
ARTICLE

International Journal of Advanced Robotic Systems

TP-Space RRT – Kinematic Path Planning of
Non-Holonomic Any-Shape Vehicles
Invited Feature Article

Jose Luis Blanco1*, Mauro Bellone2 and Antonio Gimenez-Fernandez1

1 Department of Engineering, University of Almeria, La Cañada de San Urbano, Almería, Spain
2 CETMA Consortium, Brindisi, Italy
* Corresponding author(s) E-mail: jlblanco@ual.es

Received 20 August 2014; Accepted 20 February 2015

DOI: 10.5772/60463

© 2015 The Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Abstract

The autonomous navigation of vehicles typically combines
two kinds of methods: a path is first planned, and then the
robot is driven by a local obstacle-avoidance controller. The
present work, which focuses on path planning, proposes an
extension to the well-known rapidly-exploring random
tree (RRT) algorithm to allow its integration with a trajec‐
tory parameter-space (TP-space) as an efficient method to
detect collision-free, kinematically-feasible paths for
arbitrarily-shaped vehicles. In contrast to original RRT, this
proposal generates navigation trees, with poses as nodes,
whose edges are all kinematically-feasible paths, suitable
to being accurately followed by vehicles driven by pure
reactive algorithms. Initial experiments demonstrate the
suitability of the method with an Ackermann-steering
vehicle model whose severe kinematic constraints cannot
be obviated. An important result that sets this work apart
from previous research is the finding that employing
several families of potential trajectories to expand the tree,
which can be done efficiently under the TP-space formal‐
ism, improves the optimality of the planned trajectories. A
reference C++ implementation has been released as open-
source.

Keywords Path planning, Rapidly-exploring random tree
(RRT), Obstacle avoidance

1. Introduction

Reliable autonomous vehicles and mobile robots represent
a long sought goal for their potential impact in all sectors
of the industry. From the list of complex problems that
must be solved in order to achieve such an objective, one of
paramount importance is autonomous navigation, that is,
driving the vehicle toward a desired goal. Although
commercial self-guided vehicles have been available for
industrial environments for some years, e.g., Kiva ware‐
house robots [1], they are often restricted to operating in
controlled areas, the vehicles' tend to be round to ease
collision detection on rotating, and they use differential-
drive kinematics for increased maneuverability. Avoiding
these restrictions is highly desirable and it is thus the goal
of intense recent research [2 - 4] since it would bring
practical autonomous driving to industrial vehicles, which
typically have non-round shapes and Ackermann steering
kinematics that severely limit their maneuverability.

Techniques for autonomous navigation can be broadly split
in two categories: (i) global path planners which take all
available information about the workspace at once, and (ii)
local obstacle avoidance, or the reactive approach, where
only immediately sensed data determine how to control the
vehicle. Pure reactive navigation methods have demon‐
strated their reliability and flexibility to cope with robot

1Int J Adv Robot Syst, 2015, 12:55 | doi: 10.5772/60463

navigation, especially for holonomic platforms [5, 6]. In
spite of their practical utility, they cannot guarantee finding
the optimal path towards the desired target; indeed, local
minima prevent valid paths from always being found. In
contrast, the efforts in path planning research are focused on
the search for optimal trajectories, normally in the sense of
shortest paths [7]. Such efficiency comes at a cost: planners
may require a few seconds to generate a result for typical
office-like navigation scenarios. This is in contrast to the
ability of reactive methods to quickly respond to any
dynamic change sensed in the environment, typically
within one millisecond [8]. Current architectures for
autonomous navigation tend to fuse global (planned) and
local (reactive) methods, e.g., ROS navigation [9] and
MoveIt! [7, 10]. In such a system, a robot first generates a
plan, and then it starts moving using a reactive navigator.
During the execution, global planning is typically run in
the background to provide a better plan in a real-time
fashion.

Path planning research during the 1990s discovered the
potential of sampling-based algorithms such as the Rapid‐
ly-exploring random tree (RRT) algorithm [11], which will
be described later in Section 2.3. RRT itself has been the
starting point for other researchers to propose extensions,
for example, Jacobs et al. in [12] propose parallelizing tree
exploration for efficiency. Another improvement, called
'transition-based RRT' (T-RRT) was introduced in [13],
where a global cost map is used to guide the random
exploration phase. RRT methods were further enhanced
leading to many variants, with two of the most widespread
being RRT* [14] and RRT-connect [15]. However, none of
the above methods intrinsically considers kinematic
constraints, such as those of Ackermann-driven vehicles.
Inspired by [16], kinodynamic RRT* [17] was proposed in
2013 as an interesting RRT* extension to include such
constraints. Despite the large step forward represented by
that work, it must be noted that nonlinear constraints (as
those of a planar car) are only fulfilled approximately.
Noting that a robot working in real-world conditions does
not always need the exact optimal solution (since a subop‐
timal that could be found at a fraction of the computational
cost may work well), recent works, like [18], present
methods for asymptotically near-optimal motion planning
as a trade-off between optimality and computational time.

In this work, we introduce a new RRT variant which is
implicitly aware of the exact vehicle shape and its kinematic
constraints, in contrast with original RRT where generated
paths cannot be followed by real vehicles. Our algorithm
exploits trajectory parameter-space (TP-space) [8] transfor‐
mations, introduced elsewhere for accelerating the pure
reactive navigation of arbitrarily-shaped robots [8, 19].
Thus, unlike some previous reactive navigators and
planners which ignore or relax non-holonomic kinematic
constraints and assume circular or point-like robots, the
present proposal fully observes them. Furthermore, a

fundamental property of TP-space transformations is their
ability to be parametrized in a number of different ways
depending upon the choice of a trajectory family, as ex‐
plained in Section 2.2, a feature which was demonstrated
to improve reactive navigation in the past [8] and which
also improves the quality of paths found by RRT, as found
experimentally in this paper.

The rest of this paper is organized as follows. Section 2
discusses the theory behind the TP-space and introduces
classical RRT. The modified RRT algorithm to solve
planning problems in a parameterized space is introduced
in Section 3. Next, we discuss how to configure the pro‐
posed method for an Ackermann steering vehicle, and then
Section 5 provides statistical experiments. Finally, we draw
some final conclusions in Section 6.

2. Theoretical Background

Since this work builds upon previous works on (i) RRT [11]
for fast path planning and (ii) TP-space transformations
[19] for efficient collision-checking, it is convenient to
introduce at this point the most relevant concepts from
those works.

2.1 Preliminary definitions

We start by briefly defining the elements involved in path
planning —the reader is referred to [20] for an excellent
related tutorial. Let us define the vehicle as a rigid body B
in a planar workspace W=ℝ2. Obstacles in this Euclidean
space occupy an arbitrary region OWS⊂W. The configura‐
tion space (C-space) for a planar vehicle has the topological
structure C=ℝ2 ×S 1 [20], with configurations denoted as
q∈C and B(q) denoting the robot shape translated as a rigid
body in configuration q. Obstacles in the workspace are
mapped to C-obstacles in the C-space, OC , which can be
defined as:

(){ }= | .C WSBÎ Ç ¹ÆO q C q O (1)

The free C-space is defined as the relative complement of
those obstacles, that is, C free =C\OC . Motion planning can
be stated as the problem of finding a continuous path
π : 0,1 →C free such that π(0)=qi and π(1)=qg given an initial
configuration qi and a goal configuration qg fulfilling
qi,qg∈C free.

2.2 TP-space and trajectory generators

The TP-space was introduced in [8] as a generalization of
space transformations that abstract the kinematics and
shape of non-holonomic vehicles [21]. The basic idea
behind those works is that the robot C-space can be partly
charted by means of 2D manifolds in the parameter space
of a family of trajectories (TP-space) —refer to Fig. 1 (a). By

2 Int J Adv Robot Syst, 2015, 12:55 | doi: 10.5772/60463

transforming C-obstacles into the trajectory space, a
representation of the free space around the robot (TP-
obstacles) is obtained. In such a space, the robot can be
treated as a free-flying point. In other words, the space
transformation embeds both the vehicle shape and its non-
holonomic kinematic constraints, allowing motion plan‐
ning methods to deal with it as if it were a holonomic
platform that can move in any direction. An illustrative
example of such a transformation is depicted in Fig. 1 (b)–
(c), where obstacle points in the robot workspace are
mapped into the TP-space using one particular 2D mani‐
fold corresponding to a family of trajectories. Notice how
a free "gap" between obstacles becomes evident in Fig. 1
(c) when inspecting TP-obstacles.

Figure 1. (a) C-space surface corresponding to a particular family of
parameterized trajectories. (b) Obstacles in the robot workspace and a
(decimated) view of a trajectory family. (c) The same obstacles, as seen in
the trajectory family TP-space. In blue, the direction with the largest
collision-free distance. Notice that straight lines from the origin in TP-space
map to kinematically-correct trajectories in C-space.

Previous works on these ideas initially focused on their
application to pure reactive navigation with the trajectory
family of circular arcs [21]. It was later mathematically
proven that a much wider family of paths were suitable for
this end [19]. Each family is defined by means of one design
function, leading to parameterized trajectory generators
(PTGs). Thus, different PTGs define distinct 2D manifolds,
all embedded in the vehicle C-space as illustrated in Fig. 1
(a). Since, in this paper, we address motion planning as
opposed to reactive methods, the set of potential trajecto‐
ries that can be used includes classical optimal path
primitives [22], as explained in [8].

In the following, we introduce the basic concepts of TP-
space that are required by our RRT-based method. PTG bi-
dimensional manifolds are conveniently charted in polar
coordinates (α, d) with the robot's current or initial pose
being the origin, where α∈ −π, π is a parameter that
modifies the shape of the trajectory and d is the distance
along the trajectory. Polar coordinates are preferred, since
the simplest path for a holonomic robot is the straight line
from its current pose, which corresponds to a path with a
constant α value, i.e., a constant trajectory parameter in the
TP-space formalism. In principle, there exists an infinite
number of PTGs that map path families to the TP-space.
Mathematically, the TP-space is the 2D Euclidean space of
those (α, d) parameters, homeomorphic to the manifold in
the C-space of vehicle poses q=(x,y,ϕ) by means of the
smooth transformation defined by a PTG function:

() ()
: TP Space C Space

, , , .
PTG

d x ya f
- ® -

® (2)

For any fixed α, the trajectory resulting from PTG(α,d) for
d ≥0 is kinematically feasible by definition. Let us insist
again on the fact that, represented in polar coordinates
centred at the current robot position, straight lines in the
TP-space are mapped into valid trajectories in the real
world. Workspace obstacles can be mapped into the TP-
space, which allows us to quickly find the collision-free
distance for any trajectory in the PTG. It was shown that
building these TP-obstacles can be done efficiently for any
PTG by means of pre-computed look-up tables [8]. Finally,
it is important to define the inverse PTG transformation
(homeomorphism requires the transformation to have a
continuous inverse), which assigns TP-space points to each
C-space configuration belonging to a specific trajectory
family. For convenience, PTGs are defined in such a way
that each (x,y) position (relative to the robot pose at each
instant of planning) is uniquely assigned one orientation
(ϕ). Therefore, there is no ambiguity in defining the PTG
inverse as a function of the target position only, thereby
ignoring the orientation:

() ()
1 : Workspace TP Space

, ,
PTG
x y da

- ® -

®
(3)

Notice that this does not imply that vehicle orientations are
ignored or undefined; it only means that, given a starting
pose and a particular trajectory family, the orientation
becomes a function of the target Euclidean coordinates for
each PTG.

2.3 The rapidly-exploring random tree algorithm

Classical RRT [11] provides a reasonable trade-off between
plan feasibility and computational time in solving the
motion planning problem. Moreover, its probabilistic
completeness and asymptotic stability guarantee conver‐
gence on a solution, if one exists [14].

The algorithm incrementally builds a tree of collision-free
trajectories rooted at the initial condition. Hence, RRT is
initialized as a tree, including the initial state as its unique
vertex and no edges. At each iteration, a state xrand∈X free is
randomly sampled from the free-object space X free. An
attempt is made to connect the nearest vertex v∈V to the
tree through a new edge, with V being the set of currently
existing vertexes. If such a connection is verified as colli‐
sion-free, a new vertex xnew is added to the vertex set and a
connection (v;xnew) is added to the edge set. In the original
version of RRT, iterations stop as soon as the tree contains
a node in the goal region. In addition, connections between
nodes in the tree have a prefixed-length and the edges are
all straight lines.

3Jose Luis Blanco, Mauro Bellone and Antonio Gimenez-Fernandez:
TP-Space RRT – Kinematic Path Planning of Non-Holonomic Any-Shape Vehicles

As will be seen below, the new strategy for edge creation
presented in this paper employing a TP-space has the
advantage of only proposing new edges that represent
kinematics-compliant trajectories. In addition, collision
checking for edges is done implicitly and efficiently by
transforming obstacles into the TP-space.

3. Rapidly-exploring random trees in the TP-space

Next we present the modified RRT method, the main
contribution of the present work. The algorithm, analyzed
step by step in the following, is described in pseudo-code
in Algorithm 1.

The algorithm works by incrementally constructing a tree
(V,E) where the vertices V represent vehicle configurations

(poses) and the edges E are the trajectories between them.
Initially, the tree only contains the starting pose xinit . At
each iteration, a random "target" state (xrand) is drawn from
the free space, with a statistical bias (typically a probability
of P =0.05) towards selecting the actual final goal xgoal (line
3). Next, several families of trajectories (PTGs) are em‐
ployed while attempting to grow the tree (line 5). For each
such PTG, the tree node that is closest to xrand is sought
(xnearest), which in our approach implies evaluating distan‐
ces over each PTG manifold (line 6). As illustrated in Fig.
2, the edges between two nodes may be blocked for some
PTGs and appear as collision-free for others, e.g., circular
paths in Fig. 2 (a) may generate a collision, whereas the α -
type generated trajectory in Fig. 2 (b) denotes a feasible
path. Moreover, since distances are measured along the

Algorithm 1 tp_space_rrt

Input: x init , x goal , O WS ▷Starting and goal states and obstacles in WS

Output: E sol ▷Sequence of path segments connecting x init and x goal

1: V← {xinit}, E←∅ ▷Initialize empty tree

// Repeat until goal is added to the tree:

2: while x goal∉ V do

3: xrand ←SampleFree() ▷Sample a random state in Cfree with goal bias

4: S← ∅ ▷Start with an empty set of candidate nodes

5: for each i∈PTGs do ▷For each x random n-PTG states are explored

6: xnearest ←NN (V, xrand , i) ▷Search in the tree the nearest neighbor to x rand using manifold P i

7: if xnearest ≠ ∅ then

8: x̂rand ←xrand ⊖ xnearest ▷Relative target in Workspace

9: (αrand ,dnew)←PTG−1(x̂rand , i) ▷Relative target in TP-space

10: OTP ←TPS - transform(OWS ⊖ xnearest , Pi) ▷Build TP-obstacles

11: d free ← OTP
αrand

▷Collision-free distance in the trajectory heading to x rand

12: dnew ←min(dMAX , drand)

13: if dfree ≥dnew then ▷Do we have enough free space?

14: x̂new←PTG(αrand ,dnew)

15: xnew ←xnearest ⊕ x̂new ▷New candidate state in global coordinates

16: S←S∪ {(dnew, xnew)} ▷Add to set of temptative new nodes

17: end if

18: end if

19: if S≠ ∅ then

20: xnew
* ←mind (S) ▷Select candidate node with the shortest path

21: V←V∪xnew
* , E←E{(xnearest , xnew

*)} ▷Add a new vertex and a new edge towards the relative target

22: end if

23: end for

// Recover the solution path:

24: Esol ←tree_backtrack(E, xgoal , xinit)

25: end while

4 Int J Adv Robot Syst, 2015, 12:55 | doi: 10.5772/60463

trajectories manifold, the closest tree node to xrand may
differ among the PTGs. Note that not every target may be
reachable for all PTGs (line 7) (i.e., the target may be outside
of the manifold borders), but this will not become a
limitation for the path searching algorithm so long as a
diversity of the PTGs is used, each one having non-
overlapping unreachable zones [19].

Figure 2. Unlike with classical RRT, the present approach only considers
new tree edges that fulfill the vehicle kinematics. Moreover, several path
families (PTGs) are evaluated simultaneously, a circular arc in (a) and an α
-type path in (b), increasing the possibility of finding good collision-free
trajectories.

In order to exploit the advantages of the TP-space, we must
consider coordinates relative to the vehicle pose at the point
where the tree is growing, i.e., at xnearest . Let
x̂rand =xrand ⊖ xnearest denote this relative pose of the random‐
ly-picked state. Using the inverse PTG function, defined in
Eq. (3), one can efficiently find out the trajectory parameter
(αrand) and the distance over that path (drand) which takes it
from xnearest to that position (line 9). Once the obstacles have
been mapped into the TP-space (line 10), checking for
collisions throughout the trajectory of interest simply
becomes a matter of testing for the minimum distance to
the obstacles in the TP-space in the αrand direction (line 11).
It must be stressed that this process, which takes into
account an arbitrary robot shape, takes a few microseconds
in our present implementation based on look-up-tables.
Since RRT defines a maximum length for new edges
(dMAX), those look-up-tables must be pre-computed only
for obstacles up to the corresponding maximum distance.

Next, candidate tree nodes xnew are created for each PTG
(lines 13–17), and finally only the shortest path is inserted
into the tree (lines 20-21). One can find the possibilities

shown in Fig. 3 while considering new tree nodes: (i) the
random target is farther than dMAX and its path is collision-
free, in which case the new node is placed along the PTG
path at a distance of dMAX ; (ii) the path to the random target
is collision-free and within range, in which case it is directly
picked as the new node; and (iii) an obstacle blocks the way
to the target, and hence it is discarded and the tree does not
grow. Notice that these situations correspond to the same
cases found in classic RRT for straight paths, with the
advantage that truncating curved paths up to some
arbitrary distance d becomes a straightforward evaluation
of the PTG function in Eq. (2) for the desired value of d .
Eventually, the goal state will be reached and we can
recover the collision-free and kinematically-valid path by
backtracking the tree structure.

Figure 3. Possible situations found during edge generation. Refer to text for
details.

4. PTG modeling for a real Ackermann-steering vehicle

Previous sections have discussed PTGs only generically
regarding their role as smooth functions that chart 2D
manifolds in C-space to TP-space coordinates. Next, we
focus on two particular PTG models and discuss the
practical problem of determining their parameters for a
particular vehicle kinematics.

Adjusting the family of feasible trajectories to those
attainable by a real vehicle is mandatory in order to achieve
accurate and reliable path planning. In the case of Acker‐
man-steering vehicles, the critical parameter is the mini‐
mum turning radius. Previous works on TP-space and
PTGs do not mention how to integrate this limitation, and
hence we devote this section to this practical issue. In
particular, we will analyze how this constraint affects two
path families, circular arcs (C-PTG) and α-asymptotic
trajectories (αA PTG) [19], since they are the two PTGs
employed in the experiments of Section 5.

4.1 C-PTG

The generator functions for these paths, which define the
linear v(α) and angular velocities ω(α) for each trajectory
parameter α, are [19]:

()
()

= (a)

= (b)

max

max

v Kv

K

a

aw a w
p

(4)

5Jose Luis Blanco, Mauro Bellone and Antonio Gimenez-Fernandez:
TP-Space RRT – Kinematic Path Planning of Non-Holonomic Any-Shape Vehicles

where K is either 1 or -1 to select between forward or
backward trajectories. It is obvious that the radius of
curvature for this PTG is constant for each α value:

() ()
()

= = max

max

v v
R

a pa
w aw a

(5)

Since we are interested in setting the minimum turning
radius, the worst case which must be observed is α =π.
Considering the geometry of the electric car model in Fig.
4, and given its wheelbase L , track W and maximum wheel
angle αMAX as defined in the figure, we have:

= tan
2 2min MAX

WR L p aæ ö
- +ç ÷

è ø
(6)

which, once evaluated (for our vehicle we obtain
Rmin =2725 mm), leaves one free parameter (e.g., the maxi‐
mum linear velocity of the vehicle vmax) and imposes the
condition ωmax =vmax / Rmin. As long as this condition holds,
all the trajectories in this PTG manifold will be suitable for
the real car.

Figure 4. Ackerman-steering model of our electric car prototype

4.2 αA PTG

In this case, the generator functions are [19]:

()

()

2
()

= (a)

1 1= (b)
2

1

t
Kv

max

max
K

v v e

e

a f

a f

w

a

w a w

æ ö-ç ÷-
ç ÷
è ø

-
-

æ ö
ç ÷- +ç ÷
ç ÷+è ø

(7)

with Kv and Kω as constants with angular dimensions that
control how quickly the circular path tends to straighten
out. From its dependency upon time, via ϕ(t), it can be seen

that in this PTG the radius of the curvature of each trajec‐
tory is not constant for each α value. Trajectories generated
from Eq. (7) always cause the vehicle to turn in the initial
part of the trajectory and then smoothly switch towards a
straight line with the orientation α. In order to configure
this PTG so as to satisfy the Ackerman kinematic con‐
straints of the vehicle in all cases, we analyze the worst case,
|α −ϕ | =π, where the maximum instantaneous curvature
of the PTG occurs, and then equal it to the minimum
turning radius of the real vehicle.

That is, Rmin =v(α) / ω(α), which represents one equation
with four parameters: the absolute maximum velocities
(vmax, ωmax) and the αA PTG shape parameters Kv and Kω.
By imposing the two maximum velocities according to
safety considerations, we still have an additional degree of
freedom in the PTG design. One arbitrary possibility is
setting Kv = Kω, but any other ratio will lead to kinematically
valid paths.

5. Experimental validation

The present section describes the results obtained with the
novel RRT algorithm variant introduced in Section 3 in a
benchmark of simulated environments. We should high‐
light that our C++ implementation has been released as an
open-source library1. A comparison with classical RRT is
omitted here due to the qualitatively-different nature of the
obtained paths, whereas comparison with more optimal
RRT* methods is left as future work to be done once the
potential applicability of TP-space transformations to RRT*
has been studied.

5.1 Experimental setup

All the experiments were configured considering the future
applicability of the proposed algorithm to a real electric car
prototype developed at our laboratory. The simulator
implements the Ackerman-steering model of such a real
prototype, as shown in Fig. 4. In particular, W =1830 mm is
the track of the vehicle, L =1285 mm mm is its wheelbase
and αmax =35.37 is the maximum steering angle. With these
data, it is possible to compute the minimum curvature
radius R with respect to the instantaneous center of rotation
cr .

Statistical results for the different path planning problems
in the benchmark. The bold figures highlight the PTG
combination that achieved the shortest average path,
quickest average computation and highest success rate,
respectively.

We have investigated the performance of the proposal in a
benchmark comprising four path planning problems in
synthetic environments, each exhibiting a different degree
of difficulty. The benchmark scenarios, which can be seen
in Figs. 5 (a)–(d), comprise:

1 http://www.mrpt.org/tp-rrt

6 Int J Adv Robot Syst, 2015, 12:55 | doi: 10.5772/60463

• Scenario 1: A naive planning problem with only one
obstacle in a large, empty workspace.

• Scenario 2: A “parking-like” problem that requires
driving the vehicle into a relatively small space.

• Scenario 3: An easy maze-like scenario.

• Scenario 4: Another maze problem, with slightly
narrower free spaces.

Additionally, the experiments analyzed the impact of
choosing different sets of PTGs, a fundamental decision
since they determine the range of available trajectories for
the vehicle at each tree growth during RRT exploration. We
define three possibilities:

1. PTGs={C +}. Only forward circular arcs.

2. PTGs={C +,αA}. Forward circular arcs and α -asymp‐
totic trajectories.

3. PTGs={C +,C −,αA}. Forward and backward circular
arcs and α -asymptotic trajectories.

Due to the probabilistic nature of RRT planners, statistical
experiments become mandatory. Therefore, each path
planning problem has been repeated 250 times for each
scenario and for each PTG set. We benchmarked the
performance of the proposed method in all the scenarios by
measuring: (i) the success rate, i.e., how often a valid
solution is found within some predefined maximum
computation time (in this experiment the limit is five
seconds); (ii) the total length of the obtained paths, and (iii)
the computational cost, measured as the time required to
obtain a valid planned path solution. All the simulations
were run on a desktop computer featuring a 3.2 GHz Intel
Core i5 processor. Parallelization was not exploited during
the present benchmark.

5.2 Results discussion

Table 1 shows statistical results obtained from the 250
repetitions of each path planning problem for each PTG

combination. A few remarkable conclusions can be estab‐
lished from this benchmark outcome, as discussed next.

First of all, by only considering whether a valid path is
found or not found, it is clear from the success rates (bottom
row in Table 1) that all the PTG combinations led to
excellent results in Scenarios 1, 3 and 4 (valid paths are
found in 100% of runs), while using backward circular arcs
(only included in the case of three PTGs) becomes decisive
in Scenario 2, where more complex maneuverability is
required. Therefore, including several PTGs clearly
increases the likelihood of finding a valid path.

Figure 5. Representative results obtained by the proposed path planning
method in four synthetic environments. The approximate vehicle shape (red
polygon) is represented throughout the optimal path (thick black curve).
Thin curves stand for other tree branches that do not belong to the optimal
one. Small reference frames represent nodes in the motion tree.

With respect to computational time, we observe the
expected result that, in general, employing more PTGs
leads to greater execution costs. An important exception
can be seen in Scenario 2, where the average computational
cost dramatically drops (~92%) with the introduction of the
backward moving (C −) PTG. The reason is that we only
count the execution cost of successful path planning runs,

Scenario: 1 2 3 4

PTG count: 1 2 3 1 2 3 1 2 3 1 2 3

Path length
[m]

min 9.63 9.56 9.63 17.08 16.76 18.76 34.54 34.09 36.32 62.93 62.36 70.54

max 12.00 11.84 33.94 31.66 31.01 49.46 41.14 41.32 89.42 74.36 74.26 123.81

mean 10.22 10.12 16.08 22.58 22.92 27.22 37.46 37.44 54.38 68.31 67.85 89.45

std 0.45 0.41 5.12 4.74 4.71 5.87 1.20 1.22 8.72 2.38 2.37 9.70

Solve time
[ms]

min 0.7 1.5 2.1 28.1 79.9 13.1 51.0 130.2 173.1 104.8 236.4 218.9

max 76.1 91.7 60.8 4852.7 4462.2 1021.3 1783.9 4629.4 4550.1 1392.9 4647.2 1976.4

mean 10.7 13.9 15.2 1433.3 1486.7 108.8 387.9 654.5 958.4 391.1 750.0 773.9

std 11.2 12.7 9.0 1393.3 1303.8 104.6 277.9 525.0 605.3 186.2 445.2 308.2

Success rate: % 100 100 100 22.4 11.2 100 100 100 100 100 100 100

Table 1. Statistical results for the different path planning problems in the benchmark. The bold figures highlight the PTG combination that achieved the
shortest average path, quickest average computation and highest success rate, respectively.

7Jose Luis Blanco, Mauro Bellone and Antonio Gimenez-Fernandez:
TP-Space RRT – Kinematic Path Planning of Non-Holonomic Any-Shape Vehicles

and Scenario 2 is particularly challenging to RRT when
using forward-only trajectories, as illustrated with an
unsuccessful RRT random tree in Fig. 6. This means that it
requires the construction of a much larger tree until one
random node falls in the narrow window that takes the
vehicle towards the goal pose.

Figure 6. Example of an unsuccessful run of the proposed algorithm for
Scenario 2 when using only two PTGS (forward circular arcs and α-A). Not
considering backward movements makes it highly unlikely that the RRT
will find a path to the goal due to the minimum turning radius limitation.
Compare with Fig. 5 (b).

Finally, regarding the length of the obtained paths, it
should be recalled that RRT exhibits probabilistic com‐
pleteness [14] but does not guarantee the global optimality
of the trajectories that are found. This explains why
introducing both forward and backward PTGs seems to
increase the average path cost. Employing different
forward-facing trajectories (in the case of using two PTGs)
is only better than employing a single PTG in some
scenarios (refer to row for the mean path length in Table
1), which makes sense since the shortest paths depend upon
the particular geometry of the environment, and RRT itself
is unable to achieve global optimality.

6. Conclusion

We have introduced an extension to classical RRT that
enforces the creation of navigation trees whose edges are
exactly collision-free and kinematically-compatible with
nonholonomic vehicles. Through a statistical analysis, it
has been shown that the use of different sets of parameter‐
ized trajectories can improve the obtained paths and
dramatically increase the success ratio. Although for the
purpose of this paper only two sets of PTGs have been used,
the generality of this method allows the usage of arbitrary
PTGs and even the development of new ones according to
the specific constraints of a vehicle. Further research is
required in order to explore the extension of the proposed
ideas to optimal search methods, such as RRT* instead of
RRT.

7. Acknowledgements

This work was partially funded by the Spanish "Ministerio
de Ciencia e Innovación" under the contract DAVARBOT
(DPI 2011-22513) and the grant program JDC-MICINN
2011.

8. References

[1] Peter R Wurman, Raffaello D'Andrea, and Mick
Mountz. Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI Magazine,
29(1):9, 2008.

[2] Yoshiaki Kuwata, Gaston A Fiore, Justin Teo, Emilio
Frazzoli, and Jonathan P How. Motion planning for
urban driving using rrt. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
1681–1686. IEEE, 2008.

[3] John Markoff. Google cars drive themselves, in
traffic. The New York Times, 10:A1, 2010.

[4] Thorsten Luettel, Michael Himmelsbach, and H-J
Wuensche. Autonomous ground vehiclesâ€”con‐
cepts and a path to the future. Proceedings of the
IEEE, 100(Special Centennial Issue):1831–1839,
2012.

[5] Dieter Fox, Wolfram Burgard, and Sebastian Thrun.
The dynamic window approach to collision avoid‐
ance. Robotics & Automation Magazine, IEEE, 4(1):23–
33, 1997.

[6] Javier Minguez and Luis Montano. Nearness
diagram (nd) navigation: collision avoidance in
troublesome scenarios. IEEE Transactions on Robotics
and Automation, 20(1):45–59, 2004.

[7] Ioan Alexandru Sucan, Mark Moll, and EE Kavraki.
The open motion planning library. Robotics &
Automation Magazine, IEEE, 19(4):72–82, 2012.

[8] Jose-Luis Blanco, Javier González, and Juan-
Antonio Fernández-Madrigal. Extending obstacle
avoidance methods through multiple parameter-
space transformations. Autonomous Robots, 24(1):
29–48, 2008.

[9] Morgan Quigley, Ken Conley, Brian Gerkey, Josh
Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and
Andrew Y Ng. Ros: an open-source robot operating
system. In ICRA workshop on open source software,
page 5, 2009.

[10] Sachin Chitta, Ioan Sucan, and Steve Cousins.
Moveit! IEEE Robotics Automation Magazine, 19(1):
18–19, 2012.

[11] Steven Michael LaValle. Rapidly-exploring random
trees: A new tool for path planning. Technical
report, Computer Science Dept, Iowa State Univer‐
sity, 1998.

[12] Sam Ade Jacobs, Nicholas Stradford, Cesar Rodri‐
guez, Shawna Thomas, and Nancy M Amato. A
scalable distributed RRT for motion planning. In
IEEE International Conference on Robotics and Auto‐
mation (ICRA), pages 5088–5095. IEEE, 2013.

[13] Léonard Jaillet, Juan Cortés, and Thierry Siméon.
Sampling-based path planning on configuration-
space costmaps. IEEE Transactions on Robotics, 26(4):
635–646, 2010.

8 Int J Adv Robot Syst, 2015, 12:55 | doi: 10.5772/60463

[14] Sertac Karaman and Emilio Frazzoli. Sampling-
based algorithms for optimal motion planning. The
International Journal of Robotics Research, 30(7):846–
894, 2011.

[15] James J Kuffner Jr and Steven M LaValle. RRT-
connect: An efficient approach to single-query path
planning. In IEEE International Conference on Robotics
and Automation (ICRA), volume 2, pages 995–1001.
IEEE, 2000.

[16] Steven M LaValle and James J Kuffner. Randomized
kinodynamic planning. The International Journal of
Robotics Research, 20(5):378–400, 2001.

[17] D.J. Webb and J. van den Berg. Kinodynamic RRT*:
Asymptotically optimal motion planning for robots
with linear dynamics. In IEEE International Confer‐
ence on Robotics and Automation (ICRA), pages 5054–
5061, 2013.

[18] Andrew Dobson and Kostas E Bekris. Sparse
roadmap spanners for asymptotically near-optimal

motion planning. The International Journal of Robotics
Research, 33(1):18–47, 2014.

[19] José-Luis Blanco, Javier González-Jiménez, and
Juan-Antonio Fernández-Madrigal. Foundations of
Parameterized Trajectories-based Space Transforma‐
tions for Obstacle Avoidance, chapter 2. Mobile Robots
Motion Planning: New Challenges. I-Tech Educa‐
tion and Publishing, 2008.

[20] S.M. LaValle. Motion planning. Robotics Automation
Magazine, IEEE, 18(1):79–89, March 2011.

[21] J. Minguez, L. Montano, and J. Santos-Victor.
Reactive navigation for non-holonomic robots
using the ego-kinematic space. In IEEE International
Conference on Robotics and Automation (ICRA),
volume 3, pages 3074–3080, 2002.

[22] Marilena Vendittelli, J-P Laumond, and Carole
Nissoux. Obstacle distance for car-like robots. IEEE
Transactions on Roboticsand Automation, 15(4):678–
691, 1999.

9Jose Luis Blanco, Mauro Bellone and Antonio Gimenez-Fernandez:
TP-Space RRT – Kinematic Path Planning of Non-Holonomic Any-Shape Vehicles

