the Newer
College Dataset. The picture shows a bird-eye view of the
estimated trajectories. In the legend, “MOLA-LO” refers to the
default system as introduced in the manuscript, while “MOLA-
LO without velocity estimation” is a version where tightly-coupled
estimation of this vector is disabled.

configuration file). The dataset on which the study has been
done is KITTI, with results already shown in Table 3 in the
rows “MOLA-LO (default)” and “MOLA-LO (Horn’s).” In
all sequences, excepting 01 and 04, the Horn’s method
leads to worse results. Overall, the average RTE worsens
from 0.55% to 0.65%. The reason for these results is the
impossibility for this method to cope with outliers, some-
thing easy to integrate in nonlinear optimizers. Another
interesting observation is that, despite the solver itself runs
~ 4 times faster than Gauss—Newton, the overall time cost is
~2 times slower due to the need to spend more ICP it-
erations until convergence.

7.5. Loop-closure with and without GNSS

Finally, the capability of the proposed loop closure algo-
rithm to incorporate optional GNSS readings is put at test
with the Mulran dataset. Results are shown in the two last
rows of Table 2. Overall, the conclusion here is that the
presence of GNSS: (i) improves the global accuracy of the
trajectories (reduced ATE values in the version with GNSS
in 11 out of 12 sequences), and (ii) enables identifying
potential loop closures that would not be found by our
metric uncertainty-based hypothesis generator in the very
long loops (>20 km) of Sejong sequences.
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8. Conclusions

This paper introduced a whole framework that aims at filling a
gap in the robotics community’s needs for flexible map
building and editing from 3D LiDAR. It has been shown how
the proposed LO and SLAM systems compare well or out-
perform other SOTA methods regarding estimated trajectory
accuracy and robustness against divergence. Excepting
georeferencing and loop-closure, all other components of the
framework are available as open-source software. The present
work leaves plenty of research topics open for future works: (i)
benchmarking different metric map data structures to find out
which ones suit best to each problem (e.g., real-time LO vs
localization without mapping), (ii) designing new pipeline
blocks for smarter sampling of point clouds to achieve both,
faster and more accurate LO, (iii) alternative pipeline designs
suitable for efficient depth camera odometry, or (iv) adding
support for tightly-integrated measurements from LiDAR
intensity images or inertial sensors.
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Notes

1. The actual implementation left-multiplies these transformations
with , Ty, the sensor frame “s” pose in the vehicle body frame
“b” in order to give estimates of the vehicle trajectory and to
enable data fusion from several sensors.

2. Again, the actual implementation takes into account the sensor
pose within the vehicle, but that change of coordinates is ne-
glected here for the sake of clarity.

3. Their corresponding YAML file descriptions can be checked
out online under demos in the mp2p _icp project.

4. See: https://www.cvlibs.net/datasets/kitti/eval odometry.php.

5. See: https://www.cvlibs.net/datasets/kitti-360/leaderboard_semantic
slam.php?task=trajectory.
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