

The Trajectory Parameter Space (TP-Space): A New
Space Representation for Non-Holonomic Mobile Robot

Reactive Navigation

Jose-Luis Blanco, Javier Gonzalez, Juan-Antonio Fernández-Madrigal
Dept. of System Engineering and Automation

University of Malaga
Málaga, Spain

{jlblanco,jgonzalez,jafma}@ctima.uma.es

 Abstract – The reactive navigation of a non-holonomic
mobile robot implies selecting at each instant of time a motion
command satisfying two conditions: to avoid collisions and to
comply with the robot non-holonomic constraints. Most proposed
reactive navigation approaches deal with these requirements
simultaneously in an indivisible way. This paper proposes a clear
separation of these problems by introducing a representation
space where a robot losses its kinematics restrictions and can be
dealt as a “free-flying-point.” The collision avoidance can
therefore be solved by existing holonomic methods, which are
able to steer non-holonomic, any-shaped robots when applied in
this space, named the Trajectory Parameter Space (TP-Space).
We also formalize the transformation between this space and the
robot physical space introducing the Parameterized Trajectory
Generator (PTG), a translation between both spaces by means of
a family of parameterized trajectories. This formalization is
addressed in a generalized form to allow us deriving any number
of different transformations. Unlike previous non-holonomic
approaches that use just one single transformation, the proposed
method considers a variety of them simultaneously which
becomes an obvious improvement to reactive approaches: each
one can detect a collision-free path that the others can not. We
present some experimental results to show the suitability of our
method and its advantages compared with traditional
approaches.

 Index Terms – Mobile robots, reactive navigation, non-
holonomic kinematics, motion planning.

I. INTRODUCTION

For mobile robots to navigate securely and dependably, it
is essential to use some geometrical space model where
sensed obstacles could be represented easily and collision free
paths found efficiently. In particular, reactive navigation
methods can be applied on these spaces to steer robots
towards target positions while avoiding collisions, based
solely on sensed data and without a previous model of the
environment. The space that most completely describes a
robot is the Configuration Space (C-Space), which considers
all the robot degrees of freedom and has been extensively
used in many fields including robotics manipulators [8],
maneuvers planning [7], and motion planning [11].
Nevertheless, its high dimensionality makes difficult its direct
application to navigation into unknown or dynamic
environments where real-time requirements demand more

efficient solutions, i.e. reactive navigation methods. The
majority of methods dealing with non-holonomic robots
assume a family of circular paths (which are compatible with
most wheel-driven and non-holonomic robots) from which to
select the robot movement at each instant of time ([6],[13]).
Recently, the Ego-Kinematic Space (EK-Space) [10] has been
proposed to simplify the C-Space by means of the same
circular paths (arcs) but in a more elegant and mathematically
sound way: C-Space is reduced to EK-Space, a 2D parameter
space which parameterizes the family of circular paths.
Straight lines in the resultant space represent arcs to the actual
robot, thus the robot can be dealt as a “free-flying-point”
(without non-holonomic constraints). TP-Space can be seen as
a slightly different parameter space than EK-Space. However,
the restrictive use of a fixed circular paths model in [10] limits
the exploration of the free-space.

In this work we are motivated by the intuitive idea that,
by means of removing this restriction and considering other
paths models apart of the circular one, more valuable
information about the free-space can be provided to the
reactive method. This has been confirmed with experimental
results, as will be exposed later.

For our purposes we introduce in this paper a new space
representation, the Trajectory Parameter Space (TP-Space),
which reduces the dimensionality of the navigation problem
through a parameterization of C-Space paths (three-
dimensional points) using only two parameters. Instead of
considering only circular paths as previous methods, our

The actual
environment

C-Space

TP-Space

Parameterized Trajectory Generator (PTG)

The real robot

C-Obstacles Non-holonomic
movement commands

TP-Obstacles
Holonomic
movement
commands

Standard holonomic
reactive method

Sensed obstacles Motor actuations

Fig. 1 The simplest application of TP-Space to reactive navigation involves

using a PTG to translate obstacles into TP-Obstacles. After that, a holonomic
reactive navigation method is executed in that space, and the resulting motion

is then translated back into a feasible movement for the actual robot.

1-4244-0259-X/06/$20.00 ©2006 IEEE

approach can manage a variety of path models, providing a
more effective detection of free-space.

As potential path models we consider parametrically
generated families, a concept that we formalize with the
introduction of a Parameterized Trajectory Generator (PTG): a
mapping between the TP-Space and a family of paths in the
C-Space1. Our generalized formulation overcomes the circular
paths limitation, thus allowing us to detect collision-free paths
unavailable to previous methods. Furthermore, many different
paths model can be simultaneously used to detect good paths,
a feature that can not be found in previous reactive methods.
In fact, it should be notice that the insights behind TP-Space
can also be applied to reactive approaches to high-
dimensional problems (e.g. manipulators), although in this
work we focus on its application to mobile robots planar
navigation only.

To clarify the roles of TP-Space and PTG a simplified
TP-Space based reactive navigation system is sketched in Fig.
1. The main steps involved are:

1. The robot senses obstacles, which in the robot C-Space
generate C-Obstacles.

2. A given PTG translates obstacles into TP-Space (TP-
Obstacles are obtained).

3. A holonomic reactive navigation method selects a
desired motion in TP-Space, assuming a robot without
non-holonomic constraints.

4. The PTG translates the holonomic motion into a non-
holonomic one, feasible for the actual robot.

5. Repeat from step 1 until target location is reached.

In practical systems a variety of PTGs can be used
simultaneously and a selection mechanism must be introduced

1 We use the term trajectory instead of path since our approach considers the
time and the robot velocities, as exposed later.

to dynamically choose the most suitable one at each instant of
time (this is not addressed in the present paper).
 The above steps are explained throughout the paper,
which is organized as follows. In section II we review other
representation spaces, and TP-Space is introduced in section
III. Next we describe our formulation of a PTG and how it is
applied for building TP-Obstacles and extracting non-
holonomic motion commands from TP-Space. Experimental
results from real robots are presented in section V. We finalize
with some conclusions.

II. OTHER SPACE REPRESENTATIONS

 The Workspace (WS) is the simplest representation
space. It contains the set of reachable locations in the robot
environment. For most wheeled robots the WS is commonly
assumed to be a 2D plane, thus the robot heading is ignored.
As a result, WS can be applied precisely only to circular
shaped robots, certainly a too restrictive condition for many
practical situations. However, sensed obstacles can be easily
represented into WS since they are usually modelled as 2D
obstacle-points ([1],[4],[9],[13]).
 A more complete robot description is achieved with C-
Space ([7],[8]) whose complexity depends on the number of
degrees of freedom. For our purposes the robot can be
represented by its position (x,y) and its orientation φ,
obtaining a three-dimensional C-Space. In this space the robot
is represented as a single point and obstacles (C-Obstacles)
implicitly hold the robot shape, as illustrated in Fig. 2(a)-(b).
Robot navigation therefore becomes a path-finding problem in
this three-dimensional space. The construction of the whole
C-Obstacles is a demanding computational process since all
the poses that make the robot to collide with any obstacle
must be found. On the other hand, robots moving in dynamic
and cluttered environments must respond quickly to
environment changes, making impractical the direct
application of C-Space in these situations. This is the
motivation for reactive navigation methods, which can be
mainly classified into:

• Holonomic methods, working directly in WS and
computing a desired motion based on currently sensed
obstacles, as the ones reported in [2],[4],[14], and [9].

• Non-holonomic methods, most of them working in the
velocity space ([1],[12],[13]) and some of them also
including the dynamic window concept [5].

 These approaches have different limitations. Holonomic
ones are not directly applicable to most existing car-like
robots, while non-holonomic methods based on the dynamic
window ignore part of the sensed information. Velocity space
methods by their part use circular paths only to estimate
distance to obstacles which limits the possibility to detect a
better motion for the robot. Actually, a key operation in all
reactive approaches is that of estimating the distance until
collision. Next, we provide some insight into this issue since
its generalization makes possible the introduction of TP-
Space.

(a)

y

x

φ

Obstacles
y

x

φ

Obstacles
y

x

φ

Obstacles

x

φ

Obstacles

y

x

φC-Obstacles

y

x

φC-Obstacles

(b)

(c) (d)

Holonomic
paths

Non-holonomic
paths

Fig. 2 In (a)-(b) two obstacles are represented in the WS (2D) and in C-Space

(3D), respectively. To transform the navigation problem back into 2D,
previous reactive methods use a family of paths to measure the distance to

obstacles. According to the robot being holonomic (c) or not (d) classical path
models are straight lines and circular arcs, respectively.

III. THE TP-SPACE

A. Problem statement
 Reactive methods decide movements based on current
sensed data only, from which distance until collision is
estimated along a family of paths. This operation becomes a
central issue in reactive navigation since it provides the only
source of information about the free-space (see Fig. 2). For
holonomic robots, which can move in any direction, these
distances are measured over straight paths, while for non-
holonomic robots, which move along a sequence of
infinitesimal circular arcs, distances are measured along
circular paths (see Fig. 2(c)-(d)). Although the plenty of
previous methods consider only this pair of path models, they
are just two ways out of the infinity of them that could be
employed for this purpose. In the following we provide some
insight into the obstacles sampling mechanism and the
importance of path models and distance measurement in this
process.
 We define a robot path as a continuous sequence of
locations and orientations, thus it can be plotted as a three-
dimensional curve in C-Space (as the one in Fig. 3). A family
of parametrically generated paths in this space will hence
generate a surface, as the example in Fig. 4. The intersection
of this sampling surface with the C-Obstacles indicates the
poses of the robot that lead to collisions. In other words, the
obstacles sampling should be considered in C-Space as using
a different 3D shape for each path model. Rigorously,
distances to collision should be measured along the respective
C-Space paths. This can not be determined with the usual
Euclidean metric since useless values are obtained:
dimensions of different nature, linear and angular, are added
together, as sketched in Fig. 3. Previous approaches avoid this
problem by measuring Euclidean distances along the paths
projection on WS but ignoring changes in the robot
orientation. To be rigorous, we propose in the next section to
replace the Euclidean metric in C-Space with a more
appropriate metric.

B. Definition of TP-Space
 TP-Space is a two-dimensional space where a point,
given by its polar coordinates (α,d), corresponds to another
one on a sampling surface in C-Space. More precisely, α
defines a trajectory out of a given family, and d represents the
distance along that trajectory. In practice, we are only
interested in the circle of unit radius, that is, in the range
A×D⊂R2, where A={α | α ∈]-π,π]} and D={ d | d ∈ [0,1]},
provided that distances are normalized with respect to an
arbitrarily large distance dMAX.
 The purpose of using TP-Space as a space representation
is to convert the free-space sampling problem of non-
holonomic robots (in C-Space) to one for a holonomic robot
in the TP-Space, which can be considered a virtual Workspace
(WS). Since this transformation is applied at each iteration,
the robot will always be at the origin and surrounding
obstacles will appear within the unit circle. In this virtual WS,
well-known holonomic reactive methods for circular robots

can be applied. These methods are the simplest and most
efficient reactive navigation approaches, thus, the benefit of
being able to apply them to any kind of robot (non-circular
or/and non-holonomic) is clear. As shown in Fig. 4, a straight
path given by a constant α value in TP-Space is equivalent to
a trajectory of a certain family (or sampling surface), which is
defined by a given PTG.

IV. THE PARAMETERIZED TRAJECTORY GENERATOR (PTG)

A.Definitions
 A PTG is a mapping from TP-Space points (α,d) to C-
Space poses ((x,y),φ), such that straight paths from the origin
in TP-Space are transformed into kinematics-compliant paths
in C-Space (see Fig. 4). Formally, a PTG is defined as:
 PTG: A×D ⊂ R2 → R2×Α (1)

 (α,d) → {(x,y), φ}
where A={α|α∈]-π,π]} and D={d|d∈[0,1]} define the domain
of the PTG. In order to generalize as much as possible the
generation of paths, we propose to describe them in terms of
trajectories. A trajectory for a robot is just like a path but
taking time into account, which is required for linear and
angular velocities to be defined at each point. The time used
in a PTG may not be the robot actual time since velocities can
be scaled for speed control purposes, as commented later on.
Actually, time (t) is introduced as a substitute of the distance
(d) in the PTG. There are two reasons for this change of
variable: (i) for having a physical meaning: the natural
parameterization of trajectories is time; and (ii) C-Space lacks
of a proper metric for distances, in the sense that was
discussed in the previous section. The change of variable
therefore involves the definition of a custom non-Euclidean
metric in such a way that a one-to-one correspondence
between distance and time is established. Before exposing the
details of this custom metric, the C-Space variables defined by
a PTG must be introduced. Let V(α,t)=[v(α,t) ω(α,t)]T be the
velocity vector over a given trajectory in TP-Space, where the
components are the linear and angular velocities of the robot,
respectively. The definition of the functions v(α,t) and ω(α,t),
denominated design functions of the PTG, will state the
mapping between the TP-Space and the C-Space, since its

x (m)

y (m)

φ (rad)

Path in WSdx
dy

dφ
dP

dP'

||dP||2=dx2+dy2+dφ2

m2 rad2

Path in C-Space

||dP’||2=dx2+dy2

x (m)

y (m)

φ (rad)

Path in WSdx
dy

dφ
dP

dP'

||dP||2=dx2+dy2+dφ2

m2 rad2

Path in C-Space

||dP’||2=dx2+dy2

Fig. 3 The metric space for WS is well defined by taking Euclidean distance
as its metric, but this is not acceptable in C-Space due to the orientation
dimension. This forces the introduction of a more appropriate metric.

integration over time yields the robot trajectory (in C-Space).
More concretely, let x(α,t), y(α,t) and φ(α,t) be the
components of the robot pose (configuration), defined as
P(α,t)=[x(α,t) y(α,t) φ(α,t)]T. These poses are then obtained
by integration of the kinematics constraint equation, which for
the case of a car-like robot stands as,

 ()
()
() ()

()⎥⎦
⎤

⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

∂
∂

α,t
α,tv

α,t
α,t

t
t

ω
φ
φ

α
10
0sin
0cos

,P (2)

where the right-most vector is the velocity vector V(α,t)
whose design will totally determine the properties of the
resulting PTG. The expression (2) is not integrable, hence an
analytical expression for P(α,t) can not be supplied in the
general case and numerical solutions must be used2.
 The problem of supplying a proper metric for C-Space
can now be addressed. We propose the following metric for a
pose increment ∆p=[∆x ∆y ∆φ]T in C-Space:

 () ()222
00

010
001

 ∆ φ
φ

∆⋅+∆+∆=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= ryxy

x

r
m p (3)

where the change in the robot orientation is incorporated into
the measurement by means of a given distance r (this constant
parameter can be set to any value in the order of the robot
size). Applying this metric to a given trajectory means to
measure the traveled distance from the origin to any given
point on that trajectory, taking also into account the
normalization distance (dMAX), since we are interested in
normalized distances in the range [0,1]. Let this distance
measurement be denoted as µα(t) for the trajectory α and until
time t. An expression for this trajectories metric can be
obtained from:

()

()
() ()

()

∫

∫

∫

+

=⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=⎟
⎠
⎞

⎜
⎝
⎛=

t
d

t
d

t
d

drv

d
α,t
α,tv

α,t
α,t

r

d
d
dmt

MAX

MAX

MAX

0
221

0
1

0
1

)),(·(),(

10
0sin
0cos

00

010
001

τταωτα

τ
ω

φ
φ

τ
τ

µα
P

 (4)

where the metric proposed in (3) has been used instead of the
Euclidean norm. This function establishes a bijective mapping
between time t and the normalized distance d in a PTG. Hence
the change of variable is solved and the general expression for
a PTG can finally be written down as:

 () ()()ddPTG 1,, −= αµαα P (5)

where poses P(α,t) are solved numerically for each PTG. The
inverse process, required for constructing the TP-Obstacles,
translates C-Space poses into TP-Space and is given by the
inverse PTG function:

2 A prominent exception is the case where velocities are constant, that is,
when the robot moves along circular paths.

 PTG-1: Surf(PTG) ⊂ R2×A A×D (6)

 ((x,y),φ) (α,d)
whose domain is not the whole C-Space but only Surf(PTG),
that is, the points of the 3D sampling surface:

 Surf(PTG) = {P | P=PTG(α,d)} ∀ (α,d)∈A×D (7)

B. Building TP-Obstacles
 A TP-Space based navigation system performs two
transformations with each PTG: (i) the construction of TP-
Obstacles, and (ii) the translation of the target location into
TP-Space. Both transformations imply mapping WS points
into TP-Space but they represent quite different processes.
The translated target location remains being a single point in
TP-Space and it is simply computed through the Γ(·) function,
defined as:

 () () ,
000
010
001

0
 minarg),(0

0

,00 dPTGy
x

yx d αα ⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Γ (8)

and finding the closest trajectory to any given location
(ignoring the robot orientation).
 On the other hand, obstacle points are translated into TP-
Space regions, namely TP-Obstacles. Let o∈ 2 be a real
obstacle point in WS, and C-Obstacle(o) its representation in
C-Space. We define the TP-Obstacle for the point o as:

 TP-Obstacle(o) = { (α,d) | (α,d)=PTG-1(P), (9)
 ∀ P∈C-Obstacle(o) ∩ Surf(PTG) }
that is, it is defined as the translation of the intersection
between C-Obstacles and the sampling surface of the PTG
into TP-Space. Since a robot can collide with obstacles, even
those ones consisting of a single point, from many different
poses, TP-Obstacles are always two-dimensional regions in
TP-Space, even when generated from a single obstacle point.
 Since holonomic methods in TP-Space will measure
obstacle distances along radial paths we are only interested in
the closer obstacle in each direction, thus only the minimum
collision-free distance for each α value must be kept (recall
that constant α values results in straight paths in TP-Space).

PTG

PTG-1

α=α0

t0=µ−1(α, d0)

α=α0

d=d0

α

TP-Space C-Space

d

Fig. 4 When a family of paths in C-Space is generated parametrically using a
given PTG, a characteristic 3D shape appears. A PTG is designed for
transforming radial paths in TP-Space into feasible paths in C-Space.

C. From TP-Space movements to real ones
 The motion command generated by a holonomic method
in the virtual WS (TP-Space) is a pair stating the robot desired
speed s and direction αm (in the interval]-π,π]). This motion
command must be translated back to a non-holonomic
movement, which can be carried out in two steps:

1. We obtain a normalized velocity command from the
evaluation of the PTG design function at α=αm, that is:

 Vnorm(αm) = V(αm,0) = [v(αm,0) ω(αm,0)]T (10)
We take the initial response (at t=0) since the PTG
reference system is the robot current pose, i.e. the robot
is always at the origin of trajectories in the TP-Space.

2. The non-holonomic command velocity Vn-h (in the real
world) is obtained by scaling Vnorm according to the
holonomic velocity s in TP-Space (provided by the
holonomic method). Mathematically:

 () (){ } ()mnormmhn m
ss α

α
α

α
V

V
V ⋅=−)0,(max

 , (11)

where m(·) is a custom metric for speeds similar to that
defined in (3) for pose increments:

 22)·(
10
0sin
0cos

00

010
001

 ω
ω

φ
φ

rv
v

r
w
v

m +=⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡ (12)

D. Practical implementation issues
 Two main problems must be addressed to get a functional
TP-Space based reactive navigation system: (i) obtaining a
solution to equations for each PTG; and (ii) building TP-
Obstacles. The first problem consists on solving (2), which is
easily accomplished with standard numerical techniques for a
discrete set of a values. Building the TP-Obstacles is a more
complex process, but a fast method based on lookup tables has
been developed following ideas related to those in [12]: the
WS is arranged as a rectangular grid and each cell stores the

10 30 50 70 90
-0.1

0

0.1

0.2

0.3

time (sec)

V
(m

/s
ec

)

10 30 50 70 90
-30

0

30

time (sec)

w
(d

eg
/s

ec
)

Snapshot #1

Snapshot #2

(a)

(b)
-3 -2 -1 0 1 2 3

-1

0

1

2

3

4

5

-6 -4 -2 0 2 4 6
0

2

4

6

8

10

12

Starting
position

Target

Snapshot #1

Snapshot #2

t = 35s

Workspace
t = 35s

(c) (d)

(e)

(f) (h)

(g)

0.3

0.5

30

210

60

240

90

270

120

300

150

330

180 0

TP-Space
(for PTG1)

t = 35s

s1

0.6

1

30

210

60

240

90

270

120

300

150

330

180 0

s2

TP-Space
(for PTG2)

t = 35s

s2 (Selected)

s1

10 30 50 70 90
-0.1

0

0.1

0.2

0.3

time (sec)

V
(m

/s
ec

)

10 30 50 70 90
-0.1

0

0.1

0.2

0.3

time (sec)

V
(m

/s
ec

)
V

(m
/s

ec
)

10 30 50 70 90
-30

0

30

time (sec)

w
(d

eg
/s

ec
)

10 30 50 70 90
-30

0

30

time (sec)

w
(d

eg
/s

ec
)

Snapshot #1Snapshot #1

Snapshot #2Snapshot #2

(a)

(b)
-3 -2 -1 0 1 2 3

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2 3
-1

0

1

2

3

4

5

-6 -4 -2 0 2 4 6
0

2

4

6

8

10

12

Starting
position

Target

Snapshot #1

Snapshot #2

t = 35s

-6 -4 -2 0 2 4 6
0

2

4

6

8

10

12

-6 -4 -2 0 2 4 6
0

2

4

6

8

10

12

Starting
position

Target

Snapshot #1

Snapshot #2

t = 35s

Workspace
t = 35s

(c) (d)

(e)

(f) (h)

(g)

0.3

0.5

30

210

60

240

90

270

120

300

150

330

180 0

TP-Space
(for PTG1)

t = 35s

s1

0.3

0.5

30

210

60

240

90

270

120

300

150

330

180 0

0.3

0.5

30

210

60

240

90

270

120

300

150

330

180 0

TP-Space
(for PTG1)

t = 35s

s1

0.6

1

30

210

60

240

90

270

120

300

150

330

180 0

s2

TP-Space
(for PTG2)

t = 35s

0.6

1

30

210

60

240

90

270

120

300

150

330

180 0

0.6

1

30

210

60

240

90

270

120

300

150

330

180 0

s2

TP-Space
(for PTG2)

t = 35s

s2 (Selected)

s1

Fig. 5 (a)-(b) Snapshots from the navigation experiment using our reactive method, which generates the linear and angular velocity commands that are plotted in
(c) and (d), respectively. The path followed by the robot towards the target can be seen in (e), where also the instants of time corresponding to the snapshots are

highlighted. For another instant of the experiment, t=35sec, the sensed obstacles are shown in (f) in the WS, whereas their translations into TP-Space are in (g)-(h)
for a classical paths-based PTG and a custom one, respectively. As further explained in the text, the non-circular PTG provides a better movement here.

TP-Obstacle for obstacles into that cell. As a result, translating
the real obstacles becomes just adding the elemental TP-
Obstacles for the occupied cells. Then, just the closer obstacle
for each α value must be kept, which will be passed to the
holonomic reactive method as obstacle distances in the virtual
WS. The required time for building TP-Obstacles with this
technique is linear in the number of points. In spite of that
building the tables takes a long time (almost a minute), they
must not be updated as long as neither the kinematics nor the
shape of the robot change.
 Concerning the holonomic method to be applied in TP-
Space in our implementation we use a custom design inspired
in [9]. Our navigation system considers a variety of PTGs, and
consequently it includes a method for choosing the most
promising transformation based on a weighted average of a
number of objective functions which are evaluated for each
possibility. We do not provide here more details of neither the
selection nor the holonomic navigation methods because of
the space limitation.

V. RESULTS AND CONCLUSIONS

 TP-Space based reactive navigation has been tested for
almost a year of extensively use in different scenarios
including corridors, cluttered rooms, and open spaces. In our
implementation we currently use two different PTGs, one of
them generating circular paths and the other based on heuristic
rules (the 3D sampling surface for this PTG is plotted in Fig.
4). This approach has been tested on two different robotic
platforms: SENA, a robotic wheelchair [5], and Sancho, a
service robot built on a Pioneer 3 mobile base. The whole
navigation system is the same for both robots except for the
robot shape and the speeds limits, which are used in building
the lookup tables. Fig. 5 shows the record of a navigation
using Sancho, where the reactive navigation system is
commanded for moving towards a point located outside the
room. The twisty trajectory followed by the robot is shown in
Fig. 5(e) over a map where obstacles are also drawn. It can be
appreciated that the robot gets out the room smoothly, which
shows that even the narrow free-space through the door is
clearly visible in TP-Space. In order to demonstrate the
improvement that our approach brings into the navigation,
let’s take a look at a given point of the navigation, concretely,
the one pointed out in Fig. 5(e) for t=35s. At this point, the
sensed obstacles are the ones plotted in Fig. 5(f), and TP-
Obstacles corresponding to the circular paths and to the
custom PTG are shown in Fig. 5(g)-(h), respectively. The
holonomic reactive method selects s1 and s2 as the best
straight paths in each one of these virtual-WS (TP-Space),
whose translations into actual trajectories are highlighted in
Fig. 5(f). It is manifest that traditional approaches (implicitly
using our circular PTG) can not find the collision-free path
shown in the latter, which is clearly more advantageous.
Although any path can be decomposed as a sequence of arcs,
our method provides directly the reactive algorithm with valid
collision-free trajectories that may not been detected with
circular arcs only.

 Regarding the time efficiency of our method, the TP-
Obstacles construction is the most time demanding stage in
the whole process. However, its running time turns out to be
quite modest: it takes 0.87ms for the on-board computer
(Pentium M, 1.8GHz) to translate the 361 obstacle points that
are supplied by a 2D laser range scanner. The grid size is 7x7
meters, cells into this grid are 2x2cm (122,500 cells), and 512
discrete values for α are taken into account for the lookup-
tables building. With these settings, our robots are able to
detect openings as small as 4 cm larger than the robot size.
 Finally, we outline the following conclusions. We have
presented a new approach to the non-holonomic reactive
navigation problem that allows a clear and useful separation
of the usually merged problems of selecting non-holonomic
compliant motions and choosing it to avoid collisions. This is
accomplished through a space transformation into TP-Space,
whose implementation has shown to be effective and efficient.
Unlike other transformed spaces, the transformation is defined
in the general form of a PTG, allowing any number of custom
transformations, each one carrying a portion of information
about C-Obstacles, while the simultaneously use of a variety
of PTGs increases the effective use of sensed data. Further
research is needed in order to provide custom PTG designs
and to integrate the robot dynamics into the approach.

REFERENCES
[1] K.O. Arras, J. Persson, N. Tomatis, R. Siegwart, “Real-Time Obstacle

Avoidance For polygonal Robots With a Reduced Dynamic Window,” in
Int. Conf. on Robotics and Automation, 2002.

[2] J.L. Blanco, J. Gonzalez, J.A. Fernández-Madrigal, “The TP-Space:
Foundations and applications,” Technical Report, Dept. of System
Engineering and Automation, University of Malaga, 2005.

[3] J. Borenstein, Y. Koren, “Real-time Obstacle Avoidance for Fast Mobile
Robots,” in IEEE Transactions on Systems, Man, and Cybernetics, vol.
19, no.5, pp.1179-1187, 1989,.

[4] J. Borenstein, Y. Koren, “The Vector Field Histogram – Fast Obstacle
Avoidance for Mobile Robots,” in IEEE Transactions on Robotics and
Automation, 1991.

[5] J.A. Fernández-Madrigal, C. Galindo, J. González, “Assistive Navigation
of a Robotic Wheelchair using a Multihierarchical Model of the
Environment,” in Integrated Computer-Aided Engineering, v.11, no.4,
pp.309-322, 2004.

[6] D. Fox, W. Burgard, S. Thrun, “The dynamic window approach to
collision avoidance,” in IEEE Robotics and Automation Magazine, 1997.

[7] C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, 1991.
[8] T. Lozano-Pérez, “A Simple Motion-Planning Algorithm for General

Robot Manipulators,” in IEEE Journal of Robotics and Automation, 1987.
[9] J. Minguez, L. Montano, “Nearness Diagram (ND) Navigation: Collision

Avoidance in Troublesome Scenarios,” in IEEE Transactions on Robotics
and Automation, v. 20, no. 1. Feb, 2004.

[10] J. Minguez, L. Montano, and J. Santos-Victor, “Reactive navigation for
non-holonomic robots using the ego-kinematic space,” in Int. Conf. on
Robotics and Automation, v.3, pp. 3074–3080, 2002.

[11] R.R. Murphy, Introduction to AI Robotic, the MIT Press, 2000.
[12] C. Schlegel, “Fast Local Obstacle Avoidance under Kinematics and

Dynamic Constraints for a Mobile Robot,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 1998.

[13] R. Simmons, “The Curvature-Velocity Method for Local Obstacle
Avoidance,” in Int. Conf. on Robotics and Automation, 1996.

[14] P.K. Pal, A. Kar, “Mobile Robot Navigation Using a Neural Net,” in Int.
Conf. on Robotics and Automation, 1995.

	IROS06-196.pdf
	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

	IROS06PageNumber:
	0:
	11456063498675484: 1195
	6891445619115687: 1196
	7063999282586485: 1197
	7728515395870593: 1198
	09397238838848992: 1199
	2970296860492992: 1200

	TL1:
	0:
	22381134915641426: Proceedings of the 2006 IEEE/RSJ

	TL2:
	0:
	7454002011906554: International Conference on Intelligent Robots and Systems

	TL3:
	0:
	5895108913452816: October 9 - 15, 2006, Beijing, China

