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 Abstract – The reactive navigation of a non-holonomic 
mobile robot implies selecting at each instant of time a motion 
command satisfying two conditions: to avoid collisions and to 
comply with the robot non-holonomic constraints. Most proposed 
reactive navigation approaches deal with these requirements 
simultaneously in an indivisible way. This paper proposes a clear 
separation of these problems by introducing a representation 
space where a robot losses its kinematics restrictions and can be 
dealt as a “free-flying-point.” The collision avoidance can 
therefore be solved by existing holonomic methods, which are 
able to steer non-holonomic, any-shaped robots when applied in 
this space, named the Trajectory Parameter Space (TP-Space). 
We also formalize the transformation between this space and the 
robot physical space introducing the Parameterized Trajectory 
Generator (PTG), a translation between both spaces by means of 
a family of parameterized trajectories. This formalization is 
addressed in a generalized form to allow us deriving any number 
of different transformations. Unlike previous non-holonomic 
approaches that use just one single transformation, the proposed 
method considers a variety of them simultaneously which 
becomes an obvious improvement to reactive approaches: each 
one can detect a collision-free path that the others can not. We 
present some experimental results to show the suitability of our 
method and its advantages compared with traditional 
approaches. 
 
 Index Terms – Mobile robots, reactive navigation, non-
holonomic kinematics, motion planning. 
 

I.  INTRODUCTION 

For mobile robots to navigate securely and dependably, it 
is essential to use some geometrical space model where 
sensed obstacles could be represented easily and collision free 
paths found efficiently. In particular, reactive navigation 
methods can be applied on these spaces to steer robots 
towards target positions while avoiding collisions, based 
solely on sensed data and without a previous model of the 
environment. The space that most completely describes a 
robot is the Configuration Space (C-Space), which considers 
all the robot degrees of freedom and has been extensively 
used in many fields including robotics manipulators [8], 
maneuvers planning [7], and motion planning [11]. 
Nevertheless, its high dimensionality makes difficult its direct 
application to navigation into unknown or dynamic 
environments where real-time requirements demand more 

efficient solutions, i.e. reactive navigation methods. The 
majority of methods dealing with non-holonomic robots 
assume a family of circular paths (which are compatible with 
most wheel-driven and non-holonomic robots) from which to 
select the robot movement at each instant of time ([6],[13]). 
Recently, the Ego-Kinematic Space (EK-Space) [10] has been 
proposed to simplify the C-Space by means of the same 
circular paths (arcs) but in a more elegant and mathematically 
sound way: C-Space is reduced to EK-Space, a 2D parameter 
space which parameterizes the family of circular paths. 
Straight lines in the resultant space represent arcs to the actual 
robot, thus the robot can be dealt as a “free-flying-point” 
(without non-holonomic constraints). TP-Space can be seen as 
a slightly different parameter space than EK-Space. However, 
the restrictive use of a fixed circular paths model in [10] limits 
the exploration of the free-space.  

In this work we are motivated by the intuitive idea that, 
by means of removing this restriction and considering other 
paths models apart of the circular one, more valuable 
information about the free-space can be provided to the 
reactive method. This has been confirmed with experimental 
results, as will be exposed later.  

For our purposes we introduce in this paper a new space 
representation, the Trajectory Parameter Space (TP-Space), 
which reduces the dimensionality of the navigation problem 
through a parameterization of C-Space paths (three-
dimensional points) using only two parameters. Instead of 
considering only circular paths as previous methods, our 
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Fig. 1 The simplest application of TP-Space to reactive navigation involves 

using a PTG to translate obstacles into TP-Obstacles. After that, a holonomic 
reactive navigation method is executed in that space, and the resulting motion 

is then translated back into a feasible movement for the actual robot. 
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approach can manage a variety of path models, providing a 
more effective detection of free-space. 

As potential path models we consider parametrically 
generated families, a concept that we formalize with the 
introduction of a Parameterized Trajectory Generator (PTG): a 
mapping between the TP-Space and a family of paths in the 
C-Space1. Our generalized formulation overcomes the circular 
paths limitation, thus allowing us to detect collision-free paths  
unavailable to previous methods. Furthermore, many different 
paths model can be simultaneously used to detect good paths, 
a feature that can not be found in previous reactive methods. 
In fact, it should be notice that the insights behind TP-Space 
can also be applied to reactive approaches to high-
dimensional problems (e.g. manipulators), although in this 
work we focus on its application to mobile robots planar 
navigation only. 

To clarify the roles of TP-Space and PTG a simplified 
TP-Space based reactive navigation system is sketched in Fig. 
1. The main steps involved are: 

1. The robot senses obstacles, which in the robot C-Space 
generate C-Obstacles. 

2. A given PTG translates obstacles into TP-Space (TP-
Obstacles are obtained). 

3. A holonomic reactive navigation method selects a 
desired motion in TP-Space, assuming a robot without 
non-holonomic constraints. 

4. The PTG translates the holonomic motion into a non-
holonomic one, feasible for the actual robot. 

5. Repeat from step 1 until target location is reached. 

In practical systems a variety of PTGs can be used 
simultaneously and a selection mechanism must be introduced 

                                                           
1 We use the term trajectory instead of path since our approach considers the 
time and the robot velocities, as exposed later. 

to dynamically choose the most suitable one at each instant of 
time (this is not addressed in the present paper). 
 The above steps are explained throughout the paper, 
which is organized as follows. In section II we review other 
representation spaces, and TP-Space is introduced in section 
III. Next we describe our formulation of a PTG and how it is 
applied for building TP-Obstacles and extracting non-
holonomic motion commands from TP-Space. Experimental 
results from real robots are presented in section V. We finalize 
with some conclusions. 

II. OTHER SPACE REPRESENTATIONS 

 The Workspace (WS) is the simplest representation 
space. It contains the set of reachable locations in the robot 
environment. For most wheeled robots the WS is commonly 
assumed to be a 2D plane, thus the robot heading is ignored. 
As a result, WS can be applied precisely only to circular 
shaped robots, certainly a too restrictive condition for many 
practical situations. However, sensed obstacles can be easily 
represented into WS since they are usually modelled as 2D 
obstacle-points ([1],[4],[9],[13]). 
 A more complete robot description is achieved with C-
Space ([7],[8]) whose complexity depends on the number of 
degrees of freedom. For our purposes the robot can be 
represented by its position (x,y) and its orientation φ, 
obtaining a three-dimensional C-Space. In this space the robot 
is represented as a single point and obstacles (C-Obstacles) 
implicitly hold the robot shape, as illustrated in Fig. 2(a)-(b). 
Robot navigation therefore becomes a path-finding problem in 
this three-dimensional space. The construction of the whole 
C-Obstacles is a demanding computational process since all 
the poses that make the robot to collide with any obstacle 
must be found. On the other hand, robots moving in dynamic 
and cluttered environments must respond quickly to 
environment changes, making impractical the direct 
application of C-Space in these situations. This is the 
motivation for reactive navigation methods, which can be 
mainly classified into: 

• Holonomic methods, working directly in WS and 
computing a desired motion based on currently sensed 
obstacles, as the ones reported in [2],[4],[14], and [9]. 

• Non-holonomic methods, most of them working in the 
velocity space ([1],[12],[13]) and some of them also 
including the dynamic window concept [5].  

 These approaches have different limitations. Holonomic 
ones are not directly applicable to most existing car-like 
robots, while non-holonomic methods based on the dynamic 
window ignore part of the sensed information. Velocity space 
methods by their part use circular paths only to estimate 
distance to obstacles which limits the possibility to detect a 
better motion for the robot. Actually, a key operation in all 
reactive approaches is that of estimating the distance until 
collision. Next, we provide some insight into this issue since 
its generalization makes possible the introduction of TP-
Space. 
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Fig. 2  In (a)-(b) two obstacles are represented in the WS (2D) and in C-Space 

(3D), respectively. To transform the navigation problem back into 2D, 
previous reactive methods use a family of paths to measure the distance to 

obstacles. According to the robot being holonomic (c) or not (d) classical path 
models are straight lines and circular arcs, respectively. 



 

III. THE TP-SPACE 

A. Problem statement 
 Reactive methods decide movements based on current 
sensed data only, from which distance until collision is 
estimated along a family of paths. This operation becomes a 
central issue in reactive navigation since it provides the only 
source of information about the free-space (see Fig. 2). For 
holonomic robots, which can move in any direction, these 
distances are measured over straight paths, while for non-
holonomic robots, which move along a sequence of 
infinitesimal circular arcs, distances are measured along 
circular paths (see Fig. 2(c)-(d)). Although the plenty of 
previous methods consider only this pair of path models, they 
are just two ways out of the infinity of them that could be 
employed for this purpose. In the following we provide some 
insight into the obstacles sampling mechanism and the 
importance of path models and distance measurement in this 
process.  
 We define a robot path as a continuous sequence of 
locations and orientations, thus it can be plotted as a three-
dimensional curve in C-Space (as the one in Fig. 3). A family 
of parametrically generated paths in this space will hence 
generate a surface, as the example in Fig. 4. The intersection 
of this sampling surface with the C-Obstacles indicates the 
poses of the robot that lead to collisions. In other words, the 
obstacles sampling should be considered in C-Space as using 
a different 3D shape for each path model. Rigorously, 
distances to collision should be measured along the respective 
C-Space paths. This can not be determined with the usual 
Euclidean metric since useless values are obtained: 
dimensions of different nature, linear and angular, are added 
together, as sketched in Fig. 3. Previous approaches avoid this 
problem by measuring Euclidean distances along the paths 
projection on WS but ignoring changes in the robot 
orientation. To be rigorous, we propose in the next section to 
replace the Euclidean metric in C-Space with a more 
appropriate metric.  

B. Definition of TP-Space 
  TP-Space is a two-dimensional space where a point, 
given by its polar coordinates (α,d), corresponds to another 
one on a sampling surface in C-Space. More precisely, α 
defines a trajectory out of a given family, and d represents the 
distance along that trajectory. In practice, we are only 
interested in the circle of unit radius, that is, in the range 
A×D⊂R2, where A={α | α ∈ ]-π,π]} and D={ d | d ∈ [0,1]}, 
provided that distances are normalized with respect to an 
arbitrarily large distance dMAX.  
 The purpose of using TP-Space as a space representation 
is to convert the free-space sampling problem of non-
holonomic robots (in C-Space) to one for a holonomic robot 
in the TP-Space, which can be considered a virtual Workspace 
(WS). Since this transformation is applied at each iteration, 
the robot will always be at the origin and surrounding 
obstacles will appear within the unit circle. In this virtual WS, 
well-known holonomic reactive methods for circular robots 

can be applied. These methods are the simplest and most 
efficient reactive navigation approaches, thus, the benefit of 
being able to apply them to any kind of robot (non-circular 
or/and non-holonomic) is clear. As shown in Fig. 4, a straight 
path given by a constant α value in TP-Space is equivalent to 
a trajectory of a certain family (or sampling surface), which is 
defined by a given PTG. 

IV. THE PARAMETERIZED TRAJECTORY GENERATOR (PTG) 

A.Definitions 
 A PTG is a mapping from TP-Space points (α,d) to C-
Space poses ((x,y),φ), such that straight paths from the origin 
in TP-Space are transformed into kinematics-compliant paths 
in C-Space (see Fig. 4). Formally, a PTG is defined as: 
                       PTG:   A×D ⊂ R2  →  R2×Α (1) 

                                            (α,d) → {(x,y), φ} 
where A={α|α∈]-π,π]} and D={d|d∈[0,1]} define the domain 
of the PTG. In order to generalize as much as possible the 
generation of paths, we propose to describe them in terms of 
trajectories. A trajectory for a robot is just like a path but 
taking time into account, which is required for linear and 
angular velocities to be defined at each point. The time used 
in a PTG may not be the robot actual time since velocities can 
be scaled for speed control purposes, as commented later on. 
Actually, time (t) is introduced as a substitute of the distance 
(d) in the PTG. There are two reasons for this change of 
variable: (i) for having a physical meaning: the natural 
parameterization of trajectories is time; and (ii) C-Space lacks 
of a proper metric for distances, in the sense that was 
discussed in the previous section. The change of variable 
therefore involves the definition of a custom non-Euclidean 
metric in such a way that a one-to-one correspondence 
between distance and time is established. Before exposing the 
details of this custom metric, the C-Space variables defined by 
a PTG must be introduced. Let V(α,t)=[v(α,t) ω(α,t)]T be the 
velocity vector over a given trajectory in TP-Space, where the 
components are the linear and angular velocities of the robot, 
respectively. The definition of the functions v(α,t) and  ω(α,t), 
denominated design functions of the PTG, will state the 
mapping between the TP-Space and the C-Space, since its 
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Fig. 3 The metric space for WS is well defined by taking Euclidean distance 
as its metric, but this is not acceptable in C-Space due to the orientation 
dimension. This forces the introduction of a more appropriate metric. 

 
 



 

integration over time yields the robot trajectory (in C-Space). 
More concretely, let x(α,t), y(α,t) and φ(α,t) be the 
components of the robot pose (configuration), defined as 
P(α,t)=[x(α,t) y(α,t) φ(α,t)]T. These poses are then obtained 
by integration of the kinematics constraint equation, which for 
the case of a car-like robot stands as, 
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where the right-most vector is the velocity vector V(α,t) 
whose design will totally determine the properties of the 
resulting PTG. The expression (2) is not integrable, hence an 
analytical expression for P(α,t) can not be supplied in the 
general case and numerical solutions must be used2.  
 The problem of supplying a proper metric for C-Space 
can now be addressed. We propose the following metric for a 
pose increment ∆p=[∆x ∆y ∆φ]T in C-Space: 

        ( ) ( )222  
00

010
001

 ∆ φ
φ

∆⋅+∆+∆=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= ryxy

x

r
m p  (3) 

where the change in the robot orientation is incorporated into 
the measurement by means of a given distance r (this constant 
parameter can be set to any value in the order of the robot 
size). Applying this metric to a given trajectory means to 
measure the traveled distance from the origin to any given 
point on that trajectory, taking also into account the 
normalization distance (dMAX), since we are interested in 
normalized distances in the range [0,1]. Let this distance 
measurement be denoted as µα(t) for the trajectory α and until 
time t. An expression for this trajectories metric can be 
obtained from: 
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where the metric proposed in (3) has been used instead of the 
Euclidean norm. This function establishes a bijective mapping 
between time t and the normalized distance d in a PTG. Hence 
the change of variable is solved and the general expression for 
a PTG can finally be written down as: 

                           ( ) ( )( )ddPTG 1,, −= αµαα P  (5) 

where poses P(α,t) are solved numerically for each PTG. The 
inverse process, required for constructing the TP-Obstacles, 
translates C-Space poses into TP-Space and is given by the 
inverse PTG function: 
                                                           
2 A prominent exception is the case where velocities are constant, that is, 
when the robot moves along circular paths. 

                    PTG-1: Surf(PTG) ⊂ R2×A  A×D (6) 

                                                  ((x,y),φ)  (α,d)  
whose domain is not the whole C-Space but only Surf(PTG), 
that is, the points of the 3D sampling surface: 

           Surf(PTG) = {P | P=PTG(α,d)} ∀ (α,d)∈A×D (7) 

B. Building TP-Obstacles 
 A TP-Space based navigation system performs two 
transformations with each PTG: (i) the construction of TP-
Obstacles, and (ii) the translation of the target location into 
TP-Space. Both transformations imply mapping WS points 
into TP-Space but they represent quite different processes. 
The translated target location remains being a single point in 
TP-Space and it is simply computed through the Γ(·) function, 
defined as: 
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and finding the closest trajectory to any given location 
(ignoring the robot orientation).  
 On the other hand, obstacle points are translated into TP-
Space regions, namely TP-Obstacles. Let o∈ 2 be a real 
obstacle point in WS, and C-Obstacle(o) its representation in 
C-Space. We define the TP-Obstacle for the point o as: 

             TP-Obstacle(o) = { (α,d) | (α,d)=PTG-1(P),  (9) 
                     ∀ P∈C-Obstacle(o) ∩ Surf(PTG) } 
that is, it is defined as the translation of the intersection 
between C-Obstacles and the sampling surface of the PTG 
into TP-Space. Since a robot can collide with obstacles, even 
those ones consisting of a single point, from many different 
poses, TP-Obstacles are always two-dimensional regions in 
TP-Space, even when generated from a single obstacle point. 
 Since holonomic methods in TP-Space will measure 
obstacle distances along radial paths we are only interested in 
the closer obstacle in each direction, thus only the minimum 
collision-free distance for each α value must be kept (recall 
that constant α values results in straight paths in TP-Space). 
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Fig. 4 When a family of paths in C-Space is generated parametrically using a 
given PTG, a characteristic 3D shape appears. A PTG is designed for 
transforming radial paths in TP-Space into feasible paths in C-Space. 

 
 



 

C. From TP-Space movements to real ones 
 The motion command generated by a holonomic method 
in the virtual WS (TP-Space) is a pair stating the robot desired 
speed s and direction αm (in the interval ]-π,π]). This motion 
command must be translated back to a non-holonomic 
movement, which can be carried out in two steps:  

1. We obtain a normalized velocity command from the 
evaluation of the PTG design function at α=αm, that is:    

          Vnorm(αm) = V(αm,0) = [v(αm,0) ω(αm,0)]T  (10) 
We take the initial response (at t=0) since the PTG 
reference system is the robot current pose, i.e. the robot 
is always at the origin of trajectories in the TP-Space.  

2. The non-holonomic command velocity Vn-h (in the real 
world) is obtained by scaling Vnorm according to the 
holonomic velocity s in TP-Space (provided by the 
holonomic method). Mathematically: 
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where m(·) is a custom metric for speeds similar to that 
defined in (3) for pose increments: 
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D. Practical implementation issues 
 Two main problems must be addressed to get a functional 
TP-Space based reactive navigation system: (i) obtaining a 
solution to equations for each PTG; and (ii) building TP-
Obstacles. The first problem consists on solving (2), which is 
easily accomplished with standard numerical techniques for a 
discrete set of a values. Building the TP-Obstacles is a more 
complex process, but a fast method based on lookup tables has 
been developed following ideas related to those in [12]: the 
WS is arranged as a rectangular grid and each cell stores the 
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Fig. 5 (a)-(b) Snapshots from the navigation experiment using our reactive method, which generates the linear and angular velocity commands that are plotted in 
(c) and (d), respectively. The path followed by the robot towards the target can be seen in (e), where also the instants of time corresponding to the snapshots are 

highlighted. For another instant of the experiment, t=35sec, the sensed obstacles are shown in (f) in the WS, whereas their translations into TP-Space are in (g)-(h) 
for a classical paths-based PTG and a custom one, respectively. As further explained in the text, the non-circular PTG provides a better movement here. 



 

TP-Obstacle for obstacles into that cell. As a result, translating 
the real obstacles becomes just adding the elemental TP-
Obstacles for the occupied cells. Then, just the closer obstacle 
for each α value must be kept, which will be passed to the 
holonomic reactive method as obstacle distances in the virtual 
WS. The required time for building TP-Obstacles with this 
technique is linear in the number of points. In spite of that 
building the tables takes a long time (almost a minute), they 
must not be updated as long as neither the kinematics nor the 
shape of the robot change. 
 Concerning the holonomic method to be applied in TP-
Space in our implementation we use a custom design inspired 
in [9]. Our navigation system considers a variety of PTGs, and 
consequently it includes a method for choosing the most 
promising transformation based on a weighted average of a 
number of objective functions which are evaluated for each 
possibility. We do not provide here more details of neither the 
selection nor the holonomic navigation methods because of 
the space limitation.  

V. RESULTS AND CONCLUSIONS 

 TP-Space based reactive navigation has been tested for 
almost a year of extensively use in different scenarios 
including corridors, cluttered rooms, and open spaces. In our 
implementation we currently use two different PTGs, one of 
them generating circular paths and the other based on heuristic 
rules (the 3D sampling surface for this PTG is plotted in Fig. 
4). This approach has been tested on two different robotic 
platforms: SENA, a robotic wheelchair [5], and Sancho, a 
service robot built on a Pioneer 3 mobile base. The whole 
navigation system is the same for both robots except for the 
robot shape and the speeds limits, which are used in building 
the lookup tables. Fig. 5 shows the record of a navigation 
using Sancho, where the reactive navigation system is 
commanded for moving towards a point located outside the 
room. The twisty trajectory followed by the robot is shown in 
Fig. 5(e) over a map where obstacles are also drawn. It can be 
appreciated that the robot gets out the room smoothly, which 
shows that even the narrow free-space through the door is 
clearly visible in TP-Space. In order to demonstrate the 
improvement that our approach brings into the navigation, 
let’s take a look at a given point of the navigation, concretely, 
the one pointed out in Fig. 5(e) for t=35s. At this point, the 
sensed obstacles are the ones plotted in Fig. 5(f), and TP-
Obstacles corresponding to the circular paths and to the 
custom PTG are shown in Fig. 5(g)-(h), respectively. The 
holonomic reactive method selects s1 and s2 as the best 
straight paths in each one of these virtual-WS (TP-Space), 
whose translations into actual trajectories are highlighted in 
Fig. 5(f). It is manifest that traditional approaches (implicitly 
using our circular PTG) can not find the collision-free path 
shown in the latter, which is clearly more advantageous. 
Although any path can be decomposed as a sequence of arcs, 
our method provides directly the reactive algorithm with valid 
collision-free trajectories that may not been detected with 
circular arcs only. 

 Regarding the time efficiency of our method, the TP-
Obstacles construction is the most time demanding stage in 
the whole process. However, its running time turns out to be 
quite modest: it takes 0.87ms for the on-board computer 
(Pentium M, 1.8GHz) to translate the 361 obstacle points that 
are supplied by a 2D laser range scanner. The grid size is 7x7 
meters, cells into this grid are 2x2cm (122,500 cells), and 512 
discrete values for α are taken into account for the lookup-
tables building. With these settings, our robots are able to 
detect openings as small as 4 cm larger than the robot size. 
 Finally, we outline the following conclusions. We have 
presented a new approach to the non-holonomic reactive 
navigation problem that allows a clear and useful separation 
of the usually merged problems of selecting non-holonomic 
compliant motions and choosing it to avoid collisions. This is 
accomplished through a space transformation into TP-Space, 
whose implementation has shown to be effective and efficient. 
Unlike other transformed spaces, the transformation is defined 
in the general form of a PTG, allowing any number of custom 
transformations, each one carrying a portion of information 
about C-Obstacles, while the simultaneously use of a variety 
of PTGs increases the effective use of sensed data. Further 
research is needed in order to provide custom PTG designs 
and to integrate the robot dynamics into the approach. 
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