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Optimal Filtering for Non-parametric
Observation Models: Applications to
Localization and SLAM

Jose-Luis Blanco, Javier González and

Juan-Antonio Fernández-Madrigal

Abstract

In this work we address the problem of optimal Bayesian filtering for dynamic systems with observation models that

cannot be approximated properly as any parameterized distribution. In the context of mobile robots this problem

arises in localization and simultaneous localization and mapping (SLAM) with occupancy grid maps. The lack of a

parameterized observation model for these maps forces a sample-based representation, commonly through Monte Carlo

methods for sequential filtering, also called particle filters. Our work is grounded on the demonstrated existence of an

optimal proposal distribution for particle filters. However, this optimal distribution is not directly applicable to systems

with non-parametric models. By integrating ideas from previous works on adaptive sample size, auxiliary particle filters,

and rejection sampling, we derive a new particle filter algorithm that enables the usage of the optimal proposal to estimate

the true posterior density of a non-parametric dynamic system. This new filter is better suited, both theoretically and in

practice, than previous approximate methods for indoor and outdoor localization and SLAM, as confirmed by experiments

with real robots.
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1. Introduction

Sequential estimation of the state of dynamic, partially

observable systems is a problem with innumerable applica-

tions to a wide range of engineering and scientific disci-

plines. The state-space form of this problem consists of

iteratively tracking the state of a system at discrete time

steps given the system transition and observation models

and a sequence of observations. In a probabilistic frame-

work, sequential Bayesian filtering represents an effective

solution (Liu 1998 and Chen 1998; Doucet et al. 2001;

Ristic et al. 2004).

In the scope of robotics there are two prominent applica-

tions of Bayesian sequential estimation that have received

huge amounts of attention from the research community

in the last decade, namely localization and simultaneous

localization and mapping (SLAM) (Fox et al. 1999b;

Gutmann and Konolige 1999; Dissanayake et al. 2001;

Thrun et al. 2001; Thrun 2002; Hahnel et al. 2003; Estrada

et al. 2005; Thrun et al. 2005; Grisetti et al. 2007b). The

former consists of estimating the pose of a mobile robot

within a known environment, whereas in SLAM the map

is also estimated while performing self-localization.

In both problems the choice for the representation of

the environment determines the probabilistic estimation

method that can be applied. For example, landmark maps

can be modeled by multivariate Gaussian distributions

with Gaussian observation models that can be obtained

by solving the data association problem (Dissanayake

et al. 2001; Davison et al. 2007). Thus, SLAM with land-

mark maps can be solved through Gaussian filters such as

the extended Kalman filter (EKF) (Julier and Uhlmann

1997) or the unscented Kalman filter (UKF) (Wan and

Van Der Merwe 2000). However, there are other types

of map representations, such as occupancy grid maps

(Moravec and Elfes 1985; Thrun 2003), where these meth-

ods are not applicable, forcing a sample-based representa-

tion of probability densities. In this case, sequential

estimation can be carried out via Monte Carlo simulations,

and the associated filtering algorithms receive the generic

name of particle filters (Doucet et al. 2001). In this work

we focus on these occupancy grids, although the proposed
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method can be also applied to other maps compatible with

a sample-based representation of distributions (e.g. gas

concentration maps (Loutfi et al. 2007) or topological

maps (Ranganathan et al. 2006)). Among the advantages

of mapping with occupancy grids we find the precise

dense information they provide and the direct relation of

the map with the sensory data, which avoids the problem

of data association in landmark maps (Neira and Tardós

2001). Their main drawback is that the probabilistic

observation model for grid maps can be evaluated only

pointwise in a non-parametric form (Thrun 2001; Thrun

et al. 2005), in contrast to the analytical models available

for landmark maps (Dissanayake et al. 2001; Davison

et al. 2007).

Provided that we are able to draw samples according to

the system transition model (the robot motion model in our

study case) and to pointwise evaluate the observation

model, we can sequentially solve localization and SLAM

through one of the most basic particle filter (PF) algo-

rithms, the sequential importance sampling (SIS) filter

(Rubin 1987), subsequently modified to account for the

particle depletion problem (Arulampalam et al. 2002) by

means of a resampling step, leading to the SIS with

resampling (SIR) filter (Rubin 1988; Gordon et al. 1993).

However, the efficiency of these algorithms is greatly com-

promised by peaky sensor models and outliers, which cause

most of the particles to be discarded in a resampling step

and lead to particle impoverishment or even to the diver-

gence of the filter. For mobile robots this issue typically

arises in robots equipped with low-noise sensors such as

laser range finders.

A theoretical solution that enables the efficient represen-

tation of probability densities through perfectly distributed

particles was proposed by Doucet et al. (2000b), consisting

of an optimal proposal distribution from which to draw

samples at each time step. However, a direct application

of this approach requires an observation model with a para-

metric distribution (i.e. from which random samples could

be drawn), whereas for grid maps we can evaluate it only

pointwise (Thrun et al. 2005).

The contribution of this work is a new PF algorithm

that, given the same requirements as the original SIS and

SIR algorithms, dynamically generates the minimum

number of particles that best represent the true distribu-

tion within a given bounded error, thus providing optimal

sampling. Our method is grounded on previous works

related to optimal sampling (Doucet et al. 2000b, a), aux-

iliary particle filters (APFs) (Pitt and Shephard 1999),

rejection sampling (Liu and Chen 1998), and adaptive

sample size for robot localization (Fox2003). All of these

ideas are discussed throughout the text. Note also that a

preliminary version of this work appeared in Blanco

et al. (2008).

In the context of mobile robots, the present work

represents important improvements with respect to previ-

ous algorithms for efficient localization and grid map

building:

� No Gaussian approximations are assumed for the

generation of new particles, which is the case in previ-

ous works (Montemerlo 2003; Grisetti et al. 2007b).

� To the best of the authors’ knowledge, this is the first

time in SLAM that the number of particles has been

adapted automatically to the uncertainty that is present

at each time step. This implies that memory and compu-

tational requirements are self-adjusted during the map

building process (e.g. after closing a long loop the num-

ber of samples is largely reduced).

� Our method is based on the formulation of a general PF,

and does not depend on the reliability of scan matching

as in previous works. Approximating the peak of the

posterior distribution by a Gaussian centered at the

result of scan matching actually hides the true robot

pose distribution, and may lead to filter divergence if

the scan matching procedure fails, as pointed out by

Montemerlo (2003) and Grisetti et al. (2007b).

Like other PF algorithms, our proposal should be used

only when either the system models are non-linear or the

filtered distributions or the observation model cannot be

approximated well by Gaussians. Otherwise, Kalman-like

filters (Julier and Uhlmann 1997; Wan and Van Der Merwe

2000) are more efficient.

The rest of the article is outlined as follows. In Section 2

we discuss previous PF algorithms that have been applied

to robotics. Our proposal is introduced in Section 3, and

a complexity analysis is presented in Section 4. We provide

experimental results with real data in Section 6, and finally

we highlight some conclusions.

2. Background

In this section we review the underlying ideas of Monte

Carlo methods for sequential Bayesian filtering. We focus

on the applications of PFs to robot localization and SLAM.

For a good introduction to PFs the reader can refer to Aru-

lampalam et al. (2002), while a more exhaustive review of

theoretical advances in the field can be found in Doucet

et al. (2001) and Ristic et al. (2004).

With subtle differences, the solutions to both localiza-

tion and SLAM include the estimation of the posterior dis-

tribution of the robot poses up to the current instant of time

given the whole history of available data. Let

xt ¼ fx1; . . . ; xtg denote the sequence of robot poses (the

robot path) up to time step1 t. Then, the posterior of

the robot pose can be computed sequentially by applying

the Bayes rule:

pðxtjzt; utÞ / pðztjxt; utÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{Observation likelihood

pðxtjzt�1; utÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Prior

; ð1Þ

where the zt and the ut represent the sequences of robot

observations and actions, respectively. In the case of loca-

lization, we are interested just in the last robot pose instead

of the whole path, as in SLAM.

Blanco et al. 1727
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Under the assumptions of Gaussian distributions and

linear systems, the Kalman filter (Kalman 1960) offers a

closed-form, optimal solution to Equation (1). Several

improvements have been proposed to overcome the

assumption of a linear system, leading to the EKF (Julier

and Uhlmann 1997) (and its dual the Extended Information

Filter (EIF)(Thrun et al. 2004)), the UKF (Julier 2002;

Wan and Van Der Merwe 2000), and other higher-order

approximations (Tenne and Singh 2003). The EKF has

been the predominant approach to localization and SLAM

for almost a decade (Dissanayake et al. 2001). However,

some drawbacks of this Gaussian filter led to the popular-

ization of PFs for global localization (Fox et al. 1999a),

and, more recently, also for mapping (Murphy 1999; Mon-

temerlo et al. 2002a; Grisetti et al. 2007a).

As opposed to parametric probability distributions (e.g.

Gaussians and sum of Gaussians), in a PF the estimated dis-

tribution of the pose (and the map in SLAM) is represented

by a finite set of hypotheses, or particles, which are

weighted according to importance sampling. The simplest

PF algorithm is the SIS filter (Rubin 1987), which is

described next in the context of robot localization. Concre-

tely, let fxt;½i�gMt

i¼1 denote a set of robot path hypotheses for

the time step t, approximately distributed according to the

posterior:

xt;½i� � pðxtjzt; utÞ; i ¼ 1; . . . ;Mt: ð2Þ

Note that virtually all previous PF techniques rely on Mt

representing a constant number of particles for all time

steps t (we can find an exception in the work by Fox

2003). Since the particles in Equation (2) will not, in gen-

eral, be distributed exactly according to the true posterior,

they are weighted by the so-called importance weights

o½i�t , therefore obtaining an unbiased estimation of the

density. The SIS algorithm consists of simulating the Bayes

update in Equation (1) by drawing samples for the

new robot pose from some proposal distribution

doucet2000rbp:

x
½i�
t � qðxtjxt�1;½i�; zt; utÞ ð3Þ

and updating their weights by

o½i�t / o½i�t�1

pðztjxt; x
t�1;½i�; zt�1; utÞpðxtjx½i�t�1; utÞ
qðxtjxt�1;½i�; zt; utÞ : ð4Þ

The simplest choice for the proposal distribution qð�Þ is the

robot motion model: the prior in Equation (1). In this paper

we refer to this choice as the standard proposal. In this

case, widely employed in robotics (Fox et al. 1999a; Mon-

temerlo et al. 2002a; Fox 2003), the weight update in Equa-

tion (4) simplifies to the product of the previous weights

with the evaluation, at each particle, of the observation

model pðztjxt;½i�; zt�1; utÞ. Note how the SIS filter requires

only the ability of drawing samples from the robot motion

model and evaluating the observation likelihood pointwise.

In spite of its simplicity, the SIS filter cannot be used in

practice. It has been demonstrated that the variance of the

weights increases over time (Doucet et al. 2000a), which

eventually leads to the degeneracy of the filter. This is the

reason for the introduction of the algorithm SIR (Gordon

et al. 1993), where a resampling step replaces those parti-

cles with low weights by copies of more likely particles.

In the case of map building, Rao–Blackwellized particle

filters (RBPFs) are a practical solution for simultaneously

estimate both the robot path and the map (Murphy 1999).

These RBPFs have been used for landmark maps

(FastSLAM (Montemerlo et al. 2002a)), and for occupancy

grids (Grisetti et al. 2007a).

However, all of the above PFs suffer from one problem:

their efficiency is strongly influenced by the choice of the

proposal distribution qð�Þ. The larger mismatch between the

proposal and the observation likelihood, the more particles

are wasted in non-relevant areas of the state space. In partic-

ular, this is the case of mobile robots equipped with accurate

sensors such as laser scanners (Grisetti et al. 2007a).

A more efficient approach was presented by Pitt and

Shephard (1999) through the APF, which has also been

applied to robot localization (Vlassis et al. 2002). In an

APF, the process of drawing particles is separated into two

steps. First, each particle in the previous time step is

assigned a measure of its predicted accordance with the

most recent observation, and then only those particles that

obtain high weights are propagated. Thus, a one-step looka-

head resampling is introduced at each step in this filter. In

general, an APF outperforms traditional filters in the cases

of peaky observation models or outliers, reducing the

number of wasted particles. However, the particles are also

propagated using the standard proposal distribution, which

is a suboptimal solution.

It has been demonstrated by Doucet et al. (2000b) that

the variance of the particle weights is minimized by choos-

ing an optimal proposal distribution, which incorporates

the information of the most recent observation while propa-

gating particles. We must remark that this optimal proposal

has been generalized more recently in another work by

Doucet et al. (2006) in the form of block sampling, where

N consecutive observations are jointly used to derive

an‘‘N -joint optimal proposal distribution’’. The application

of this technique to SLAM has been explored in Beevers

and Huang (2007). While in this paper we focus on the

original optimal distribution introduced in Doucet et al.

(2000b), our approach and block sampling are complemen-

tary, in the sense that both could be employed together.

However, this topic requires further research and is not

addressed here.

Regarding the optimal proposal distribution, there exists

a closed-form solution for landmark maps which has been

reported with the name of FastSLAM 2.0 (Montemerlo

2003). However, for other map representations such as

occupancy grids, parametric observation models are not

available. A solution proposed by Grisetti et al. (2007a,

b) overcomes this by approximating the sensor model with

1728 The International Journal of Robotics Research 29(14)
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a Gaussian whose mean value is obtained by scan matching

over the grid map. This approximation has demonstrated its

practical utility allowing the efficient mapping of large

environments. However, we should highlight some impor-

tant drawbacks of this approach. First, the observation

likelihood may not be appropriately approximated by a

Gaussian in many situations, thus the posterior distribution

would be severely distorted. Even in those cases where the

observation likelihood could resemble a Gaussian, it cannot

be proven that the mean value of the posterior could match

with that obtained from scan matching. Actually, there are

some practical situations where scan matching techniques

fail. It has been proposed to discard the information of the

corresponding observations (Grisetti et al. 2007a), but

observe that even in those cases we could obtain a more

precise posterior by integrating all of the available informa-

tion, which is lost otherwise. Second, the prior distribution

is ignored due to its inaccuracy in comparison with the

observation likelihood. However, in an exact computation

of the posterior this prior distribution (computed from the

motion model) would provide valuable information when

facing ambiguous sensor measurements, e.g. a robot in a

populated environment where people block the scanner.

A classification of the methods discussed in this section

is presented in Table 1, which also includes our method for

comparison. While this article focuses on localization and

SLAM, we should remark that the generic PF presented

here can be applied to any other estimation problem where

non-parametric observation models appear. For example,

in the robotics and computer vision literature we can

find several applications of PFs for tracking people

(Choo and Fleet 2001; Schulz et al. 2001; Montemerlo

et al. 2002b) or arbitrary objects on a sequence of images

(Nummiaro et al. 2003; Okuma et al. 2004).

3. The Optimal Particle Filter

3.1. Preliminary Definitions

It has been shown that the optimal proposal distribution that

minimizes the variance of the next weights for any generic

PF is given by (Doucet et al. 2000b)

x
½i�
t � qðxtjxt�1;½i�; zt; utÞ ¼ pðxtjxt�1;½i�; zt; utÞ

¼ pðztjxt; x
t�1;½i�; zt�1; utÞpðxtjxt�1;½i�; zt�1; utÞ

pðztjxt�1;½i�; zt�1; utÞ :
ð5Þ

For mobile robots this proposal requires drawing samples

from the product of the transition (robot motion) and obser-

vation models, which are the terms that appear in the

numerator of Equation (5). Since the system state for the

last time step (xt) does not appear in the denominator, this

is a constant value m for each particle i. Therefore, drawing

samples from the optimal proposal is equivalent to drawing

from

x
½i�
t �

1

m
pðztjxt; x

t�1;½i�; zt�1; utÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Observation model

pðxtjxt�1;½i�; zt�1; utÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Transition model

: ð6Þ

By replacing this optimal proposal in the general equation

for the weight update in a SIS filter, in Equation (4), we

obtain

o½i�t / o½i�t�1pðztjxt�1;½i�; zt�1; utÞ: ð7Þ

At this point, we state that the purpose of our optimal PF

algorithm is to generate samples exactly distributed accord-

ing to the density in Equation (5), while dynamically adapt-

ing the number of samples to assure a good representation

of the true posterior at each moment.

To avoid the problem of particle depletion we have

found two different approaches in other works. The first

is to resample particles at every time step as required

to ensure that they represent the true posterior well.

Another solution consists of resampling only when a

measure of the representativeness of the samples is below

a given threshold (Rubin 1988). We employ the first

approach for the derivation of our optimal algorithm.

As discussed later on, this generic optimal filter fits per-

fectly to the problem of mobile robot localization. In a

subsequent section we introduce a variation applicable

to SLAM by using selective resampling in order to avoid

problems that arise from the higher dimensionality of that

problem.

3.2. Derivation of the Optimal Filter Algorithm

In the following we derive the algorithm for generating a

dynamically sized set of samples according to the exact

posterior being estimated. To clarify the exposition we

have summarized the process graphically in Figure 1.

We start by assuming that a set of Mt�1 particles x
½i�
t�1 is

available which are exactly distributed according to the

posterior of our system for the time step t � 1, that is

Table 1. Bayesian Filtering Algorithms that have been Applied to Localization and SLAM.

Proposal distribution System models Algorithms

– Linear Gaussian Kalman Filter, Kalman, 1960

– Non-linear Gaussian EKF, Julier and Uhlmann, 1997

UKF, Wan and Van Der Merwe, 2000

Standard Non-linear non-Gaussian SIR, Gordon et al 1993; APF, Pitt and Shephard, 1999

RBPF, Murphy, 1999; FastSLAM, Montemerlo et al, 2002

Optimal Non-linear Gaussian FastSLAM 2.0, Montemerlo et al 2003; Grisetti et al, 2007a, b

Optimal Non-linear non-Gaussian This work

Blanco et al. 1729
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x
½i�
t�1 � pðxt�1jzt�1; ut�1Þ: ð8Þ

Since these samples are optimally distributed, all of

them will have equal importance weights, and so they can

be omitted. The assumption of perfectly distributed parti-

cles for the previous time step is not a problem but for the

first iteration of the filter. Typical assumptions for the ini-

tial belief include uniform or Gaussian distributions,

depending on the available information and the specific

problem.

Now we introduce a set of auxiliary particles ~x
½i;j�
t�1 with

associated importance weights ~o½i;j�t�1, such that

~x
½i;j�
t�1 ¼ x

½i�
t�1; j ¼ 1; . . . ;N ;

~o½i;j�t�1 ¼ 1
NMt�1

:
ð9Þ

That is, we replicate N times each particle x
½i�
t�1, assigning

equal weights to all of them. Note that this process does not

modify the sample-based estimation of the posterior, since

each particle i is replicated the same number of times. We

use these auxiliary particles just as a computation artifact:

in practice only a few of them need to be generated, as will

become clear in the following. Therefore, the value N is left

undefined here, although it is convenient to think of it as a

large value, ideally infinity.

The auxiliary particles are propagated according to the

optimal proposal, in Equation (6), in order to obtain a large

(ideally an infinite) number of optimally distributed parti-

cles ~x
½i;j�
t , from which we finally keep only the required par-

ticles for providing a good representation of the posterior.

This is achieved by generating the new set of particles

x
½k�
t by resampling the set of auxiliary samples ~x

½i;j�
t .

The key point that allows us to directly generate the

optimally distributed particles without computing all of the

auxiliary particles is that all of the auxiliary particles ~x
½i;j�
t

that come from a given particle x
½i�
t�1 will have equal

weights. This property follows from the fact that the con-

crete value of the particle at time step t does not appear

in the computation of the new weights, as can be seen in

Equation (7). These groups of equally weighted samples

are schematically represented in Figure 1.

As has been mentioned, to generate the optimal particles

x
½k�
t we must resample the auxiliary set at time step t. Simi-

larly to the auxiliary PF (Pitt and Shephard 1999), we per-

form this by drawing indexes i of particles for the previous

time step, in our case with a probability proportional to the

weights ~o½i;j�t , which are given by

~o½i;j�t ¼ ~o½i;j�t�1pðztjxt�1;½i�; zt�1; utÞ: ð10Þ

Here the a priori likelihood of the observation zt can be

expanded using the law of total probability:

pðztjxt�1;½i�; zt�1; utÞ

¼
Z

pðxtjx½i�t�1; utÞpðztjxt; x
t�1;½i�; zt�1Þdxt:

ð11Þ

The terms that appear inside the integral above are the

system transition and observation models, respectively.

Since we are assuming in this work that we can only

draw samples from the system transition model and

evaluate pointwise the observation model, a Monte Carlo

approximation of the integral p̂ðztj�Þ � pðztj�Þ can be

obtained by means of

p̂ðztjxt�1;½i�; zt�1; utÞ ¼ 1

B

XB

n¼1

pðztjx½n�t ; x
t�1;½i�; zt�1Þ ð12Þ

with the B samples x
½n�
t generated according to the system

transition model, e.g. the robot motion model for localiza-

tion and SLAM. The number B is a heuristic parameter of

our algorithm, and will be typically in the range 10–200

depending on the specific problem addressed by the filter.

{ }
[i]

t−1t−1

i=1...Mt−1
x

t−1
[1] [2]

{ }
[i,j]

[i,j]

[i,j]

[i,j]

,
j=1...N

j=1...N

x ω
[1,1] [1,N] [2,1] [2,N]

…

……

[M 
t−1

]

[M
t-1

,1] [M
t−1

,N]
…

…… …

…

{ }
[k]

k=1...Mt
x

t

…

[1] [2] [M
t
]

…

Auxiliary particles

Particles for time step t–1:    

Particles for time step t:    

Group 1 Group 2 Group M
t−1

 

…

Duplication

Rejection sampling
 and weight update 

Adaptive
 resampling 

……

{x
t

},σψ

[3]

t

Fig. 1. The theoretic model of our optimal particle filter. An initial set of Mt�1 particles is first replicated into a set of auxiliary

particles, which are then propagated according to the optimal proposal distribution (simulated by rejection sampling). Then, a

resampling stage (with an adaptive sample size) chooses the final set of Mt samples from the updated auxiliary particles, taking each

one of them with a probability proportional to its weight. As a result, all of the final particles have equal importance weights (omitted in

the graph by this reason).
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In general, larger values of B would lead to a better approx-

imation of the optimal proposal, but would also carry a

higher computational cost. If a grounded value for B is

desired for a specific problem, simulations should be per-

formed to determine how fast does the sum in Equation

(12) converges.

Going back to the resampling of the auxiliary particles,

for each drawn index i we generate a new optimal particle

by taking the value of any auxiliary particle in the ith group,

since all of them have equal probability of being selected in

the resampling. That is, the new optimal particle x
½k�
t is a

copy of ~x
½i;j�
t , where the value of j does not need to be

specified. Note that the importance weights of the final

particles given by our algorithm can be ignored, since par-

ticles obtained by resampling all have exactly the same

weights.

We need to provide a method to compute the concrete

value of the auxiliary particles ~x
½i;j�
t for some certain value

of i. We employ here the rejection sampling technique to

draw from the product of the transition and observation

densities: refer to Equation (6). Basically, this technique

consists of generating samples x
½k�
t following one of the

terms of the product (the transition model in our case), and

accepting the sample with a probability D proportional to

the other term (the observation model) (Liu and Chen

1998):

D ¼ pðztjx½k�t ; x
t�1;½i�; zt�1; utÞ

p̂maxðztjxt; xt�1;½i�; zt�1; utÞ : ð13Þ

We must remark that this technique has a stochastic

complexity (a random execution time), as discussed in

more detail in Section 4. The only quantity required to eval-

uate Equation (13) is the maximum value of the observation

model p̂maxðztj�Þ. This value can be estimated simultane-

ously to the Monte Carlo approximation in Equation (12)

for the same set of samples x
½n�
t , thus it does not imply fur-

ther computational cost.

Up to this point we have shown how to generate one particle

according to the true posterior given the set of particles for the

previous time step. The above method can be repeated an arbi-

trary number of times to generate the required number of par-

ticles Mt for the new time step t. To determine this dynamic

sample size we propose to integrate here the method

introduced by Fox (2003). In that study the concept of

Kullback–Leibler distance (KLD) (Cover and Thomas

1991) was used, which measures the similarity between a

pair of probability densities p1ðxÞ and p2ðxÞ, and is defined

as

Dðp1; p2Þ ¼
Z

p1ðxÞ log
p1ðxÞ
p2ðxÞ

dx: ð14Þ

As that work shows, the minimum number of particles Mt

to ensure that the KLD between the estimated and the real

distributions is kept below a certain threshold E with a

probability1� d is given by

Mt fx½j�t gj

� �
¼ 1

2E
w2

l�1;1�d; ð15Þ

where w2
d;q denotes the qth quantile of the chi-squared dis-

tribution with d degrees of freedom. In this approach the

state space of the robot is divided into a regular grid, and

l represents the number of bins from that grid occupied

by at least one particle. Refer to Fox (2003) for further

details.

In the localization experiments presented later on, we

have employed bins of 7cm� 7cm� 2	 in order to discre-

tize the three-dimensional robot pose and obtain the num-

ber of occupied bins l for Equation (15), with parameters

E ¼ 0:01 and d ¼ 0:01. In the case of SLAM, note that the

whole robot path has an increasing dimensionality of 3t

for time step t, hence discretizing the robot path into bins

Algorithm 1 optimal_particle_filter fx½i�t�1g
Mt�1

i¼1 ! fx
½k�
t gMt

k¼1

1: for all particle x
½i�
t�1 do

2: for n ¼ 1 to B do // Generate a set of B samples from the transition model

3: x
½n�
t � pðxtjx½i�t�1; utÞ

4: end for

5: Use the samples to compute p̂ðztj�Þ and p̂maxðztj�Þ
6: Compute ~o½i�t using Equations (10)–(12)

7: end for

8: for k ¼ 1 to Mt fx½j�t gk
j¼1

� �
do //Mt dynamically determined by KLD sampling (Fox 2003)

9: Draw an index i with probability proportional to ~o½i�t .

10: repeat // Generate a new sample by rejection sampling

11: x
½k�
t � pðxtjx½i�t�1; utÞ // Draw a candidate sample from the transition model

12: Compute D through Equation (13)

13: a � Unif ð0; 1Þ // Draw a random uniform sample

14: until a < D // Candidate is accepted with a probability of D
15: end for

Blanco et al. 1731

 by guest on April 9, 2012ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


will probably lead to a rapid exponential growth as the

robot explores new areas. We have experimentally verified

that considering the latest robot pose only instead of

the whole path for computing l is an acceptable approxima-

tion while keeping the number of samples reasonably

bounded.

To summarize the introduction of our algorithm we

present an algorithmic description of the overall method

in Algorithm 1.

4. Complexity Analysis

In this section we analyze rigourously the time complexity

of our optimal filter, using as a reference the sequence of

steps in the algorithmic description of Algorithm 1. Recall

we defined Mt�1 and Mt as the number of particles in the

current and the previous time steps, while B represents the

fixed number of auxiliary samples employed in the Monte

Carlo approximation in Equation (12). We detail next the

contributions of the individual operations to the overall

execution time:

� Estimation of p̂ðztj�Þ and p̂maxðztj�Þ (lines 1–7 in Algo-

rithm 1). Here the observation model is evaluated B

times for each particle in t � 1, thus the complexity

becomes OðTLBMt�1Þ, where TL denotes the constant

time factor associated with a single pointwise evalua-

tion of the observation model.

� Determination of Mt by means of KLD sampling (part of

line 8). In principle, the most time-consuming part of

this method is counting the bins in the state space that

hold at least one particle. However, this can be reduced

to a constant time operation (with duration TK ) by

implementing the bin counters as a simple array, as sug-

gested in (Fox 2003). Thus, the complexity of the step

is OðTKMtÞ. More memory efficient methods could be

employed (such as keeping an ordered list of occupied

bins) at the cost of a higher time complexity.

� Draw index samples i (line 9). This operation requires

the computation of the cumulative density function

(cdf) of the particle weights, then draw a uniform ran-

dom number and look up (with OðTCMt�1Þ) that cdf

to obtain an index of particles from the previous set.

This process is repeated for each of the Mt particles,

thus the overall complexity becomes OðTCMtMt�1Þ.
� Rejection sampling (lines 10–14). If we use R to denote

the number of trials required to obtain an accepted sam-

ple in each of the Mt iterations, we have a complexity of

OðTLRMtÞ where TL is included since the observation

model is evaluated at every rejection sampling trial.

Since R is actually a random variable this operation has

a non-deterministic time complexity (further discussed

below).

For the application stressed in this work, a mobile robot

with a laser scanner and occupancy grid maps, the overall

complexity is strongly determined by the number of times

the observation model is evaluated, since TL will be usually

larger than the other time constants. From the individual

complexities described above we conclude that this number

of times is of the order OðBMt�1 þ RMtÞ. The number of

particles, Mt�1 and Mt, will remain approximately constant

for localization, whereas in SLAM the sample size

increases as the robot explores long loops, decreasing after

Fig. 2. The probability of the required number of rejection sampling iterations (R) until the first accepted sample, modeled as a

Bernoulli process and for a prior and an observation model normally distributed. In (a) the centers of both Gaussians coincide

(Dm ¼ 0), whereas in (b) they do not. As a consequence more trials are required in average to obtain an accepted sample. The parameter

t ¼ so=sp reflects the relative variance of each Gaussian. Observe how more trials are needed as the observation model becomes

more peaked (lower t values).
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closing them. Thus, any bound to the computation time

limits the size of the loops our algorithm can process in

real-time, just as also happens to EKF-based methods.

A promising approach to overcome these limitations is to

consider hierarchical (or hybrid) map representations

(Bosse et al. 2004; Estrada et al. 2005; Blanco et al.

2007), an issue out of the scope of this article. The other

values that determine the performance of our algorithm are

B and R. Since B is a fixed parameter, we focus next on the

factors that determine the random variable R, i.e. the num-

ber of trials required to accept one sample in rejection

sampling.

First, we can model rejection sampling as a Bernoulli

process, since each trial consists of an independent test with

just two possible outcomes: acceptance or rejection. The

number of Bernoulli trials required to obtain the first

success, denoted by R, is known to follow a geometric

probability distribution PðRÞ ¼ pð1� pÞR�1
, where the

parameter p states the probability of success for each indi-

vidual trial. Provided with this parameter, the expected

number of trials until the first success is then given by

E½R� ¼ 1=p (the mean of a geometric distribution), which

determines the average performance of our algorithm.

Unfortunately, the parameter p cannot be computed in

closed form for generic prior and observation models. In

general, this probability will be high if the prior in the filter

coincides with the observation likelihood of the last obser-

vation. To illustrate this we have derived an analytical solu-

tion for the expected value of p (refer to the Appendix)

for the specific situation of both the prior and the obser-

vation model being Gaussians. The cdf of R, given by

cdf ðRÞ ¼ 1� ð1� pÞR, is represented in Figure 2 for val-

ues of p in two different situations: the prior and the obser-

vation likelihood being centered at the same point (Dm ¼ 0,

left graph), and separate (Dm ¼ 0:5, right graph). It is clear

how the first case requires fewer trials than the later for a

given cdf of succeeding. For both situations we have also

swept the ratio between the standard deviations of the prior

(sp) and the observation likelihood (so), which is reflected

by the parameter t: a low value indicates a‘‘narrow’’ obser-

vation model, i.e. a precise sensor. The results confirm that

a more precise sensor will require more trials on average,

an effect that becomes stronger for a larger mismatch

between the prior and the observations: observe how the

curve for t ¼ 0:25 is farther from the rest in the case of

Dm ¼ 0:5.

Algorithm 2 optimal_pf_selective_resamplingfxt�1;½i�;o½i�gMt�1

i¼1 ! fxt;½k�; o½k�gMt

k¼1

1: for all particles x
½i�
t�1 do

2: for n ¼ 1 to B do // Generate a set of B samples

3: x
½n�
t � pðxtjx½i�t�1; utÞ

4: end for

5: Use the samples to compute p̂ðztj�Þ and p̂maxðztj�Þ
6: end for

7: p permð½1; 2; . . . ;Mt�1�Þ // Random permutation of the Mt�1 indices

8: doResampling  ESSðfo½i�gMt�1

i¼1 Þ < 0:5// Selective resampling

9: for k ¼ 1 to Mt fx½j�t gk
j¼1

� �
do // Mt dynamically determined by KLD sampling (Fox2003)

10: if doResampling then

11: Draw an index i with probability given by ~o½i�t . See Equation (10)

12: else

13: if k 
 Mt�1 then

14: i p½k�// Deterministic sampling

15: else

16: i � Unif ð1;Mt�1Þ// Uniform (integer) sampling

17: end if

18: end if

19: repeat // Generate a new sample from i by rejection sampling

20: x
½k�
t � pðxtjx½i�t�1; utÞ// Draw a candidate sample

21: a � Unif ð0; 1Þ // Draw a random uniform sample

22: until a < D// Candidate accepted with a probability D –see Equation (13)

23: if doResampling then // Now, assign the weight

24: o½k�  1 // Reset weights on resampling

25: else

26: o½k�  o½k� � ~o½i�t // Apply likelihood factor

27: end if

28: end for
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As an interesting conclusion, we can state that the time

complexity of our algorithm increases with increasing mis-

match between the prior and the most recent observation. In

other words, the optimal PF will run faster for better motion

models, and slower for very precise sensors (in turn, the

accepted samples will be always consistent with both motion

and observation models). In principle, there is not an upper

bound for the time consumed by our algorithm, although in

practice we have obtained acceptable execution times as

shown in the following experiments. However, if we desire

a hard bound to this time, our algorithm could be modified

to account for a maximum number of rejection sampling trials,

at the expense of having samples with non-equal weights and

losing the optimality in the distribution of samples.

5. Optimal Filtering for RBPF-SLAM

The generic optimal PF algorithm introduced above can be

directly applied to robot localization. In this section we

propose two modifications to the generic algorithm to

improve its suitability to SLAM. First, we recall that

the dimensionality of the state space being estimated in

the‘‘full SLAM’’ problem (Thrun et al. 2005) continuously

increases over time. In this context, the resampling that our

algorithm performs at every step may lead to a loss of the

diversity of particles for representing the robot path. This

is a common problem of all PFs, and can be alleviated by

introducing selective resampling steps (Liu and Chen

1998; Grisetti et al. 2007a), as explained below. Second,

we also discuss an approximation to the original KLD sam-

pling method (Fox 2003) for determining the dynamic

number of samples.

5.1. Selective Resampling

Our purpose is to delay resampling as much as possible to

avoid the loss of diversity, for example, by monitoring a

measure of diversity such as the effective sample size

(ESS) (Liu 1996). At each iteration, we compute the ESS

and, only if it is below a threshold (typically 0.5 times the

number of particles), the particles are resampled. In that

case the procedure will be exactly as described in

Algorithm 1. Otherwise particles are not resampled, and

their weights must be updated according to the correspond-

ing equation for the optimal proposal in Equation (7), also

considering the approximation of p̂ðztj�Þ described in

Equation (12).

In this latter case, the introduction of a variable number

of particles in our algorithm makes the method to draw par-

ticle indexes (the i in line 9 of Algorithm 1) more complex,

since it must be ensured that all particles have the same

probability of passing to the next iteration if resampling

is not performed. In a traditional filter with a fixed sample

size this is achieved by propagating just once each particle

from the previous time step (Liu and Chen 1998; Grisetti

2007a). In our case we propose the following mechanism

to generate the particle indexes i½l�, for l ¼ 1; . . . ;Mt (recall

that indexes i indicate which particles from the previous

time step t � 1 are selected to generate the Mt new

particles):

i½l� : i½l� ¼ p½l� l 
 Mt�1;
i½l� � Unið1;Mt�1Þ l > Mt�1;

�
ð16Þ

with p½l� ¼ permð½1; . . . ;Mt�1�Þ being a random permuta-

tion2 of the vector ½1; . . . ;Mt�1�, which is computed only

once for all of the indexes i½l�. In this way, if the number

of particles is reduced at some time step, the permutation

ensures that all particles have identical probabilities of

being removed. If the number of particles remains constant

this method only introduces a reordering of the samples,

which does not affect the estimated density. Finally, in the

case of more particles it is also ensured that all of the pre-

vious particles have the same probability of being selected

more than once. Hence, the overall selection method can be

seen as sampling from a uniform distribution of indexes,

with the advantage of asserting that no hypothesis will be

[i]
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Fig. 3. (a) The number of particles required to maintain a proper sampling of the whole state space in full SLAM grows exponentially

with time. (b) An alternative proposed in the text, where only the marginal for the latest robot pose is employed to determine the

number of required samples.

1734 The International Journal of Robotics Research 29(14)

 by guest on April 9, 2012ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


lost as long as Mt � Mt�1 (otherwise it would mean that

there are too many particles and we really want to remove

some hypotheses). The complete modified algorithm for

selective resampling is shown in Algorithm 2.

5.2. Approximate KLD Sampling

In KLD sampling (Fox 2003), the continuous d-dimen-

sional state space of the PF is approximated by a d-dimen-

sional discrete grid where the number of occupied bins

settles the final number of required particles.

In the original context of KLD sampling, robot

localization, the dimensionality of the problem is fixed to

d ¼ 3 (two-dimensional position plus heading). Under

such a bounded dimensionality we can expect a limited

number of samples in most common situations. A

preeminent (although transient) exception is global locali-

zation. In contrast, when KLD sampling is applied to full

SLAM the problem dimensionality increases with time t

since the filter estimates the whole robot path, with a

dimensionality of dt, that is, of the order of OðtÞ.
When the number of samples is dynamically adapted in

such a problem, it is inevitable for the required number of

Fig. 4. A comparison of our method to other particle filter (PF) algorithms for a linear, Gaussian system. (a) The obtained particles and

weights for two of the algorithms (top), and the weighted histograms of the samples compared with the exact Gaussian density being

estimated (bottom). Only the particles for sequential importance sampling with resampling (SIR) and our optimal PF are shown to save

space. (b) The average Kullback–Leibler divergence (and 10–90% confidence intervals) between the real and the estimated distributions

for the four algorithms. Observe how our method achieves the lowest distance, i.e. the highest similarity, for each sample size.

Blanco et al. 1735

 by guest on April 9, 2012ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


particles to grow without bounds. This is nothing else than

the need to perform importance sampling properly on each

of the dimensions, which intuitively can be seen to demand

an exponential number of samples (this is, in fact, mathe-

matically proven in the following). In order to alleviate this

rapidly increasing demand of particles, we propose the fol-

lowing alternative: instead of applying KLD sampling to the

state space of the whole robot path, it can be applied to just the

most recent robot pose xt. Although in this case the dimen-

sionality also stays fixed as in robot localization, there is an

important difference: when a robot explores new terrain, its

pose uncertainty will grow until a loop closure occurs,

hence in this case the number of samples increases as well.

To sum up, we can devise two ways of computing the

adaptive number of samples in our optimal PF for SLAM:

(i) employ KLD sampling over the whole robot path; or (ii)

use it just over the latest robot pose. It has been shown that,

intuitively, both approaches will lead to a growth in the

number of samples, although in the first case this growth

is unbounded and in the latter the population of particles

will reduce after closing a loop.

In order to arrive at a quantitative comparison between

both alternatives some simplifications need to be done,

given that the exact evolution of uncertainties in SLAM

depends on the sensors employed, the properties of the

environment and the specific path followed by the robot.

First, we assume that the estimates for the d dimensions

of the robot pose are uncorrelated between them, thus the

problem is equivalent to estimating d unidimensional vari-

ables. Focusing on the case of full SLAM, let us consider

the evolution along time of one single particle, such as that

represented in Figure 3 (a) for xt. After one filter iteration,

this single hypothesis should spread over the space due to

the combined uncertainties of both transitions and
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Fig. 5. Results for the localization experiments. (a) The map used for the experiment and the robot path through the environment. (b)

The average error in positioning while tracking the robot pose using a sequential importance sampling with resampling (SIR) filter and

our optimal algorithm, both for different sample sizes. The mean and the 10–90% confidence intervals for 100 repetitions are shown.

Observe how our method performs well even for just one particle. (c) The same errors, shown as a function of the overall execution time.
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observations. Assuming that this increase of uncertainty‘‘-

converts’’ a single particle into a Gaussian with a standard

deviation of s0, it is obvious that several samples will be

required to perform a proper sampling of xtþ1. When sam-

pling a Gaussian, it is plausible to assume that KLD sam-

pling will lead to a number of samples proportional

(through a constant k) to its standard deviation.

Therefore, for t þ 1 we have a number of samples

Mtþ1 ¼ ks0. Following Figure 3(a), it can be seen that for

the next time step t þ 2 the process is repeated, but now we

have several samples as the start point (those for xtþ1). It is

easy to see that ks0 samples will be required to sample xtþ2

for each‘‘parent’’ sample in xtþ1, from which it can be

deduced by induction that

Mt ¼ O kdt
� �

; ð17Þ

where the factor d needs to be introduced since the above

derivation was carried out for just one dimension. This

result confirms the intuitive claim above about the expo-

nential growth in the number of samples required to per-

form full SLAM.

We now focus on the alternative approximation, where

KLD sampling is applied to just the latest robot pose,

xtþ2 in the present example. Under the same assumptions

stated above, it can be shown that the probability distribu-

tion function (pdf) for each unidimensional component of

the robot pose is a Gaussian, whose variance can be com-

puted by means of a Kalman filter to be st / s0

ffiffi
t
p

. As

above, if KLD sampling gives us a number of required par-

ticles linear with the standard deviation of the Gaussian

being sampled, we arrive at Mt /
ffiffi
t
p

or, considering the

d dimensions of each robot pose,

Mt ¼ O t
d
2

� �
: ð18Þ

***Given the drastic reduction in the evolution of the

number of samples, from being exponential to being poly-

nomial, we have considered employing this second alterna-

tive in our experiments.

An important final remark is that these growths in com-

plexity are not a characteristic of our proposed method, but

of any RBPF-based approach to SLAM in general. In fact,

the analysis presented in this section has made patent the

degree of suboptimality of all previous works where the

number of particles always remains constant.

6. Experimental Results

In this section we first present experiments where our

approach is compared with previous PF algorithms in simu-

lations with a known ground truth, then we apply it to robot

localization, and finally we show map building results.

6.1. Simulations With Known Ground Truth

We consider here a one-dimensional linear system with

Gaussian transition and observation models. The purpose

of using such a simple system is that we are able to contrast

the output of the different PFs with the analytical solution

from a Kalman filter which provides us with the exact

posterior. The situation being simulated is that of an obser-

vation model much more peaked than the prior distribution

obtained from the system transition model (e.g. in mobile

robotics this may represent a poor motion model, such as

odometry, and a very precise sensor, such as a laser

scanner).

We have compared the following algorithms: a SIR fil-

ter with a standard proposal distribution (Rubin 1988), the

APF proposed by Pitt and Shephard (1999) and our method

(with B ¼ 100). Since the APF method does not specify

how to estimate the‘‘first stage weights’’ (Pitt and Shephard

1999) (a term equivalent to Equation (12) in our method),

two versions have been put at test: APF-1, using the obser-

vation likelihood evaluated at the mean of the system after

applying the transition model (one of the recommendations

of the authors); and APF-2, using a Monte Carlo approxi-

mation exactly as in Equation (12).

The presented simulations consist of executing the dif-

ferent PF methods for a variable number of particles rang-

ing from 100 to 25,000, repeating 200 times each case to

Fig. 6. Experimental results for map building. (a)–(c) Snapshots of the evolution of our optimal PF while building a map for the

Málaga campus dataset. (d) The final result for the SM-based particle filter.
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obtain statistically significant results. The resulting parti-

cles and their weights for one of the runs are shown in the

top row of Figure 4(a) for SIR and our optimal PF. It can be

observed how the SIR leads to most of the particles being

wasted in non-relevant areas of the state space where they

are assigned negligible importance weights. On the other

hand, our optimal algorithm generates particles distributed

exactly according to the true posterior, thus they all have

the same weights. To measure the accuracy of each PF, the

estimated densities have been reconstructed by means of

weighted histograms, displayed in the bottom row of Figure

4(a) along with the analytical solution from the Kalman fil-

ter. To evaluate each algorithm, the KLD between the ana-

lytical and the estimated distributions has been computed

for each sample size (we disabled here the capability of

automatically determining the sample size in our method

for comparison purposes with the others). The mean KLD

values and their confidence intervals for the 200 realiza-

tions, summarized in Figure 4(b), confirm that our

approach gives estimations closer to the actual posterior

(with fewer particles) than previous methods.

One question that may naturally arise in this experiment

is regarding the minimum KLD attainable by any sample-

based representation of the posterior. In fact, we have com-

puted that value by drawing different number of samples

from the known, analytical posterior distribution and mea-

suring its KLD to that same posterior. The findings were

surprising: the KLD obtained by our optimal PF is almost

exactly that lower bound for the KLD, up to an average

0:7% error. In contrast, the mean KLD of the other methods

are 540%, 8,200%, and 596% times this lower bound for

the SIR, APF-1, and APF-2, respectively. We can conclude

that in this experiment, for any sample size, our method

provides almost exactly the best possible representation

of the posterior based on particles.

6.2. Localization

The following localization experiment consists of tracking

the pose of a mobile robot equipped with a laser range

finder while it is manually guided through an office envi-

ronment. Concretely, the path described by the robot and

the (already built) map of the environment are shown in

Figure 5(a). We compare the localization accuracy between

the SIR and our optimal PF. The resolution of the occu-

pancy grid is 0.04 m, and the non-parametric observation

model is the likelihood field proposed by Thrun (2001);

Thrun et al. (2005). In all of the runs the particles

were randomly initialized in a small volume of

20 cm� 20 cm� 2	 around the real starting pose of the

robot.

The accuracy in localization has been evaluated by aver-

aging the localization errors of all of the particles at each

time step, and using as the ground truth the robot poses
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estimated while the map was first built. To obtain signifi-

cant results we have performed 100 executions for each

sample size, ranging from just one particle up to 100. Note

that the capability of adapting the sample size in our algo-

rithm has been disabled to provide a fair comparison to a

standard SIR (an experiment with a dynamic number of

samples can be found in Blanco et al.(2008)). The most

interesting conclusion from the results, plotted in Figure

5(b), is that our method has an excellent performance start-

ing from just one particle, whereas a SIR PF needs about 10

particles or more to avoid the filter diverging (e.g. the high

average errors for one particle imply that the estimated path

is far from the real one). We can also compare the accuracy

of each algorithm with respect to the average computa-

tional cost instead of the number of samples, as shown in

Figure 5(c). In that case, the optimal PF demands almost

exactly the same computation time as the SIR to achieve

similar levels of accuracy. However, the SIR method needs

approximately 20 times more particles than the proposed

approach for a given localization accuracy, thus represent-

ing an additional storage cost. We must admit that this cost

may not be significant for the problem of PF-based pose

tracking, but it becomes more important when dealing with

global localization.

6.3. SLAM

In this section we illustrate how our optimal filter, as

described in Section 5, can be applied to occupancy grid

mapping. For comparison, our approach is contrasted to a

recent proposal (Grisetti et al. 2007a) which approximates

the observation model by a Gaussian through scan match-

ing (SM): we will refer to this approach as SM-based PF.

The non-parametric observation model employed here is

the same than the localization experiments above, that is,

the likelihood field.

The sensory data used as the input to the filters are a

part of the Málaga University campus dataset3, where our

mobile robot SENA (Gonzalez et al. 2006) closes a loop

of about 60 me in a semi-outdoor scenario, moving around

one building. Snapshots of a typical execution for our

optimal PF with a dynamic sample size can be seen in

Figure 6(a)–(c) at different time steps. The final map

obtained for a typical run of the SM-based filter with a fixed

sample size of 15 is also represented in Figure 6(d). All of

these maps are the most likely grids at each time step, over-

lapped with all of the robot path hypotheses in the filter.

We have carried out two different experiments to com-

pare the performance of the two alternative PF algorithms.

First, the errors in the estimated robot path have been

evaluated at the end of the map building process (i.e. after

closing the loop). In order to have an approximate ground

truth to compare with, a few key robot poses where com-

puted by means of a scan matching algorithm applied to

the first robot pose and to those after closing the loop.

These key poses where selected by hand by only keeping

those laser scans with an accurate alignment to each other,

which was verified by human inspection. Next, both PF

methods were executed 20 times for different sample

sizes, and their positioning and orientation errors mea-

sured obtaining the results shown in Figure 7. It can be
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Fig. 8. (a) The dynamic sample size employed by our method,

which increases until the loop is closed, around time step 160.
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interval and the mean, respectively, for 20 experiment runs.

(b) Errors for our algorithm and SM-based PF for equivalent

computational loads. Error bars represent 95% confidence
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Fig. 9. The map built for the Victoria Park dataset using the

optimal PF proposed in the text.
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seen how the newly proposed method outperforms the

SM-based PF in localization accuracy for all sample sizes.

Moreover, our method also exhibits shorter execution

times, although we must remark that there might still be

room for improvement in the implementation of both

methods. In particular, our optimal PF will remain being

faster than the SM-based PF (for the same number of par-

ticles) as long as evaluating the observation model Bþ R

times (recall Section 4) is less expensive than running the

iterative scan-matching procedure.

In the second experiment, we allowed our method to

employ the dynamic sample size, leading to the population

sizes depicted in Figure 8(a), where the effects of loop clos-

ing are clearly visible around steps 140–160. Then, we

determined the number of particles in SM-based filtering

that made both approaches equivalent in overall computa-

tional times, in order to provide a fair comparison of their

localization accuracy. As can be seen in Figure 8(b), our

proposal achieves a better performance in this case as well.

Finally, we also briefly discuss a demonstration of map

building by our method for an outdoor scenario, in particu-

lar, using the standard dataset gathered at Sydney’s Victoria

Park (Guivant and Nebot 2001). The most likely grid map at

the end is shown in Figure 4a, along with a detailed view of

the central part of the environment, where the trees can be

clearly appreciated. To the best of the authors’ knowledge,

this is the first time a grid map has been built for this dataset,

which has been largely used to test EKF-like SLAM meth-

ods. In spite of a greater memory usage than in a landmark

map, using a grid map avoids the problems of landmark

(tree) detection, data association, and exploits all of the

information in the laser scans, whereas in a EKF-like

approach only the trees could be used to localize the robot.

7. Conclusions

In this work we have reviewed different Bayesian

filtering algorithms, stressing their applications to

mobile robots. We have identified situations (localiza-

tion and SLAM with occupancy grid maps) that require

a PF implementation and where optimal filtering was

not directly applicable. We have introduced a new algo-

rithm that allows us to apply optimal filtering to those

dynamic systems with non-parametric observation mod-

els by means of simulations based on rejection sampling

and an adaptive sample size. The method is able to

focus the samples in the relevant areas of the state space

better than previous PF algorithms, which has been con-

firmed experimentally by successfully tracking the robot

pose even with just one particle. This work has also

shown how the application of the proposed method to

SLAM leads to a filter that increases the number of

particles as the robot traverses long loops, and reduces it

after closing them, obtaining more accurate maps than pre-

vious scan-matching-based approximations. Apart from its

demonstrated applications to mobile robotics, the presented

algorithm has numerous potential applications to any

estimation problem where the lack of an analytical

probabilistic model of observations prevented the use of

optimal filtering.

Notes

1. For the sake of readability we denote sequences of variables over

time using the last time step in the sequence as a superscript.

2. An algorithm such as the C++ STL function random shuffle

should be used, which ensures a uniform distribution over the

N ! possible permutations of an N-vector (see Section 3.4.2 of

Knuth (1981)).

3. This dataset is available online: http://babel.isa.uma.es/mrpt/

downloads/
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Appendix: Bernoulli Trials for Accepting a Sample in

Rejection Sampling

Consider two independent probability distributions,

which we call prior and observation likelihood, to be

normally distributed according to the one-dimensional

densities Nð0;s2
pÞ and NðDm;s2

oÞ, respectively. For conve-

nience we assume the prior to be centered at zero, with Dm
modeling the separation between the two distributions.

In the following we derive the probability p of accepting

one random sample in a rejection sampling trial, where a

sample is drawn from the prior and is accepted with a

probability proportional to the associated observation

likelihood, that is,

p ¼ pðzjxÞ
max pðzjxÞf g ; ð19Þ

where pðzjxÞ denotes the observation likelihood. Since

pðzjxÞ is a Gaussian, the quotient above reduces to

p ¼ exp � 1

2

x� Dm
so

	 
2
( )

: ð20Þ

Observe how this value depends on the sample x, which is

distributed following the priorNð0;s2
pÞ. Thus, we can esti-

mate the expected value of p by

E½p� ¼
Z 1
�1

exp � 1

2

x� Dm
so

	 
2
( )

Nðx; 0;s2
pÞdx: ð21Þ

By multiplying and dividing by the appropriate constant,

the terms inside the integral can be transformed into the

product of two Gaussians:

E½p� ¼ so

ffiffiffiffiffiffi
2p
p Z 1

�1
Nðx;Dm;s2

oÞN ðx; 0;s2
pÞdx: ð22Þ

Following a probabilistic interpretation of the integral

above, we can consider it the likelihood of two random

variables, each following one of the two normal distribu-

tions, coinciding at exactly the same point. The reason for

the integral is that the point of coincidence can be anywhere

on the state space. Once the equation has been considered

from this point of view, it is easier to evaluate the integral

if we rewrite it in terms of the likelihood, evaluated at

the origin, of the new random variable arising from sub-

stracting the original two variables. Since these original

variables were normally distributed and substraction is

a linear operation, we have that the new variable must

be also a Gaussian, with a mean of Dm and variance

s2
o þ s2

p. Then, we proceed rewriting Equation (22) as

E½p� ¼ so

ffiffiffiffiffiffi
2p
p

� N ð0;Dm;s2
o þ s2

pÞ

¼ soffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

o þ s2
p

q exp � 1

2

Dm2

s2
o þ s2

p

 !
:

For convenience, we define the constant t ¼ so=sp, such as

E½p� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t�2
p exp � 1

2s2
p

Dm2

1þ t2

 !
; ð23Þ

which is the final expression used to obtain the plots in

Figure 2.
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