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ABSTRACT 

 
For any mobile robot it is a major issue that of 
estimating its position into the working environment. 
Although this task is partly carried out through external 
sensors, incrementally computing the ego-motion of the 
robot using proprioceptive sensors still is a fundamental 
step to obtain an estimation of the robot displacement. In 
this work we deal with the sensor fusion problem for the 
case of a mobile robot equipped with an odometer and an 
inertial sensor (a gyroscope). We address this problem 
rigorously through its formulation as a probabilistic 
estimation problem, developing an efficient solution in 
the form of an Extended Kalman Filter (EKF), which can 
be easily implemented in the low-level firmware of a real 
mobile robot. Experimental results reveal a qualitative 
improvement in the robot pose estimation for our sensor 
fusion system when compared with odometry only, which 
is the most wide spread technique in commercial robots. 
 

1. INTRODUCTION 

For mobile robots to become of practical utility in the 
industry or in the service sector, it is a fundamental 
prerequisite that they have a certain degree of autonomy. 
From the set of abilities that this implies for a robot, a 
remarkable one is to estimate and track its position within 
the operation environment, namely localization. Many 
practical robot tasks (e.g. navigation, picking and 
delivering) show up the importance of such ability. 
Localization is an issue extensively studied in the 
robotics community, where probabilistic approaches have 
demonstrated to be the most effective and promising ones 
[6]. In those approaches a fundamental constituent is the 
probabilistic, incremental estimation of the robot 
displacement for close time steps. That is the issue 
addressed in this work: how to obtain an optimal 
estimation (under Gaussianity assumption) of the robot 
displacement from different ego-motion sensors on the 
robot. 

 In spite of a number of proprioceptive ego-motion 
sensors existing for ground mobile robots [2], odometers 
are included into virtually all commercially available 
ones. Actually, in most cases odometry is the only ego-
motion sensor on the robot. Although other 
proprioceptive sensors like inertial measurement units 

(IMUs) may provide valuable information to the 
displacement estimation, they are not usually integrated 
into commercial robots. Our aim is to integrate different 
kinds of ego-motion sensors into a mathematically 
grounded way, concretely probabilistic Bayesian 
estimation, while proposing a solution efficient enough 
(an EKF [4]) to be integrated into the low-level firmware 
onboard of a real robot. The utility of sensor fusion is 
revealed by noticing that different sensor weaknesses and 
advantages may complement to each other: typically, an 
odometer provides a quite precise estimation of 
translational movements but performs poorly when the 
robot turns. In turn, IMUs typically measure rotations 
more precisely than translations, due to the additional 
time integration required in the latter. 

The rest of this paper is outlined as follows. In section 
2 we describe the robot kinematics and the working 
principles of the considered ego-motion sensors.  Next 
we set up the mathematical formulation involved in 
sensor fusion, whose implementation in the real system is 
discussed in section 4. Finally, experimental results are 
reported in section 5, and we present some conclusions. 

2. PROPRIOCEPTIVE SENSORS 

In this work we consider a robotic wheelchair [3] 
equipped with two ego-motion sensors: an odometer, and 
a gyroscope [1]. We describe next the general kinematic 
model of this robot and its relation with each of the 
sensors. 

Assuming that the mobile robot moves in a planar 
environment, its pose is completely defined by its 2D 
coordinates (x,y) and its heading angle φ, as sketched in 
Figure 1. The kinematic model is the well-known 
“tricycle model”, where the robot is constrained to move 

Turning 
radius (R)

x

y

Odometry:
(Encoders)

Gyroscope:

∆x
∆y
∆φ

( )d t
dt
φ

Sensed 
variables:

∆x

∆y

∆φ

φ(t)

Figure 1. The kinematic model of a planar, differential-
driven vehicle is shown at the left. The proprioceptive 
sensors employed in this work are shown at the right. 
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in circular paths only. Provided that the robot pose is 
sampled at a high rate (in relation with its speed), it is 
reasonable to approximate the real robot path by a 
sequence of short circular arcs. Odometry sensors are 
composed of two encoders (one on each motor wheel), 
from whose readings the change in the robot pose 
(∆x,∆y,∆φ) can be computed. On the other hand, a 
gyroscope is a inertial sensor which measures the 
instantaneous change rate of the robot orientation φ(t), 
that is the yaw-rate ( )d t

dt
φ . Please refer to Figure 1 for an 

illustration of how these variables relate to the robot 
kinematics.  

Since each sensor has its own error sources and they 
measure different variables from the kinematic model, 
their combination into a single, optimal estimation is not 
straightforward. How to perform this is the issue 
discussed in the next section. 

3. SENSOR FUSION 

In this work we employ an EKF [4] for fusing the 
readings from heterogeneous sensors. This filter is an 
iterative Bayesian filter, where at each instant of time a 
probability distribution for the system state is kept. An 
EKF represents probability distributions through 
multivariate Gaussian distributions, that is, a mean value 
and a covariance matrix. This distribution is modified 
according to actuations on the system (prediction step) 
and next it is corrected according to the sensors 
measurements (update step). Probabilistic models are 
required for both the evolution of the system and for the 
sensors. In the following we present the complete design 
of an EKF filter for the problem of tracking the pose of a 
mobile robot equipped with proprioceptive ego-motion 
sensors only. We will take odometry readings as the 
action of the robot, whereas gyroscope is considered a 
sensor of the system state because it is completely 
passive.  

Let xk be the state of our system at the discrete time-
step k: 

( )1k k k k kx y φ φ −=x T  (1) 
where the memory term φk-1 stands for the robot 
orientation at the last time step. If we define ∆t as the 
filter sampling period, the memory term allows us to 
approximate the robot angular velocity ωk as: 

1k k
k t

φ φ
ω −−

≅
∆

 (2) 

Let the estimation at time step k-1 be given by the 
normal distribution ( )1 1ˆ ,k k− −x PN , with 1ˆ k −x  and 1k −P  
being the mean and the covariance matrix, respectively. 
Then, the prediction step of the EKF filter reads: 
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with f(·) being the transition function of the system, and 
uk the action performed at time step k whose covariance 
matrix is Cuk. The minus sign used as a superscript in (3) 
means that the estimation is the prior in the Bayesian 
filter, that is, sensor observations have not being 
incorporated into the estimation yet.  

Since odometry readings are considered the robot 
actions, we have uk=(∆xk ∆yk ∆φk)T, and, according to the 
robot kinematic model, the transition function becomes: 
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Since it is straightforward to obtain from (4) the 
Jacobian matrixes 

k
f∇x  and 

ku f∇  required to evaluate 

(3), they are omitted here due to space limitation. Next, 
the update step is performed in the iterative filter: 
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where I4 is a 4×4 unit matrix, and: 
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Basically, this step predicts the expected sensor 
(gyroscope) outcome through the sensor model h(·), its 
uncertainty (covariance matrix Sk), and fuse this 
information with the prior estimation. The gyroscope 
sensor model could be defined as: 

( ) 1
ˆ ˆ

ˆˆ k k
k kh

t
φ φ

ω −−
= =

∆
x  (7) 

However, the actual sensor readings are analog voltage 
values, thus we must consider two uncertainty sources in 
the gyroscope readings zk: (i) electrical noise, modelled 
as additive white Gaussian noise (AWGN) with variance 

2
nσ , and (ii) uncertainty in the actual sensor sensitivity, 

i.e. the volts to deg/s ratio. To integrate the effects of 
both error sources into the EKF we rewrite (7) to account 
for SA and SN, the actual (unknown) and nominal sensor 
sensitivity, respectively, and for the noise nk: 

( ) 1
ˆ ˆ 1ˆ k k

k A k
N

h S n
t S

φ φ −
 −

= +  ∆ 
x  (8) 

According to data available in the manufacturer 
supplied datasheet for our gyroscope, an ADXRS401 [5], 
it seems that the sensitivity of the device, taken as the 
outcome of a random variable for each specimen, 
approximately follows a Gaussian distribution. 
Therefore, it makes sense to estimate the covariance 
matrix Sk by linearization of the sensor model in (8), as 
shown in (6). There, the Jacobians of the function h(·) 

k
h∇x ,  

AS h∇ , and nh∇ , describe how uncertainty in the 

system state xk, the sensitivity SA, and the electrical noise 



 

 

nk, correspondingly, are reflected in readings from the 
gyroscope.  

After each iteration of the filter, we obtain the updated 
optimal estimation, disregarding linearization errors.  

4. IMPLEMENTATION 

Next we discuss how the previously exposed theoretical 
filter has been integrated into the low-level firmware of a 
mobile robot.  

The system has been designed to work in a timely 
fashion, under strict real-time requirements. At a working 
rate of 100Hz, the system collects readings from encoders 
(odometry) and the gyroscope, performs the required 
preprocessing of signals, and executes an iteration of the 
EKF as detailed in section 3. A logical overview of the 
system is provided in Figure 2. The signal conditioning 
stage is required since our gyroscope (ADXRS401, see 
[5]) presents a nonratiometric analog output, while 
analog-digital converters (ADCs) are ratiometric. 
Therefore, the resulting readings are highly sensitive to 
electrical noise coupled to the power supply, which is a 
major issue on a mobile robot, where motors produce 
large noise while in operation. To solve this problem, 
both the sensor output voltage and its 2.5V constant 
voltage reference are converted through ADCs. The 
purpose of the signal conditioning stage (please, refer to 
Figure 2) is two-fold: (i) to scale the sensor readings 
according to the constant voltage reference; and (ii) to 
remove the sensor offset, that is, to precisely determinate 
the voltage corresponding to a null yaw-rate. The offset 
voltage can be easily estimated by averaging over a time 
sliding window when the robot is very likely at rest, e.g. 
when odometry does not detect motion for a few seconds. 
After removing the offset from the gyroscope signal, it 
still contains high-frequency electrical noise, which does 
not carry information about the mechanical system. Since 
the analog circuitry of the gyroscope has been set up for a 
measuring bandwidth of 5Hz, we can disregard the signal 
components at higher frequencies as undesirable noise. In 
our system the noise is filtered out through a Finite 
Impulse Response (FIR) implementation of a fourth order 
elliptic low-pass filter, with a nominal pass-band ripple 
of 0.1dB, 30dB stopband attenuation, and a cut-off 
frequency of 5Hz. An example of the signal before and 
after noise filtering is illustrated in Figure 3. 

The whole system has been implemented on an 
ATMEGA128, a low-cost, 8-bit microcontroller from 
Atmel, which runs at 16MHz. In Figure 4 it is shown the 
prototype developed in this work, which includes two 
Micro-Electro-Mechanical Systems (MEMS): the already 
introduced gyroscope ADXRS401, and a two-axis 
accelerometer ADXL203, which can be used to detect the 
gravity vector, i.e. tilt sensing, although such issue is not 
addressed here. The system runs autonomously and 
periodically reports the EKF estimation results to a host-
PC via a high-speed USB connection. This prototype has 
been designed with the aim of minimizing costs and 
weight. 

5. RESULTS AND DISCUSSION 

Two comparative experiments are reported next, where 
the robot follows two different paths while its pose is 
estimated simultaneously from odometry only, and from 
our sensor fusion system. The actual final robot pose for 
each trajectory has been determined by a highly-precise 
laser range scan matching algorithm [1], which we will 
consider the ground-truth for comparison purposes. The 
two different paths consist of moving the robot on a 
twisty forward, and a spinning trajectory, respectively. 
Results for the first experiment are summarized in Figure 
5(a)-(d). It is noticeable the reduction in the final pose 
uncertainty, both in the robot position and its orientation, 
for the case of sensor fusion with respect to the odometry 
estimation only. This is numerically confirmed by the 
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Figure 2. A schematic view of the system
implementation. 
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Figure 3. The real signal gathered from the gyroscope, 
unprocessed (left) and after filtering out the noise 
(right). 
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Figure 4. The prototype used in this work as a test 
bed for sensor fusion. They have been highlighted: (a) 
the MEMS gyroscope, (b) odometer encoders input, 
and (c) accelerometers for tilt sensing. 



 

 

values of the covariance matrix determinant: 1.5461·10–11 
from odometry only, and 2.0429 ·10–13 for sensor fusion. 
In the case of the spinning trajectory, the robot turns 
three times, which makes the odometry-only estimation 
to completely lose the robot orientation, as illustrated in 
Figure 5(e) and (g). The incorporation of yaw-rate 
information in the estimation provides an impressive 
qualitative improvement here: the determinant of the 
covariance matrix, 3.9538·10–3 for the odometry-only 
estimation, becomes 9.1411·10–15 for the sensor fusion 
case. As expected, the absolute positioning errors 
(relative to the ground-truth) are also reduced by the 
fusion of the two sensors, as summarized in Table I. 

 Experiment I: Forward Experiment II: Spinning 
 x y φ x y φ 

Odometry 4.194m 0.849m 34.42º 0.350m 0.114m -49.55º 
Sensor 
fusion 4.187m 0.934m 25.32º 0.096m 0.233m 2.65º 

Ground 
truth 4.169m 1.031m 25.80º 0.072m 0.282m 2.50º 

Table I. Review of experimental results: final 
estimated pose from each method. 

To summarize, in this paper we have presented the 
problem of proprioceptive sensor fusion for ego-motion 
estimation for a mobile robot. An efficient solution has 
been proposed for the case of a robot equipped with 
odometry and a gyroscope, which has been implemented 
in the low-level firmware of a real robot and runs in real-

time. Experimental results demonstrate that the sensor 
fusion system provides a major improvement in the 
quality of the robot pose estimation. 
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Figure 5. The experimental results from our sensor fusion system. The pair of rows on the top and those on the
bottom show, respectively, the results for a twisty forward trajectory and a spinning trajectory. The column on
the left represents the estimation from odometry only, while the charts on the right are for the sensor fusion
system discussed in this work. It is noteworthy the great reduction in the pose uncertainty, in particular in the 
spinning trajectory. 
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