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Abstract Odor classification by a robot equipped with an

electronic nose (e-nose) is a challenging task for pattern

recognition since volatiles have to be classified quickly and

reliably even in the case of short measurement sequences,

gathered under operation in the field. Signals obtained in

these circumstances are characterized by a high-dimen-

sionality, which limits the use of classical classification

techniques based on unsupervised and semi-supervised

settings, and where predictive variables can be only iden-

tified using wrapper or post-processing techniques. In this

paper, we consider generative topographic mapping

through time (GTM-TT) as an unsupervised model for

time-series inspection, based on hidden Markov models

regularized by topographic constraints. We further extend

the model such that supervised classification and relevance

learning can be integrated, resulting in supervised GTM-

TT. Then, we evaluate the suitability of this new technique

for the odor classification problem in robotics applications.

The performance is compared with classical techniques as

nearest neighbor, as an absolute baseline, support vector

machine and a recent time-series kernel approach, dem-

onstrating the eligibility of our approach for high-dimen-

sional data. Additionally, we exploit the learning system

introduced in this work, providing a measure of the rele-

vance of each sensor and individual time points in the

classification process, from which important information

can be extracted.

Keywords Electronic nose � Volatile classification � Odor
recognition � time-series � Prototype learning � Relevance
learning

1 Introduction

Olfaction plays an important role in the development of

many applications, such as quality control in food pro-

cessing chains, detection and diagnosis in medicine, find-

ing drugs and explosives, and the more common estimation

of blood alcohol content (BAC) for drivers. Among them,
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there are some applications like pollution monitoring or

leak detection that require to measure the environment

continuously and at different locations. For such scenarios,

the use of a mobile robot with the capability of identifying

and measuring the volatiles’ concentration is of great help

as already reported in [25, 26]. Furthermore, olfaction also

plays a key role in the development of more intelligent and

useful robots at home, for example, by recognizing activ-

ities and environmental conditions, or improving social

interaction [16].

Three are the main fields within robotics olfaction: gas

distribution mapping (GDM) [4, 22], where the objective is

to obtain a truthful representation of how volatiles are

dispersed in the inspected area and their respective con-

centrations, gas source localization (GSL) where the robot

is commanded to localize the emission sources [13], and

odor recognition which deals with the problem of identi-

fying which set of categories a new volatile sample belongs

to [45].

The discrimination of gases performed with a robot

equipped with an array of gas sensors presents a number of

additional challenges when compared to standard analyte

identification applications, mostly due to the differences in

the measurement conditions. While standard classification

tasks usually host gas sensors inside a chamber with con-

trolled humidity, temperature and airflow conditions, in

robotics olfaction there is no control over the sensing

conditions. This entails that the sensor signals to be pro-

cessed are noisy and dominated by the signal transient

behavior.

Only few modeling methods are available to obtain

interpretable, compact and precise predictive models for

such type of data like [7, 23]. This is mainly due to the

following reasons: (1) the number of time points is often

low, while the dimensionality of the data is rather high, (2)

the number of time sequences is often low, leading to a

sparsely populated data space and (3) the sequences may

have missing values, and may be of different length.

In this paper, we demonstrate the suitability of a novel

approach based on generative topographic mapping

through time (GTM-TT) to the problem of volatile identi-

fication in robotics. The model extends classical GTM-TT

by integrating supervised classification and relevance

learning, resulting in supervised GTM-TT (SGTM-TT).

More precisely, we have tested the SGTM-TT method with

an e-nose comprising an array of MOX (metal oxide sen-

sors) to classify samples of seven different volatiles under

uncontrolled conditions. The performance is compared

with techniques as nearest neighbor (NN), support vector

machine (SVM) and a reservoir computing time-series

kernel (RTK). We illustrate one of the main advantages of

the proposed method when classifying odors based on short

data sequences, providing the predictive classification

accuracy for sequences of reduced lengths (1, 10 and 20 s).

Furthermore, we highlight the introduced relevance learn-

ing system for temporal high-dimensional data, by studying

the relevance of sensors and time points on the classifica-

tion performance.

2 Related works

Odor discrimination with electronic noses has received

growing attention and many studies have been done on

how to classify odors using an array of gas sensors and a

pattern recognition algorithm. In [8, 11, 18, 40] the

principal methods for chemical classification with an

array of gas sensors are reviewed, including NN, maha-

lanobis linear discriminant analysis, neural networks

(ANN), cluster analysis with self-organizing maps (SOM)

and SVM.

More recently, approaches based on ensembles of clas-

sifiers have been reported to improve the classification

accuracy [44], to improve the earliness on the classifica-

tion [20], or to deal with the common problems of sensor

drift and sensor replacement. In [47], a SVM based

ensemble of classifiers is used to solve the gas discrimi-

nation problem over a period of 3 years by training dif-

ferent classifiers at different points of time. Similarly,

in [27], a flexible classification strategy based on cooper-

ative classifiers is proposed to increase the robustness of

chemo-sensory systems against failures in their constituent

sensing elements, postponing the necessity of replacing a

sensor in the array, as well as facilitating the insertion of

newly sensing elements.

Nevertheless, little attention has been given to the

problem of classification in uncontrolled conditions, as

revealed by the few works found in the literature that

perform classification focusing only on the transient phase

of the sensor signals. An evaluation for the suitability of

different feature extraction techniques for such scenarios is

provided in [45], where Trincavelli et al. propose a pre-

processing stage to isolate the relevant parts of the sensor

signals that can then be passed to the pattern recognition

algorithm. More recently, in [12] a SVM is applied to a set

of features obtained from changes of the spectral sensor

signal characteristics (frequency components, phase shift

and energy sums), reporting a substantial increase of the

classification performance.

Gas sensor data have been analyzed by many different

machine learning techniques with typically substantial

preprocessing steps, limiting an out of sample extension, as

discussed in more detail later on. Recent work [5]

regarding the classification of gas sensor data is based on

density estimates or models of the time-series using deci-

sion trees [10].
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Time series processing constitutes an advanced field of

research with many existing powerful statistical analysis

tools (see for example [41]). However, their methods

usually require a sufficient length of the time-series as

compared to their dimensionality or consider only one-

dimensional time-series. Further the focus is often on

modeling a timeseries, by means of a longer sequence to

explore trends and predict future measurement values. In

this work we are interested on discriminative models

between different groups of time-series and we would like

to predict the class of the timeseries.

A few machine learning techniques exist to investigate

high-dimensional time-series: topographic mappings such

as the self-organizing map (SOM) (see [1] for a recent

review) were extended by a recursive context which

accounts for the temporal dynamics [43]. A probabilistic

counterpart is provided by the GTM-TT which combines

hidden Markov models with a constraint mixture model

induced by a low-dimensional latent space. This approach

is extended to better take the relevance of the feature

components into account in [31], but relying on an unsu-

pervised model. The identification of relevant dimensions

is very important as outlined, e.g. in [23, 31] to obtain a

better understanding of the data, to reduce the processing

complexity, and to improve the overall prediction accu-

racy. A supervised relevance weighting scheme which

singles out relevant features in a wrapper approach based

on hidden markov models has been proposed in [23]. In

[7], a similar approach introducing class-wise constraints in

the hidden Markov model is presented. In [23], applica-

tions to life science data are presented resulting in 85%
prediction accuracy on a multiple sclerosis (MS) data set,

but the approach makes multiple, restrictive assumptions

regarding the used hidden Markov model (HMM). The

approach [7] is evaluated in the same scenario with

improved performance for the sclerosis data set. Ongoing

work in the field reflects the high demand for effective

methods for short but high-dimensional time-series data

[33]. This is not limited to the bio-medical domain [7, 23]

but covers a broader field of applications in industry and

geo-science [31, 43]. In this work, we employ a supervised

variant of GTM-TT (SGTM-TT) as introduced in [36] and

extended in [37].

3 Method

3.1 Generative topographic mapping

As outlined before the complexity of the considered data

requests for a strong regularizing and interpretable model.

Topographic maps appear to be a good choice and espe-

cially the generative topographic mapping (GTM)

combines multiple necessary features. GTM was first

introduced in [2] and models a given set of data vectors

x 2 R
D in form of a mapping based on a constrained

mixture of Gaussians. The mixture is induced by a lattice

of points w in a low-dimensional, so called, latent space

which can also be used for visualization. The low-dimen-

sional lattice points are mapped by a projection w 7! t ¼
yðw;WÞ into the high-dimensional data space. The corre-

sponding mapping function is parametrized by the param-

eters W, which usually are chosen in form of a generalized

linear regression

y : w 7!UðwÞ �W ð1Þ

with basis functions U as equally spaced Gaussians. The

high-dimensional points yðw;WÞ are called prototypes and

are determined in the original data space. The prototypes

define a quantization of the original data space, repre-

senting the data with minimum possible error and can be

inspected directly. For more recent work on prototype-

based learning and topographic maps see [1].

Every grid point of the GTM induces a Gaussian

pðxjw;W; bÞ ¼ b
2p

� �D=2

exp � b
2
kx� yðw;WÞk2

� �

ð2Þ

with variance b�1. Assuming a Dirac distribution of the

prototypes, the data are modeled by a mixture of K modes

pðxjW; bÞ ¼
XK
k¼1

pðwkÞpðxjwk;W; bÞ ð3Þ

with pðwkÞ ¼ 1=K, assuming equal probabilities of the

modes. We optimize the data log-likelihood

ln
YN
n¼1

XK
k¼1

pðwkÞpðxnjwk;W; bÞ
 ! !

ð4Þ

bymeans of an expectationmaximization (EM) strategywith

respect to the model parameters W and b with data dimen-

sionalityD and number of pointsN as detailed in [2]. Finally

an unsupervised restricted Gaussian mixture model (GMM),

induced by a low-dimensional latent space, is defined.

3.2 GTM through-time

For temporal data the original GTM formulation is limited

because it does not account for the dependency between

different time points leading to quite complex and redun-

dant GTM models (see [31]). An extension was provided

by the GTM through time (GTM-TT) [2] where the entries

over time are no longer independent. It basically provides

an advanced time-series clustering using a constrained

hidden Markov model, which is useful under our given
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constraints. It is assumed that the data are time-series in the

D-dimensional metric space, i.e. x ¼ xð1Þ. . .xðTÞ 2 ðRDÞ�
where, T � 1 is the length of the time-series. A data point

of the training data will be referred to as xi. We assume that

entries, consecutive in time, xðtÞ and xðt þ 1Þ are strongly

correlated. In the GTM-TT the observation space (over

time) is represented by a topographic mapping as described

before but, its time dependence is modeled in the form of a

hidden Markov model (HMM). In the GTM-TT model the

hidden states are given by the lattice points wj. The concept

of the GTM-TT is depicted in Fig. 1. Let us assume a given

sequence x of observations and an underlying sequence of

hidden states of the same length z ¼ zð1Þ. . .zðTÞ where,

zðiÞ is equivalent to a point wj. Then, the probability of the

observations and a corresponding path of hidden states z

can be described by pðx; zjHÞ ¼

pðzð1ÞÞ
YT
t¼2

pðzðtÞjzðt � 1Þ;W; bÞ
YT
t¼1

pðxðtÞjzðtÞÞ ð5Þ

with the conditional probability pðxðtÞjzðtÞÞ :¼
pðxðtÞjzðtÞ;W; bÞ is as before (2) [2]. This results in the

overall probability of x: pðxjHÞ ¼
P

z2fw1;...;wKgT pðx; zjHÞ
For the parametrization of the GTM-TT (H ¼

ðW; b; p;PÞ) we rely on the assumption of the standard

Markov property and stationarity of the dynamics. With

additional parameters for the initial state probabilities p ¼
ðpjÞKj¼1 wherepj ¼ pðzð1Þ ¼ wjÞ and transition probabil-

ities P ¼ ðpijÞKi;j¼1 where pij ¼ pðzðtÞ ¼ wjjzðt � 1Þ ¼

wiÞ, the latter one characterizing the temporal correlations

of subsequent states. The data log likelihood is optimized

by: ln
QN

n¼1 pðxnjHÞ
� �

, using an EM approach. Like stan-

dard HMMs the hidden parameters (responsibilities) are

defined by a forward–backward procedure [48]. Based on

these parameters W and b can be determined as specified

before. The probability of being in state wk at time t, given

the observation sequence xn (responsibilities) is given as:

rknðtÞ ¼ pðzðtÞ ¼ wkjxn;HÞ ¼ AktBkt

pðxnjHÞ ð6Þ

Using the joint probability pðxnð1Þ. . .xnðtÞ; zðtÞ ¼ wkjHÞ
and the subsequent equation:

Akt ¼
XK
i¼1

Ait�1pikpðxnðtÞjwk;HÞ ð7Þ

we get the forward variable Akt with the start condition

Ak1 ¼ pkpðxnð1Þjwk;HÞ. The variable Bkt is the joint prob-

ability pðxnðt þ 1Þ. . .xnðtnÞ; zðtÞ ¼ wkjHÞ and is calculated

using Bkt ¼
PK

i¼1 pikpðxnðt þ 1Þjwi;HÞBitþ1 where BkT ¼
1;Bkt defines the backward variable. The transition param-

eters are trained using the standard Baum–Welch training.

As usual the underlying HMM also permits to deal with

missing values and sequences of arbitrary length [3]). A

more detailed description of the GTM-TT is given in [42].

For an input time-series xnð1Þ. . .xnðTÞ, GTM-TT spec-

ifies a time-series of responsibilities rknð1Þ. . .rknðTÞ of

neuron k. This can be used to define a winner for every

time step t: argmaxkr
knðtÞ.

3.3 Supervised GTM-TT

In the considered problem scenario our time-series data

provide additional label information, such that x is

equipped with a label l, element of a finite label set

f1; . . .; Lg. We also assume that the given label is con-

stant over time. Now, we would like to incorporate the

label information in the optimization process of the

GTM-TT leading to an extended supervised classifica-

tion scheme. Given a labeled training set, we learn a

separate GTM-TT for every class, whereby the models

are linked by the same bandwidth b and the same

underlying topological grid. We also use the same basis

functions U and the Dirac distribution on the latent

space. However, the prototype parameters Wl, the initial

state probability pl and the transition probabilities Pl are

learned individually for every model representing label l.

We refer to this model as the Supervised GTM-TT

(SGTM-TT) as depicted schematically in Fig. 2.

Accordingly, we will have a quantitative model for every

class l after training.

Fig. 1 GTM-TT consisting of a hidden Markov model, which hidden

states are constrained to be organized on a grid topology (the latent

points of the GTM model). The emission probabilities are governed

by the GTM mixture distribution [2]. In the left figure a data

distribution is given in a 3D space with an intrinsic low-dimensional

support. Additionally, these data are not i.i.d. but dependent over time

leading to some trajectory. GTM is used to project the data to a low-

dimensional grid (here 2D, right plot). The prototypes (circles left)

are generated by the latent points (in 2D, right) as HMM constrained

Gaussians (left, dotted circles). Here we consider nine hidden states

organized on a 3� 3 grid. The data distribution may change over time

and hence also the mapping of the GTM is effected over time,

assuming smooth transitions within the HMM
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In the recall or test phase we have to analyze a novel

time-series x and obtain L time-series of predicted

responsibilities according to every model which will be

denoted by rkl ðxðtÞÞ (responsibilities of model l for input x

at time point t). We can summarize the responsibilities in

an aggregated form as:

rlðxÞ :¼
XK
k¼1

XT
t¼1

rkl ðxðtÞÞ=ðKTÞ ð8Þ

and one can select the label l as predicted output for which

this value is largest.

3.4 Relevance learning for SGTM-TT

Metric adaptation for discriminative prototype-based

learning has been introduced in [19], it is often also

referred to as relevance learning. The basic idea is to

parametrize the distance measure to incorporate auxiliary

information. For the squared Euclidean metric one can

define a parametrized, weighted, variant:

dkðx; tÞ ¼
XD
d¼1

k2dðxd � tdÞ2 : ð9Þ

For the GTM such a parametrization was already discussed

in [15] for i.i.d. data resulting in relevance GTM (R-GTM).

However, having temporal data some adaptations are

necessary and also the supervision has to be handled in an

alternative way. To keep the approach simple and to limit

the number of free parameters we will restrict our approach

to a global diagonal weighted distance, in which case a

weight ki directly corresponds to the relevance of dimen-

sion i. Here we assume normalized data with mean 0 and a

standard deviation of 1 for each dimension. For GTM-(TT),

the distance used to compute local probabilities is replaced

by the previously discussed weighted Euclidean distance:

pkðxjw;W; bÞ ¼ b
2p

� �D=2

exp � b
2
dkðx; yðw;WÞÞ

� �
:

ð10Þ

Accordingly the data log likelihood considers the relevance

of the data dimensions and, hence we obtain a corre-

sponding topographic mapping.

A main difference of this approach to a standard inte-

gration of a data correlation matrix into the Gaussians

consists in the fact that we prefer to adapt the relevance

parameters in a supervised way according to the given label

information, resulting in a discriminative approach.

The relevance parameters k are optimized as suggested

in [15] using the class information in an additional update

step, interleaved with the standard adaptation of the

SGTM-TT using the parametrized distance.

The discriminative learning of the metric parameters is

controlled by the cost function of the generalized learning

vector quantization (GRLVQ) which is a large margin

technique [39]. We assume a classification based on a finite

set of prototypes tj which are equipped with class labels

Fig. 2 Illustration of the

SGTM-TT. It consists of

multiple GTM-TT models. It

behaves similar to the regular

GTM-TT but the training is

classwise and the b parameter is

common over the different

models. The different classwise

models are used to represent the

data distribution over time (here

for three classes).The SGTM-

TT with relevance learning is

shown at the bottom. The

relevance of the input-

dimensions is weighted over

time during training. And only

relevant dimensions with large

k-values are kept. In the figure,

the K1 dimension discriminates

the two groups and is

pronounced by metric

adaptation
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and represent the given data. A classification is done by

means of a winner takes all scheme: the predicted label

corresponds to the prototype with smallest distance

dkðx; tjÞ. For standard GTM, our prototypes are given by

latent points tj ¼ yðwj;WÞ, and the distances determine the

responsibilities of the data points. The relevance terms k
are adapted such that the costs

EðkÞ ¼
X
n

sgd
dkðxn; tþÞ � dkðxn; t�Þ
dkðxn; tþÞ þ dkðxn; t�Þ

� �
ð11Þ

are minimized. The closest prototype with the correct

labeling is denoted by tþ and the one with the incorrect

label by t�, for a given input xn. The sigmoid function

(sgd) is defined as: sgdðxÞ ¼ 1
1þexpð�r�xÞ 2 ½0; 1�. This opti-

mization scheme can be integrated into the vectorial GTM,

simultaneously adapting the GTM parameters, optimizing

the data log-likelihood, and the metric parameters opti-

mizing the classification margin. The update equations for

the parameters k can be derived from (11), taking the

derivatives. To keep a quadratic form in the distance

measure, the metric parameters are normalized after each

adaptation step.

Given an input sequence x we get a prototype repre-

sentation of this time-series by evaluating the SGTM-TT in

the following way. For every class label we consider the

time-series of prototypes of the corresponding GTM-TT

model according to the winner prototypes over time:

tl ¼ ðtlð1Þ. . .tlðTÞÞ: ð12Þ

where

tlðtÞ ¼ yðwk;WlÞ with k ¼ argmaxkr
k
l ðxðtÞÞ: ð13Þ

Now the time-series x and the corresponding time-series of

prototypes representing a correct or a wrong class label can

be used in (11) to adapt the underlying metric. If we

assume an appropriate metric for the comparison of two

time-series, a well defined cost function results.

Several reasonable distance measures for time-series can

be considered, whereby the only property which we will

use is differentiability. For simplicity we will also assume,

that the time-series have equal length, although the model

can be generalized to time-series of different length.

A very simple distance for such time-series would be to

average over the Euclidean distances in each time point.

This however is inappropriate, because it will completely

neglect the functional form of the data. An appropriate

measure, designed for the comparison of timeseries, was

proposed in [21] and will be used instead. Further alter-

native time-series metrics are possible see, e.g. [10], but the

chosen one has been found to be effective in prior work

[38] and can be calculated at low costs.

The considered distance measure integrates the func-

tional form of three subsequent time steps in comparing

xðtÞ and tðtÞ. Let us assume we have a real valued time-

series v ¼ vð1Þ. . .vðTÞ, then the functional Lp norm can be

defined as [21]:

Lf
p vð Þ ¼

XT
t¼1

MAt vð Þ þ MBt vð Þð Þp
 !1

p

ð14Þ

with

MAk vð Þ ¼

s
2
jðtÞj if 0� vðtÞvðt � 1Þ

s
2

ðtÞ2

jvðtÞj þ jvðt � 1Þj if 0[ vðtÞvðt � 1Þ

8>><
>>:

ð15Þ

MBk vð Þ ¼

s
2
jvðtÞj if 0� vðtÞvðt þ 1Þ

s
2

vðtÞ2

jvðtÞj þ jvðt þ 1Þj if 0[ vðtÞvðt þ 1Þ

8>><
>>:

ð16Þ

representing the triangles on the right and the left sides of

vðtÞ and boundary points are set to 0. This norm accounts

for entries which change the sign in subsequent time steps.

We obtain a weighted distance, for vectorial data x and t

over time with equal dimensionality D at each time point:

dkðx; tÞ ¼
XD
i¼1

kiLf
p xi � tið Þ ð17Þ

where xi � ti refers to the time-series of real numbers given

by the distance of the entries in dimension i. As a special

property of this distance measure the similarity of the

curvature of the sequences is taken into account. Again,

each dimension is weighted by the normalized relevance

parameters ki.
This weighted metric (17) is used in the cost function

(11). If we take the derivatives (see [38] for Lp-norm) with

respect to the relevance terms an adaptive weighting for the

input dimensions is obtained taking the functional form of

the data into account. Again the k are normalized after

every adaptation to obtain non-negative values, summing

up to 1.

3.4.1 Relevant time points:

Since SGTM-TT relies on HMMs, every time point

depends on its predecessor only. Thus, it is not reasonable

to adapt the relevance of time points to obtain a better

representation of data in the GTM-TT models. However, it

is reasonable to judge the relevance of time points resulting

from the GTM-TT models for the final classification, in

212 Pattern Anal Applic (2016) 19:207–220
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particular if time-series are of the same or a similar length.

This method offers insights into the model to identify time

points which are particularly discriminative for the given

task at hand.

We obtain a relevance profile in the following way:

denote by rlðxðtÞÞ :¼
PK

k¼1ðrkl ðxðtÞÞÞ=K the accumulated

responsibility of the GTM-TT model l for data point xn at

time point t. Based on this value, a classification can be

based on the maximum responsibility rlðxðtÞÞ in time point

t. For every time point t, we simply count the number of

data points which are classified correctly as belonging to

class l based on the classification for time point t only,

averaged over all data. A global relevance profile results

thereof as a sum over all labels.

4 Odor measurement system

The analyte measurement system employed to gather the

data presented in this article is shown in Fig. 3. It consists

of an array of metal oxide semiconductor (MOX) gas

sensors hosted inside a measurement chamber, a pneumatic

circuit to control the exposition of the sensors to the vol-

atile molecules dispersed in the environment, and the

electronics necessary to power up the sensors and respec-

tive measurement circuits.

The election of MOX as the gas sensing technology has

been made attending at its high sensitivity, commercial

availability and low price. However, they present some

shortcomings including: poor selectivity, influence by

environmental factors such as humidity and tempera-

ture [30] and major limitations in their response

speed [29]. Among these drawbacks, their poor selectivity

is of the largest concern for odor classification. To over-

come this, it is a common practice to build the e-nose upon

an array of MOX sensors with different and partially

overlapping sensitivities. The output of the array is then

processed with a pattern recognition algorithm to find out

which substance the e-nose is exposed to. Based on this

concept, we choose five different MOX gas senors to

compose the sensor array: TGS-2600, TGS-2602, TGS-

2611 and TGS-2620 from Figaro Sensors,1 and MiCS-5135

from e2V Sensors.2

In order to enable sensors to interact with the volatile

molecules dispersed in the environment, the e-nose

employs a pump to enforce a constant airflow through the

sensors array. The aspiration and release of the air samples

are accomplished through tubes, conveniently separated

one from another to avoid cross contamination. Addition-

ally, the aspiration through flexible tubes allows the dis-

placement of the aspiration entry without the need to move

the complete system. This advantage is particularly useful

in robotics to easily sample the space, for example, by

attaching the e-nose aspiration to the hand of an arm robot

as shown in the ‘‘experimental section’’.

4.1 Signal conditioning and data preprocessing

The data, as provided by the e-nose, present a measurement

intrinsic baseline, which can be seen as a signal offset.

Here, we estimate the baseline value as the median signal

intensity within the first 5–20 s, and then, remove it from

each measurement truncating values to zero when

necessary.

More sophisticated preprocessing, by means of

advanced baseline correction algorithms, smoothing strat-

egies or normalization techniques [35] are possible but out

of focus of this paper. We also do not further explore

specific feature extraction techniques for spectral data but

focus on the obtained normalized intensities.

5 Experimental results

This section describes the setups and classification results

for three different experiments designed with increasing

classification challenge. Furthermore, a comparison of

results with SVM, NN and a very recent reservoir com-

puting based time-series classifier (RTK) as proposed in [6]

is provided. For RTK the core idea is to transform the time-

series into a higher-dimensional dynamical feature space

via reservoir computation models. Subsequently varying

aspects of the signal are represented through variation in

the linear readout models trained in such dynamical feature

spaces, for details see [6].

TGS 
2600

TGS 
2611

TGS 
2602

TGS 
2620

MiCS
5135

voltage
supplier

pump

inlet

outlet

measurement
chamber

signal
condi�oning

PC

Fig. 3 Measurement system

1 Figaro engineering inc. http://www.figaro.co.jp.
2 e2v. http://www.e2v.com/.
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In general, we are interested on simple methods or at

least methods which provide direct interpretation of the

model parameters and results. For example it is very

desirable to have direct links to the input features to find

channels which are most discriminative for a specific

substance, relevant over all classes but also the other

way, being not very relevant. The later is an important

characteristic for systems with limited resources, like

mobile robotics, where it would be desirable to power on

only the relevant sensors. Accordingly (local) linear

methods are interesting in contrast to black box non-

linear kernel mappings. We are also interested on

approaches which permit an easy and quick out of

sample extension to, in our case, substantially shorter

sequences in the test phase. This rules out multiple

complicated time-series models.

For SVM we used a linear kernel with optimal C

determined over the training data on a grid search. Since

SVM can not directly be applied to temporal data, nor can

it be used for sequences of different length in a direct way,

for the comparison we simply concatenate the measure-

ments of the different channels to remove the time

dimension. More complex strategies of applying SVM, e.g.

by using a dynamic time warping (DTW) kernel could be

done but are not in the focus of this paper and out of

sample extensions are often not immediate which is an

issue for online robotic sensor systems. For more recent

work around DTW or kernel related time-series analysis

see, e.g. [6, 28, 32]. Additionally we would like to avoid

more complex preprocessing steps to permit an easy out of

sample extension in practical settings. Although maximum

classification performance is not our main objective, we

also provide a comparison with a very recent reservoir

computing kernel [6]. This approach is known to be very

effective for timeseries but on the other hand is less

interpretable nor is the out of sample extension for very

short sequences immediate. For RTK there are three

parameters optimized on the training data within a grid

search3 as detailed in [6].

5.1 Experiment 1: simulated data

The first experiment is based on the simulated data pro-

posed in [23] with the only intention of validating the

proposed algorithm under known conditions.

The simulated data (SIM) consist of 100 samples sepa-

rated into two classes of 50 samples each. Each point is

located in a 100 dimensional feature space with 8 time

points. From the given features, only 10 are expected to

differentiate between the classes. Details about the data and

the generation procedure are given in [23].

We applied SGTM-TT with relevance learning using

nine hidden states and four basis functions. We observe an

overall prediction accuracy of 94	 4%. The relevance

profile identified all known ten features and effectively

pruned out the remaining irrelevant data dimensions. Our

results are slightly better than those reported in [23] ð90%Þ
and in [7] ð92%Þ.

The dataset is a particular short time-series with a rather

large number of input dimensions. Especially the small

number of time points can be quite challenging for other

time-series models but may actually occur in the context of

electronic nose experiments, where short sensing cycles

would be very desirable. The prediction results of the

different methods are summarized in Table 1. With the

exception of NN most methods perform reliably well but

SGTM-TT was significantly better.

5.2 Experiment 2: controlled gas exposure

The second experiment aims to test the proposed method

with real odor data under restrained environmental condi-

tions. To this end, a dataset of real odor samples is gathered

in a scenario as controlled as possible. The dataset is

comprised of 39 samples generated by exposing the e-nose

to gas pulses of four different analytes: a commercial spirit

(Larios Gin), a polish remover based on acetone, standard

ethanol and lighter gas (butane mixed with propane).

Acetone was given by nine samples and the other classes

by ten samples each.

Each sample is collected according to the following

three-phase procedure: (1) for the initial 30 s, baseline

value is estimated by measuring the sensor response in the

Table 1 Average test set accuracy for the first and second experiments in a fivefold cross-validation

CV-accuracy SGTM-TT (%) SVM (%) NN (%) RTK (%)

SIM 94.00 ± 4.18 90.00 ± 5.00 55.00 ± 13.54 66.30 ± 8.54

DS1 88.03 ± 9.72 86.36 ± 9.66 80.49 ± 11.90 96.67 ± 4.56

DS-UCI-1 87.78 ± 5.76 93.89 ± 4.97 86.81 ± 7.98 64.44 ± 4.12

DS-UCI-2 79.55 ± 9.15 83.03 ± 18.47 76.33 ± 18.15 94.70 ± 8.05

Significant better results are italicized

3 Grids: k; c ¼ ½0; 10�6. . .10�1; 0:5; 1. . .5; 10; 30; 50; 100�
costs ¼ ½0:1; 10; 102; 5� 102; 103; 5� 103; 104; 5� 104�.
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absence of the target gas, (2) and for a duration of 60 s the

e-nose is placed next to the gas source (about 10 cm)

exposing the sensor array to the volatile. (3) the gas source

is removed allowing the sensor array to recover to its initial

state (baseline).

Figure 4 shows two different samples of such dataset.

Notice that although the gas exposure was ‘‘controlled’’ by

time exposure and distance to the source, strong fluctua-

tions in the sensor readings occur due to the chaotic nature

of the gas dispersion.

The SGTM-TT is inherently capable of dealing with

measurement sequences of different length in time, using

the HMM mapping functionality. However, to permit fair

comparison with other approaches like vector embeddings,

we consider only the first 100 s of the data. That is, we built

a first dataset (DS1) using the initial 100 s of each sample,

which corresponds to 487 sampling points.

For comparison, we also use two public domain data

sets of similar type (electronic nose data) from the UCI

database. The DS-UCI-1 data set is given by the two

sources gas data [14]. The data are measured using a

chemical detection platform composed of eight chemo-

resistive gas sensors which were exposed to turbulent gas

mixtures generated naturally in a wind tunnel. It consists of

180 time-series of ethylene (Eth), carbon monoxide (CO)

and methane (Me) mixtures at different concentrations. We

use the data as a two class prediction problem to predict the

whether Eth was mixed with CO or Me. Available features

are temperature, humidity and the eight sensor channel

outputs. Each time-series is given with 2,970 sampling

points.

The DS-UCI-2 data set is given by the pulmon data [49].

The data are measured using a chemical sensing system

based on an array of 16 metal-oxide gas sensors and an

external mechanical ventilator to simulate the biological

respiration cycle. The tested gas classes are mixtures of

acetone and ethanol. Data have been normalized to zero-

mean, and intensity and considered again as a prediction

problem to identify whether the mixture contains Me or

CO.

The classification accuracy for DS1, DS-UCI-1, DS-

UCI-2 is given in Table 1 in comparison to some standard

approaches. We observe that the SGTM-TT performs

reliably well although the best prediction accuracy for DS1

and DS-UCI-2 is obtained by the RTK approach. For the

DS-UCI-1 dataset RTK is significantly worse than the other

approaches and the SVM obtained the best performance.

Hence there is no clear winner regarding the classification

accuracy but SGTM-TT represents a good approach with a

reliable and consistent performance. Furthermore, as pre-

viously commented, the classification performance is not

the only point that matters but also the simplicity of the

model and the interpretability of the results. Neither RTK

nor SVM provide additional insight into the relevance of

the sensor channels.4 Here we are mainly interested in

interpretable models [24] which also simplify a later

transfer of the approach to an embedded system or the

sensor platform. In Fig. 5 we show the averaged (global)

sensor relevance profile of DS-UCI-1 and DS-UCI-2.

Subsequently we give a detailed analysis for our own

dataset—DS1, where we have more background informa-

tion to provide a specific in-depth discussion of the results.

For the analysis of the sensor relevance and time points

relevance, the whole measurement sequence of each
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Fig. 4 Two different samples of the olfaction dataset gathered in the second experiment. The three phases in which the samples can be

decomposed are marked at the bottom of each figure as (1), (2) and (3)

4 Approaches for feature ranking by SVM are available but not for

this type of data and not directly for multi-class problems as studied

for DS1.
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sample was down-sampled to 800 time points each (DS2).

The SGTM-TT was then trained in a fivefold cross vali-

dation with four hidden states and four basis functions. In

Fig. 6 we show the relevance indexes of the five gas sen-

sors of the e-nose for the different target volatiles of DS2 as

obtained by SGTM-TT. Different conclusions can be

drawn from the study of such relevance plot:

– In general, the five MOX sensors are relevant for the

classification of the different volatiles, being sensor

TGS-2620 the less relevant one, and so the most

expendable.

– Sensor TGS-2602 is the most relevant one when

classifying acetone and ethanol samples, with a notable

difference with respect to the other sensors in the case

of acetone. This characteristic is already reported in the

manufacturer’s datasheet, indicating the high sensitiv-

ity to volatile organic compounds (VOCS) of this

sensor model.
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– As expected from the low selectivity characteristic of

MOX sensors, each sensor presents a high relevance

index for more than one odor class.

We also explore the relevance of individual time points of

the dataset DS2, depicted in Fig. 7a. As expected, the time

interval under volatile exposition, the first 100 seconds, is

the most discriminating. Furthermore, and as already

reported in [9], it is a noticeable fact that the relevant

information for classification purposes can be found in the

recovery phase, after the volatile has been removed.

Since in real robotics conditions the classifier is

expected to work on small data sequences, a second con-

figuration for the dataset DS2 was tested. Here, the test data

consist only of short sensor readings over time. Figure 7a

depicts the accuracy in the classification for three different

window lengths (1, 10 and 20 s). We observe that given the

highly dynamic response of MOX sensors in addition to the

inherent signal noise, very small windows (1 s) do not carry

enough information for a reasonable classification, but for

data sequences of ten seconds the accuracy in the predic-

tion achieves very good results (values near 0.8). Further-

more, window lengths over ten seconds seem to not

improve the accuracy, which indicates that long sequences

encode a lot of noise contributions, hampering the model in

the prediction. Finally, it must be noticed that the classi-

fication accuracy is usually higher when using data from

the transient parts of the signal (rise and decay) than when

steady-state data are employed, as denoted by the accuracy

peaks found around 30 and 90 s.

5.3 Experiment 3: robotics experiment—uncontrolled

gas pulses

Finally, and with the aim to validate the classification

performance in a more challenging robotic scenario, a third

experiment is presented. In this case, the e-nose aspiration
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Fig. 8 a The robotic arm used

in the third experiment mounted

over a mobile platform, and a

detailed view of the attached

e-nose aspiration. b Picture of

the proposed setup for the third

experiment. Each of the black

plastic vessels contains a

different substance
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(see Fig. 8) is attached to the hand of a robotic arm [34]

which is commanded to approximate the e-nose aspiration

to each of four recipients containing different substances

(acetone, ethanol, butane5 and gin).

To avoid waiting for the sensors to recover their baseline

levels after each exposure (which would take more than a

minute), we have employed a specially designed e-nose,

called MCE-nose [17], that allows the measurement of fast

changing gas concentrations.

The robotic arm is commanded to approximate to the

containers following a predefined sequence. The exposition

to each of the substances takes 20 s, after which the arm

moves to another container. The volatile sequence and the

gathered signals during the experiment are depicted in Fig.

9. A video of a similar experiment is additionally available

at http://mapir.isa.uma.es/mapirwebsite/index.php/2008-

tep-4016-media.

Each of the short sequences was pre-processed such that

the baseline is removed. Then the sequences have been

matched with the SGMT-TT or NN model as obtained

from DS1.6 This can be considered to be a test of the model

on an independently measured hold out dataset.

The ground-truth and predicted labels of the sequences

are given in Table 2 with only 3 errors out of the 16 test

samples. In the experiment the SGTM-TT classifier was

continuously online and fed by new data every 20 s

according to the measurement protocol. This experiment is

interesting because the input data processed by the SGTM-

TT method are substantially shorter than the training

dataset, with around 30 sampling points for the core

measurement. The SVM model cannot be applied here due

to the varying length of the input data and for the RTK

model the sequence is also too short to get reliable pre-

dictions as the method is not designed for this type of test

inputs. For NN we applied a local DTW alignment between

each training and test sample using the best local fit.

Table 2 Predictions for the

external evaluation data using

the first respective

crossvalidation model

The ‘o’ in the line labeled with

error indicates mismatches

Time 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

True G A E M A E M G E M G A M G A E

SGTM-TT

Pred. G M E M A M M G E M G A M G A M

Error o o o

NN

Pred. G E G M E G G G G M G A G M E G

Error o o o o o o o o o o

Fig. 9 MCE-nose gathered

signals of the classification

experiment with a robotic arm,

and the ‘‘ground-truth’’

sequence of the employed

analytes. The active chamber [0,

1, 2, 3] is switched every 20 s.

Signals are shown for the four

different sensor channels as

described before

5 Since butane is found at gas state at ambient temperature, the

content of a lighter was released when the e-nose aspiration moved

over the container. 6 Here we simply used the model from the first crossvalidation run.
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6 Conclusion

A novel approach for the analysis of high-dimensional and

rather short temporal sequences was presented. It is based

on the idea to introduce available meta information into the

modeling process of a GTM through time, given in form of

supervised information and relevance learning. We have

analyzed the suitability of such model for the odor classi-

fication problem in robotics applications, providing com-

parative results with SVM, NN and the reservoir time-

series kernel (RTK) for three different scenarios (with

increasing classification challenge), and demonstrating that

the proposed method is effective for solving such high-

dimensional data problem.

Other remarkable advantages of the method in the

context of odor classification in robotics are on the one

hand, the possibility for the robot to perform rapid classi-

fication of chemical substances using a short data sequence.

On the other hand, the SGTM-TT method outputs rele-

vance values for both the sensors being used as well as the

time-points of the signal, which provide very valuable

information to configure the e-nose and to carry out the

robot smelling.

In future work, it will be of interest to analyze the

SGTM-TT in the context of drift problems as recently

discussed in [46, 47] and how the method can be further

improved by early decision strategies [20].
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