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Abstract Multibody simulations are already used in
many industries to speed up the development of new
products. However, improvements in multibody for-
mulations and the continuous increase in inexpensive
computational power open new fields of applications
for multibody simulations, such as using them as plant
models for state observers. The presentwork introduces
a novel state observer developed by combining a multi-
body model with an indirect Kalman filter. Together
with othermultibody-basedKalman filters already pro-
posed in the literature, they have been applied to two
mechanisms (four- and five-bar linkages) to assess their
performance. The accuracy of the estimations and the
computational cost are examined under several scenar-
ios: using position or velocity sensors in different con-
figurations, with different sampling rates, and consid-
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ering different levels of errors in the models assumed
by the filters. The aim of this work is to present dif-
ferent options to build a state observer based on a
dynamic multibody model, and to provide guidance to
select the most suitable option for future applications.
All the methods have been implemented as a reusable
MATLAB� toolkit which has been released as Open
Source in https://github.com/MBDS/mbde-matlab.

Keywords Multibody dynamics ·Kalman filter · State
observer · Benchmark

1 Introduction

Being able to perform dynamic analyses of complex
multibody systems (MBS) before manufacturing is key
in achieving more efficient and competitive industries
in sectors such as automotive or aeronautics. Doing so
allows the manufacturer to study the expected dynamic
behavior of products before building real prototypes,
boosting the testing and development of new products
and their associated electronic controllers.

However, simulating the dynamics ofMBShas other
farther-reaching applications, such as devising state
observers. A state observer is a recursive Bayesian esti-
mator [7,18] aimed at providing a real-time best esti-
mation of some parameters or states of a plant (e.g., a
machine or a vehicle in the field of dynamics), bymeans
of integrating a more or less accurate dynamical model
with the history of sensor measurements. By employ-
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ing accurate MBS models, the state of non-accessible
parts of a mechanism can be inferred where installing
a sensor would not be possible for economical or tech-
nical reasons.

Usually,when a state observer is needed, a simplified
analytical model is specifically developed to be used
as the model of the state observer (see, e.g., [1]). The
scope of this paper is limited to the nonlinear variants
of the Kalman filter, although other possibilities, such
as the particle filter, have been successfully applied to
multibody models [3]. Using a multibody model as the
plant of a Kalman Filter provides a means to design
state observers systematically. However, coupling both
systems is not a trivial task, since the Kalman filter
is formulated for first-order, linear, unconstrained sys-
tems, whereas the multibody models are, in general,
second-order, nonlinear and constrained systems. This
reason produced a high research effort to combine the
generality and accuracy of a multibody model with a
Kalman filter to obtain improved state observer for-
mulations. A continuous extended Kalman filter was
presented in [5], applied to a four-bar mechanism. A
new version of the method was presented in [6] applied
to an automobile, although the computational cost of
the algorithm prevented it from running in real time.
In [15] the unscented Kalman filter and the spheri-
cal simplex unscented Kalman filter were first used
with multibody models and compared with the contin-
uous extended Kalman filter. The particularity of the
unscented Kalman filters that were proposed in this
work is that the accelerations of the multibody model
were used as states, even when the aim was to esti-
mate the position and velocity of the system. In [12],
a reduced multibody model is combined with an aug-
mentedKalman filter to estimate states and input forces
of a half car model, although the sensor configura-
tion used led to a non-observable configuration. In [14]
the kinematics of a multibody model is also combined
with a Kalman filter. This approach is simpler than the
dynamic filters cited previously and can be useful if
force models are unknown or have a high uncertainty,
but it requires more sensors and the frequency of the
observer is limited by the sampling rate of the sensors
used as inputs.

In the present work, four different methods for cou-
pling multibody models and Kalman filters are pre-
sented. They are tested with two planar mechanisms
(four-bar and five-bar linkages). Some of the meth-
ods presented here are variations of algorithms already

shown in [5,15,19], while the indirect formulation is
new in the multibody literature. Both accuracy and
computational cost of the estimators are evaluated, con-
sidering different sets of sensors, several sampling rates
for the sensors, and two levels of modeling error of the
plant.

In order to test the proposed methods, a four-bar
mechanism has been selected because it is a simple
closed-chain mechanism. In addition, a five-bar mech-
anism is also used, allowing to verify the variation
of computational cost with the size of the model. All
the methods presented here can be applied to both
open-chain and closed-chain mechanisms; however,
the mechanisms selected are closed chain because they
allow to show all the benefits from incorporating a
multibody model into a Kalman filter. Although the
methods presented here are applied to planar mecha-
nism, they are general and can be employed with any
mechanism.

The different algorithms considered in this work
have been implemented in MATLAB� as a reusable
toolbox released as Open Source.1 Some of the esti-
mators presented here have already been implemented
in C++ and installed in a test bench in [20], demon-
strating that they can run faster than real time with an
adequate implementation and provide accurate results
in real conditions.

2 Methodology

In this work, a central question in MBS state observers
is addressed, namely deciding which estimation algo-
rithm is the best choice among the large number of
Kalman filter based methods [2,18].

Therefore, a benchmark consisting in two simple
mechanisms (planar four-bar and five-bar linkages,
shown in Fig. 1) has been performed with the aim of
analyzing the accuracy and relative efficiency of the
selected estimators. The main properties of the mech-
anism are provided in Tables 1 and 2.

For every test, a multibody simulation was per-
formed using a model which was considered as the
real mechanism, thus providing the ground truth to ver-
ify the results delivered by the observers. This simula-
tion is also employed to build the signals from the sen-
sors. To do this, perfect sensors are modeled, and then

1 See https://github.com/MBDS/mbde-matlab.
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Fig. 1 Mechanisms employed in this work. a Four-bar linkage
and b five-bar linkage

Table 1 Properties of the four-bar linkage

Crank Coupler Rocker Ground element

Mass (kg) 2 8 5 –

Length (m) 2 8 5 10

pseudo-random noise is added to their measurements.
The sequence of the pseudo-random values of the noise
is the same for all the tests carried out, enabling a fair
comparison among the different methods.

A second multibody model is built, but modifying
someof the properties, to simulatemodeling error.Usu-
ally, the geometry of any machine or vehicle can be
knownwith great accuracy. However, the level of accu-
racy in the determination of forces and mass distribu-
tion is often not so good, both producing acceleration
errors. Therefore, the parameter which is intentionally
modified is the acceleration of gravity, leading to an
erroneous acceleration. Moreover, the initial position
of the mechanism is also modified to simulate situa-
tions in which it is not exactly known. Finally, the state
observer is built using the latter multibody model (the
imperfect one), and correctedwith the information pro-
vided by the noisy sensors built from the simulation of
the first multibody model.

All the multibody simulations were run with a time
step of 5e–3s. The sensors considered in the test were
position and velocity sensors in different configura-
tions, and their sampling rates vary from 200 Hz (the
frequency of the multibody simulations) to 10 Hz.
Therefore, the measurements are not available at every
integration time step when the sampling rate is lower
than 200 Hz.

3 Design of the observers

The state observers considered in this work are based
on the combination of amultibodymodel and aKalman
filter. The different mathematical structure of both
systems produces that the coupling between them is
not obvious, allowing different strategies which are
described in the following sections. On the one hand,
we deal with methods in independent coordinates.
Among these methods, we consider the continuous and
discrete extended Kalman filters, and the unscented

Table 2 Properties of the
five-bar linkage

Left crank Left coupler Right coupler Right crank Ground element

Mass (kg) 3 1 2 3 –

Length (m) 0.5 2.062 3.202 0.5 3
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Table 3 Summary of the methods

Method Classification State vector Integrator

CEKFa Continuous-time EKF Indep. coord. and vel. Trap. rule

DEKFb Discrete-time EKF Indep. coord. and vel. Forward Euler

UKFc Unscented KF Indep. coord. and vel. Any

errorEKFd Discrete-time EKF, indirect
formulation

Error in indep. coord. and
vel.

Any for the MBS, Forward
Euler for the KF

a First presented in [5]
b First presented in [20]
c Similar to the UKF presented in [15], but with different states. First presented in [20] in its current form
d Original contributions of this work

Kalman filter. On the other hand, we study the error-
state Kalman filter, an indirect formulation in which
the error of the multibody simulation is estimated and
then the model is corrected. There are other options,
such as methods in dependent coordinates, where the
constraints are included as perfect measurements, or
where the unconstrained estimation is projected over
the constraints manifold [18], but these options have
not been considered in this work for the sake of clarity.
A summary of the methods is shown in Table 3. For
ease of reference, the list of the principal symbols used
is given in Table 4.

3.1 Independent coordinates methods

The Kalman filter assumes that its states are indepen-
dent, and hence, the most natural way to combine a
multibody model and a Kalman filter is by using the
independent coordinates and velocities of the multi-
body model as the states of the Kalman filter.

3.1.1 Continuous extended Kalman filter (CEKF)

This formulation is based on the one developed in [5]
but adapted to deal with multirate (i.e., some or all the
sensor’s information might not be available at every
time step). Due to the complexity of the dynamical
model, approximate Jacobian matrices are employed
in this method.

The main idea under this formulation is to adapt the
multibody equations in order to fit the Kalman filter
structure. Then, the resulting equations are integrated
using the trapezoidal rule.

In its most basic form, the dynamics of a multibody
system is described by the constrained Lagrangian
equations:

{
Mq̈ + �q

�λλλ = Q
� = 0

(1)

where M is the mass matrix, q̈ is the vector of depen-
dent accelerations, � is the constraints vector, �q is
the Jacobian matrix of the constraint equations with
respect to the generalized coordinates q,λλλ is the vector
of Lagrange multipliers, and Q is the vector of gener-
alized forces.

As the multibody equations are expressed in the
form of continuous-time differential-algebraic equa-
tions (DAEs), it seems natural to adopt the continuous-
time version of the Kalman filter. To fit the Kalman fil-
ter structure, the system of DAEs must be transformed
into a systemof ordinary differential equations (ODEs).
Two alternatives were explored in [5], the matrix-R
method, and the penalty method [9], but the penalty
method did not provide adequate results, because it
could not impose the constraint equations fulfillment
when the corrections provided by the Kalman filter
were applied. Hence, only the version based on the
matrix-R formulation is considered in the presentwork.
The main idea behind this multibody formulation is
to obtain a system of ordinary differential equations
whose dimension g is equal to the number of degrees
of freedom, starting with the identity q̇ = Rż, which
relates dependent velocities q̇ and independent veloc-
ities ż through projection matrix R. Accelerations can
be then expressed as follows:

q̈ = Rz̈ + Ṙż (2)

Going back to Eq. (1), premultiplying by the transpose
of R, and keeping in mind that �qR = 0,

z̈ =
(
R�MR

)−1 [
R� (

Q − MṘż
)] := M̄−1Q̄ (3)
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Table 4 List of symbols

C̄ Damping matrix

f(),F Continuous transition model, and its Jacobian matrix
wrt. the states

f(), fx Discrete transition model, and its Jacobian matrix
wrt. the states x

g Number of degrees of freedom

h(),hx Measurement model and its Jacobian matrix wrt. the
states x

G Kalman gain matrix

K̄ Stiffness matrix

M Mass matrix

M̄ Mass matrix projected over the set of independent
coordinates

m Number of constraints

n Number of dependents coordinates

o Vector of measurements

P Covariance matrix of the state estimation uncertainty

Q Vector of generalized forces

Q̄ Vector of generalized forces projected over the
dependent coordinates

q, q̇, q̈ Vector of dependent positions, velocities, and
accelerations

q̂, ˆ̇q Estimation of the vectors of dependent positions and
velocities

R Velocity projection matrix, such that q̇ = Rż

S Covariance matrix of the innovation

u Vector of inputs

x, ẋ States vector, and its time derivative

x̂−, x̂+ ‘A priori’ state estimation, ‘a posteriori’ state
estimation

y Innovations vector

YYYk(i) Innovation according to i th sigma point of time step
k

z, ż, z̈ Vector of independent coordinates, velocities, and
accelerations

ẑ, ˆ̇z Estimation of the vectors of independent coordinates
and velocities

Δt Time step

λλλ Vector of Lagrange multipliers

�P Covariance matrix of the plant noise in discrete filters

�P
c Covariance matrix of the plant noise in continuous

filters

�S Covariance matrix of measurements noise

�,�q Vector of constraints, and its Jacobian wrt. the
coordinates

χχχk(i) i th sigma point of time step k

where M̄−1 and Q̄ are the projected mass matrix and
the projected vector of generalized forces, respectively.
If now the filter state is defined as the vector x� =[
z�, ż�]

, containing the vectors of independent posi-
tions z and velocities ż , it turns out that:[ ˆ̇z

ˆ̈z
]

=
[ ˆ̇z
M̄−1Q̄

]
⇒ ˆ̇x = f

(
x̂
)

(4)

where the hat ∧ denotes estimated magnitudes. These
equations perfectly fit the continuous extendedKalman
filter equation, so they canbe straightforwardly applied.
In particular, the state-space transition matrix is
obtained as the linearization:

F = ∂f

∂x
=

⎡
⎢⎣ 0g×g Ig

∂
(
M̄−1Q̄

)
∂z

∂
(
M̄−1Q̄

)
∂ ż

⎤
⎥⎦ (5)

which can be approximated by:

F �
[
0g×g Ig
F21 F22

]
(6)

F21 = −M̄−1R� (
K̄R + 2RqRz̈

)
(7)

F22 = −M̄−1R�(C̄R + MṘ) (8)

where K̄ = − ∂Q̄
∂q and C̄ = − ∂Q̄

∂q̇ are the stiffness and

damping matrices, respectively, and Rq = ∂R
∂q . In this

case, the size of the problem is 2g, being g the num-
ber of degrees of freedom of the mechanism. Next, the
CEKF correction stage is introduced [18], which fuses
the sensor information into the filter, leading to:

ż − ˆ̇z + Gz(h(x) − o) = 0g×1 (9)

M̄z̈ − Q̄ + M̄Gż(h(x) − o) = 0g×1 (10)

where Gz and Gż are the parts of the Kalman gain
matrix correspondent to z and ż, respectively, h(x) is
themeasurementmodel, and o is the vector ofmeasure-
ments from sensors. The Kalman gain G is calculated
as follows:

G = Phx��S (11)

where P is the covariance matrix of the state estima-
tion uncertainty, hx is the Jacobian of the measure-
ment model h(x) with respect to the states x, and �S is
the covariance matrix of the measurement noise. The
covariance matrix P evolves following the next equa-
tion when the measurements are available:
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Ṗ = FP + PF� − Phx��ShxP + �P
c (12)

being�P
c the continuous covariancematrix of the plant

noise. In the time steps in which the measurements are
not available, the part related to them must be elimi-
nated, leading to:

Ṗ = FP + PF� + �P
c (13)

Moreover, when the measurements are not available,
the innovation h(x) − o should be set to 0 in Eqs. (9)
and (10).

In order to integrate the result of the filter numer-
ically, the implicit single-step trapezoidal rule can be
used as the integration scheme:

ˆ̇zk+1 = 2

Δt
ẑk+1 −

(
2

Δt
ẑk + ˆ̇zk

)
(14)

ˆ̈zk+1 = 2

Δt
ˆ̇zk+1 −

(
2

Δt
ˆ̇zk + ˆ̈zk

)
(15)

Combining Eqs. (9) and (10) with Eqs. (14) and (15)
leads to the following nonlinear system,{
g1(x̂k+1) = 0g×1

g2(x̂k+1) = 0g×1
⇒ g(x̂k+1) = 02g×1 (16)

This system can be iteratively solved, e.g., by means of
the Newton–Raphson method, employing the follow-
ing approximate Jacobian matrix:

∂g
∂x

=
[ 2

Δt Ig −Ig

R�K̄R R�(C̄R + MṘ) + 2
Δt M̄

]

+
[

Gzhz Gzhż
M̄Gżhz M̄Gżhż

]
(17)

where the pair hz and hż are the position and velocity
parts of the Jacobian of the measurement model.

The covariance matrix of the estimation error P is
integrated simultaneously and using the same integra-
tor used to integrate the states. When a measurement is
available at the present time step k, the time derivative
of the covariance matrix is calculated using Eq. (12).
If the measurement is not available at the considered
time step, then Eq. (13) is employed instead.

3.1.2 Discrete extended Kalman filter (DEKF)

This is the discrete-time version of CEKF described
above. A key difference between CEKF and the
rest of estimators described from now on, which

work in discrete time steps, is that the filter formu-
lation consists of two separated stages: state tran-
sition (also called prediction or time update) and
state update (also called state correction or mea-
surement update). The former relies on the transi-
tion model of the system (integration of dynamical
equations) while the latter includes the information
from sensors, or observations—this is in contrast to
the CEKF, where both stages are seamlessly fused
together.

The most generic form of the equations of the EKF
in the prediction stage is described as:

x̂−
k = f(x̂+

k−1,uk) (18)

P−
k = fxk−1P

+
k−1fx

�
k−1 + �P (19)

where f(·) and fx represent the transition model of the
system and its Jacobianmatrixwith respect to the states
x, respectively, and u is the vector of inputs. By con-
sidering now the same state vector as in Eq. (4), that
is, x� = [

z�, ż�]
, and using the Euler method as the

numerical integrator for the resolution of themultibody
equations, with time stepΔt , the EKF transition model
f(·) results:

x̂−
k = f(x̂+

k−1,uk)

⇒
[
ẑk
ˆ̇zk

]
=

[
ẑk−1 + Δt ˆ̇zk−1
ˆ̇zk−1 + Δt z̈k−1

]
(20)

The input of this system is the acceleration vector z̈k−1,
which is computed by solving the multibody equations
of motion as in Eq. (3). Thus, it follows that the approx-
imate Jacobian of the transition model fx is:

fx ≡ ∂f
∂ x̂

= ∂

∂{ẑ, ˆ̇z}
[
ẑ + Δt ˆ̇z
ˆ̇z + Δt z̈

]

�
[

Ig ΔtIg
0g×g Ig

]
(21)

where it is assumed that ∂ z̈
∂ ẑ = ∂ z̈

∂ ˆ̇z = 0.

Regarding the discrete plant covariance matrix �P

appearing in Eq. (19), the additional uncertainty of the
new state x̂k is attributed to unknown forces and param-
eters of themechanism such asmasses or inertia values.

The second stage of the DEKFmethod is the update,
inwhich the sensor readings (when available) are incor-
porated to improve the estimate:

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Accuracy and efficiency comparison 1941

yk = ok − h(x̂−
k ) (22)

Sk = hxkP
−
k hx

�
k + �S

k (23)

Gk = P−
k hx

�
k S

−1
k (24)

x̂+
k = x̂−

k + Gkyk (25)

P+
k = (I2g − Gkhxk)P

−
k (26)

where ỹk in Eq. (22) is the error or mismatch between
the actual values and the expected sensor readings. The
term Sk in Eq. (23) is the innovation covariance matrix,
which represents the uncertainty in the system state
projected via the sensor function (hxkP

−
k hx

�
k ) affected

by the sensor Gaussian noise (�S
k ). It is considered

that the observation introduces useful information to
constrain the estimation of the system state when the
values of Sk are small. The estimation of the mean and
covariance is updated in Eqs. (25) and (26) respectively
by evaluating the Kalman gain (Gk).

3.1.3 Unscented Kalman filter (UKF)

This method is a variant of the Kalman filters specially
suitable for systems with strong nonlinearities in the
transition and observation models [22]. The unscented
Kalman filter is easier to implement than the conven-
tional extended Kalman filters, since the calculation
of the Jacobians of the state transition and measure-
ment equations is not required. This method, among
others, was previously applied to multibody models in
[16] considering the independent accelerations of the
multibody model as the states of the filter. The state
vector of the UKF considered here, however, contains
the independent coordinates and their velocities, that

is, x̂� =
[
ẑ�, ˆ̇z�

]
.

The method comprises the same prediction and
update stages than the DEKF. The differentiating fea-
ture of the UKF is the avoidance of the first order Tay-
lor approximation in the propagation of the covariance
matrix through the transition andobservation functions.
Instead, the unscented transformation is employed: A
set of 2l+1 samplesχχχ (i) (usually called sigma points)
is deterministically chosen from the Gaussian distribu-
tions, being l = 2g the length of the state vector:

χχχk−1(0) = x̂+
k−1 (27)

χχχk−1(i) = x̂+
k−1 + ζ

(√
P+
k−1

)
i
, i = 1, . . . , l

(28)

χχχk−1(l + i) = x̂+
k−1 − ζ

(√
P+
k−1

)
i
, i = 1, . . . , l

(29)

where √
. is the matrix square root using the lower

triangular matrix of the Cholesky decomposition and
(.)i stands for its i th column, ζ = √

l + λ, λ =
α2 (l + κ) , α and κ are user-defined tuning parame-
ters, with 0 < α ≤ 1 and κ is usually set to 0. Then,
these samples are transformed via the corresponding
function (in this case, an integration step of the multi-
body simulation):

χχχk(i) = f(χχχk−1(i),uk(i)) (30)

where the vector of inputs uk(i) of the i th sigma point
is calculated by substituting χχχk−1(i) in Eq. (3). Both
the forward Euler and the trapezoidal rule integration
methods were considered in this work. Next, the mean
and covariance of the resulting set are calculated:

x̂−
k =

2l+1∑
i=0

Wm
i χχχk(i) (31)

P−
k =

2l+1∑
i=0

Wc
i

(
χχχk(i) − x̂−

k

) (
χχχk(i) − x̂−

k

)� + �P

(32)

whereWm
0 = λ/ (l + λ) ,Wc

0 = Wm
0 +(

1 − α2 + β
)
,

Wc
0 = Wm

0 = 1/ [2 (l + λ)], being β a secondary
scaling factor used to emphasize the weighting on the
zeroth sigma point for the covariance calculation. The
selection of the weights Wm

i and Wc
i has been done

according to the rules proposed in [11].
After the prediction stage, the update is accom-

plished. A new set of sigma points can be generated, or
the existent sigma points χχχk(i) can be reused to save
computational effort at the cost of sacrificing accuracy.
This last option was used here. Themeasurement equa-
tion is applied to the samples, and the mean and covari-
ance of the measurements are calculated with the same
method applied in the prediction:

YYYk(i) = ok − h (χχχk(i)) (33)

yk =
2l+1∑
i=0

Wm
i YYYk(i) (34)

Py =
2l+1∑
i=0

Wc
i YYYk(i)YYYk(i)

� + �S
k (35)
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Then, the Kalman gain matrix is calculated and
employed to correct state and covariance matrix:

Pxy =
2l+1∑
i=0

Wc
i

(
χχχk(i) − x̂−

k

)
(−YYYk(i))

� + �S
k (36)

Gk = PxyP−1
y (37)

x̂+
k = x̂−

k + Gkyk (38)

P+
k = P−

k − hxkPyhxk (39)

As shown in [22], this approach captures the correct
posterior mean and covariance up to the third order
of a Taylor series expansion, in contrast to the first
order of DEKF and most other methods. In turn, its
computational cost is in general higher than simpler
methods.

3.2 Error-state extended Kalman filter (errorEKF)

A common problem of the previous EKF methods is
that they require a tailor-made multibody algorithm,
which is integrated with the Kalman filter algorithm.
This problem is overcome by the UKF method, in
which any multibody formulation or integrator can be
used, but at the cost of running one multibody sim-
ulation for each sigma point. However, an error-state
Kalman filter (also known as indirect Kalman filter)
can combine the efficiency of the EKF while using the
multibody simulation as a “black box.” This kind of
indirect formulation is commonly used in inertial navi-
gation and absolute position sensors fusion algorithms
[17].

A simplified scheme of this method, referred to as
errorEKF, is shown in Fig. 2. For each time step, this
method first runs one step of the multibody simulation,
obtaining the coordinates qMBS and velocities q̇MBS.
Next, the estimation process takes place on a state vec-
tor x� = [

Δz�,Δż�]
which consists in the error in

MBS

H

+EKF

MBS input MBS output

- + sensors

Fig. 2 Simplified diagram of the error-state Kalman filter
applied to multibody simulations

position and velocity of the degrees of freedom of the
mechanism, such that:

z = zMBS + Δz (40)

ż = żMBS + Δż (41)

where zMBS and żMBS are values of z and ż predicted by
themultibodymodel before the corrections are applied.
Themotivation of this approach is that a linearized esti-
mator such as the EKF will suit well the problem of
estimating a small displacement in the linearized neigh-
borhood (tangent space) of the nonlinear manifold of
the mechanism state space.

Accordingly, the propagation phase is performed
following the next equations:

x̂−
k = 0 (42)

P−
k = fxk−1P

+
k−1fx

�
k−1 + �P (43)

These equations are the conventional equations for
the propagation of the Kalman state, and the transi-
tion matrix fx is the same used in the DEKF method.
Note that, since the errorEKFwill always operate in the
transformed state space of errors, its a priori estimate
(x̂−

k ) is always null, hence the zero in Eq. (42). In other
words, the filter initially assumes that the multibody
model made a perfect work in tracking the dynamical
system at hand.

The equations for the correction phase of the filter
are also similar to the ones found in the DEKF.

yk = ok − h(qk, q̇k) (44)

Sk = hxkP
−
k hx

�
k + �S

k (45)

Gk = P−
k hx

�
k S

−1
k (46)

x̂+
k = 0 + Gkyk (47)

P+
k = (I2g − Gkhxk)P

−
k (48)

The differences can be found in Eq. (22), which
becomes Eq. (44), where the virtual measurements
h(qk, q̇k) are built by using the coordinates of the
multibody model instead of the states of the filter. The
Jacobian of the measurement model hx has the same
expression as in the DEKF, since the partial deriva-
tives with respect to the errors in the states have the
same value than the partial derivatives with respect to
the states. Before the measurements are applied, the
state is always null, so Eq. (25) is modified accord-
ingly, becoming Eq. (47).

After the correction stage, the estimation of the posi-
tion and velocity errors of the independent coordinates
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are obtained. However, to correct the state of the multi-
body system, the errors for all the coordinates must be
obtained, so theymust be projected over the constraints
manifold.

An error in position means that an increment to the
coordinates should be applied to get the position cor-
rected. Such an increment must fulfill the velocity con-
straints:

�qΔq = 0 (49)

Therefore, the increments Δq applied to the coordi-
nates of the mechanism are calculated by solving the
velocity problem [9]. If the Jacobian of the constraints
�q and the vector of position errors are split in their
independent and dependent parts, Eq. (49) can be writ-
ten as follows:

Δq = [
Δq�

INDEP Δq�
DEP

]� = [
Δz� Δq�

DEP

]�
(50)

�qDEPΔqDEP = −�qINDEPΔz (51)

The estimated error of the degrees of freedom Δẑ is
substituted into Eq. (51), and the resulting linear sys-
tem is solved to obtain the estimated dependent errors
Δq̂DEP. Then, the resulting vector of estimated posi-
tion errors Δq̂ is fed back to the multibody simulation
to obtain the position estimation q̂, as follows:

q̂ = qMBS + Δq̂ (52)

This method is an approximation, and thus, a perfect
fulfillment of the constraints at position level is not
expected. However, as the corrections are performed
every time step, the errors are usually acceptable for
most applications. The main advantage of this method
is that the velocity problem is linear, so this process is
much faster than solving the position problem.

The correction of the velocity estimation is per-
formed after the correction of the position is applied
by solving other velocity problem, as follows:

�qDEP
ˆ̇qDEP = −�qINDEP

[
żMBS + Δ ˆ̇z

]
(53)

Therefore, the vector of estimated velocities yields:

ˆ̇q =
[(

żMBS + Δ ˆ̇z
)� ˆ̇q�

DEP

]�
(54)

Once the corrections are applied to the model, the
expected error is x̂+

k = 0.

4 Covariance matrices of plant and measurement
noise

It is known that, when applying Kalman filters, the
tuning of the parameters of the algorithm (covariance
matrices of plant andmeasurement noise) is paramount.
When dealing with nonlinear systems, even if every-
thing else is correct in the algorithm, it can become
unstable if the covariance matrices of the noise are not
properly set.

In this work, the signals from the sensors are built
from a multibody model, playing the role of actual
mechanism, and thenwhiteGaussian noise is generated
and added to the sensor signal. Hence its properties are
perfectly known.

The plant noise properties, however, are not known,
since the errors introduced in the simulation are not
additive white noise, but errors in the force models
which produce deviations from the ideal behavior. In a
real mechanism is even worst, because it is not know
where the errors are, or it is not possible to correct them
for any reason.

When the ground truth is not known, the only way to
check that the filter is working properly is by checking
the innovation sequence. It should behave like white
noise. Although this criterion does not allow to find the
correct absolute value of the covariances, it allows to
find the correct relation between plant and measure-
ment covariance matrices.

Despite that this work relies on simulation, mean-
ing that the ground truth is available, the power spec-
tral density of the innovation was checked to lead the
process of getting the adequate covariance of plant
noise.

The plant noise used for the test was different for
the different modeling errors applied and for the dif-
ferent mechanisms. While considering specific mech-
anism and level of modeling error, all the discrete-time
methods obtained the best results with the same plant
noises, adjusted to produce an innovation sequence
which behaves like white noise when the initial posi-
tion of the mechanism is perfectly known and posi-
tion sensors are employed at the same rate of the
multibody simulation.However, smaller values of plant
noise and initial covariance matrix of state estima-
tion uncertainty P0 had to be used in the CEKF to
avoid the covariance matrix P becoming negative def-
inite.
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4.1 Structure of plant noise

When dealing with multibody models, usually the
geometry is known accurately enough tomodel it prop-
erly. However, getting precise models of the forces and
obtaining the actual distribution ofmass is usuallymore
complex in practice. Both these effects appear as errors
in the accelerations. Then, the integration process and
the multibody formulation may introduce more errors,
but they are usually negligible compared to the previ-
ous ones. For this reason, only the acceleration terms
are considered in the plant noise.

In theCEKF,which is the onlymethod in continuous
time analyzed in this work, the acceleration noise is
straightforwardly introduced:

�P
c =

[
0g×g 0g×g

0g×g σ 2
z̈ Ig

]
(55)

However, in the discrete-time methods, the matrix
of the covariance of the plant noise must be calculated
from its continuous counterpart by integration:

�P = fx(tk, tk−1)Ifx�(tk, tk−1) (56)

I =
∫ tk

tk−1

fx−1(τ, tk−1)�
P
c fx

−�(τ, tk−1)dτ (57)

This integration can be done using Van Loan’s
method [21], obtaining a covariance matrix of process
noise with the following structure:

�P =
⎡
⎣σ 2

z̈
Δt3
3 Ig σ 2

z̈
Δt2
2 Ig

σ 2
z̈

Δt2
2 Ig σ 2

z̈ ΔtIg

⎤
⎦ (58)

5 Tests and results

Twodifferentmechanisms,with two levels ofmodeling
error, and with three different sets of sensors have been
considered in thiswork.Different sampling rates for the
sensors were considered in every configuration. The
discrete-time methods were found to be more robust
and accurate than the CEKF, but the latter is maintained
here as a reference because it has been employed in
several works previously (e.g., [5,15]).

The sensors considered in the tests are gyroscopes
(angular rate sensors) and encoders. Their measure-
ments were built from a multibody simulation of the
mechanism, and then a sequence of pseudo-random
noise with a normal distribution with mean 0 and stan-
dard deviation of π/180 rad was added. The units of

the noise are rad/s for the gyroscopes and rad for the
encoders. The same sequence of pseudo-random noise
was used for all the tests for a fair comparison. Slightly
different results are expected with other sequences of
noise. However, the relative behavior of the methods is
the same with different sequences of noise.

The tests consist in the mechanisms starting from
rest and falling under the action of their own weight
for ten seconds. The errors introduced intentionally in
the model are the value of the acceleration of gravity,
representing an error in a force model which affects
during all the simulation, and an error in the initial
position of the mechanism. The initial position error is
specially useful to show that themethods based only on
gyroscopes can provide, in some configurations, accu-
rate estimations of the position, which is not usually
reported in the bibliography. Two levels of modeling
error were considered: 0.5 m/s2 with an initial error of
π/32 rad, and 1 m/s2 with an initial error of π/16 rad.

5.1 Tests with position sensors

In these tests, we assume that encoders are installed
on the cranks of the mechanisms. Encoders are usu-
ally the preferred option to measure rotational motion.
They can provide accuratemeasurements at a high sam-
pling rate. For this reason, if enough encoders are avail-
able, a state observer is not usually needed. However,
not all the position sensors have such a high sampling
rate or accuracy. Thus, in this case the encoders are
employed to verify the behavior of the state observers
when generic position sensors are available, but con-
sidering that they can have a slower sampling rate than
actual encoders, because they could be other kinds of
position sensors, such as a GPS, laser or ultrasonic dis-
tance sensors.

The results for the four-bar and five-bar linkages
are shown in Figs. 3 and 4, respectively, where no sig-
nificant differences can be observed. The worst accu-
racy is obtained from the CEKF. In addition, it is the
least robust when themeasurements are not available at
every time step, being the onlymethodwhich is not able
to handle all the sampling rates tested in the case of the
five-bar mechanism. All the other methods considered,
namely DEKF, UKF with trapezoidal rule integrator
(UKF TR), UKF with forward Euler integrator (UKF
FE), and errorEKF provide the same accuracy. More-
over, they provide the same level of accuracy for both
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Fig. 3 RMS error of the crank angle in the four-bar linkage with
an encoder on the crank.Dashed lines represent the lowmodeling
error test, while solid lines represent the high modeling error
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Fig. 4 RMS error of cranks angles in the five-bar linkage with
encoders on the cranks.Dashed lines represent the lowmodeling
error test, while solid lines represent the highmodeling error. The
CEKFmethod cannot handle all the sampling rates of the sensors
tested with the other methods

levels ofmodeling error if the sampling rate of themea-
surements is high enough, but when the sensors have a
slower sampling rate, the test with low modeling error
provides better results. It is also interesting to remark
that the RMS error of the sensor is π/180 ≈ 0.0175
rad. All the discrete-time methods get a smaller error
if the sampling rate of the sensor is at least 50 Hz.

With this sensor configuration, the measurement
model is linear. This is the reason why the methods
based on the extended Kalman filter can get approx-
imately the same accuracy level than the unscented
Kalman filters.
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Fig. 5 RMS error of the crank angle in the four-bar linkage with
an angular rate sensor on the coupler link.Dashed lines represent
the low modeling error test, while solid lines represent the high
modeling error

5.2 Tests with velocity sensors

Two different configurations using only velocity sen-
sors are considered in each mechanism, leading to dif-
ferent situations. In the first configuration, the angular
rate sensors (gyroscopes) are fixed to the coupler link
of the four-bar mechanism, and to both coupler links in
the five-bar linkage. Since both mechanisms present a
closed-loop topology, the velocity and the position of
such elements are related, and hence the absolute posi-
tion of the mechanism can be inferred from velocity
measurements, even if the initial position is not accu-
rately known. Here, both the geometry of the mech-
anism and the characteristics of the motion affect the
accuracy of the state observer. The results for the four-
bar linkage are shown in Fig. 5. Now the UKFmethods
show the best accuracy, independently of the type of
integrator used. The next methods in terms of perfor-
mance are the DEKF and the errorEKF. It seems that
their performance degrades with higher sampling rates.
However, this is not true. Indeed, at the beginning of the
simulations the system is not observable with this sen-
sor configuration, because the mechanism starts from
rest. When the simulation starts, the firstmeasurements
are not coherent because of the error in the initial posi-
tion, and this produces that the first measurements in
this particular test take the state observer farther from
the true solution instead of closer. For this reason, the
test with the highest measurement frequency has to
recover a greater error from the beginning. The abso-
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Fig. 6 Absolute value of the error of the crank angle in the
four-bar linkage with an angular rate sensor on the coupler link,
with sampling rates of 200, 100, and 50 Hz. These tests were
performed with the DEKF with π/16 initial error, and 1 m/s2 of
error in gravity acceleration
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Fig. 7 Angle of the crank of the four-bar mechanism for the real
mechanism, themodelwithout corrections, and the state observer
with an angular rate sensor on the coupler link. This test was
performed with the DEKF formulation, 200 Hz sampling rate
for the sensor, π/16 initial error, and 1 m/s2 of error in gravity
acceleration

lute value of the error considering sampling rates of
50, 100, and 200 Hz is shown in Fig. 6 to illustrate
this phenomenon. A plot of the crank angle is shown in
Fig. 7, and its error during the whole test is displayed
in Fig. 8, using the DEKF formulation with a sampling
rate of 200 Hz. The confidence interval represented in
Fig. 8 is calculated from the values of the covariance
matrix of the state estimation uncertainty P. The val-
ues of the diagonal of this matrix contain the variance
of the correspondent states, from where the confidence
interval can be calculated assuming a normal distribu-
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Fig. 8 Error of the crank angle in the four-bar linkage with an
angular rate sensor on the coupler link, and its 95% CI. This test
was performedwith theDEKF formulation, 200Hz sampling rate
for the sensor, π/16 initial error, and 1 m/s2 of error in gravity
acceleration

tion [13]. It can be seen how the confidence interval
expands and shrinks depending on the motion of the
mechanism, since it depends on both the velocity of
the coupler bar and the relation between this velocity
and the position of the crank.

The CEKF provided the worst results and showed
also that it is the least robust, since it was again the
only method which could not handle all the sampling
rates.

The same test has been repeated, but startingwith the
mechanism inmotion, with an initial velocity of 5 rad/s
in the crank. In this case, the system is observable from
the beginning of the maneuver. The results, shown in
Fig. 9, are clearly better than when starting from rest,
and all the methods improved their results when the
sampling rate of the measurements was increased.

The results from the tests with the five-bar mech-
anism are shown in Fig. 10. Again, the UKF meth-
ods show the best accuracy. However, in this test the
errorEKF is closer to them than the DEKF. The CEKF
obtained the worst results and robustness.

If this test is repeated with initial velocity (5 rad/s
in each crank of the mechanism), the results shown in
Fig. 11 are obtained. In this case, due to the geometry
of the mechanism, it is more difficult to integrate when
the velocity is increased. For this reason, the meth-
ods using the trapezoidal rule integration (UKF TR
and errorEKF) provide better results than the meth-
ods which employ the forward Euler integration (UKF
FE and DEKF). The CEKF still provides the worst

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Accuracy and efficiency comparison 1947

10 25 50 100 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Sampling rate of sensors (Hz)

R
M

S
E

 (r
ad

)

DEKF
UKF TR
UKF FE
errorEKF
CEKF

Fig. 9 RMS error of the crank angle in the four-bar linkage with
an angular rate sensor on the coupler link. Initial velocity of the
crank of themechanism is 5 rad/s.Dashed lines represent the low
modeling error test, while solid lines represent the highmodeling
error
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Fig. 10 RMS error of the cranks angles of the five-bar linkage
with angular rate sensors on the intermediate links.Dashed lines
represent the low modeling error test, while solid lines represent
the high modeling error

results, even using the trapezoidal rule as the integra-
tion scheme.

The second configuration tested with velocity sen-
sors consists in two gyroscopes installed on the cranks
of the mechanisms. This problem is more challenging
than the previous one because the cranks can have any
velocity at any position, and hence, there is no rela-
tionship between position and velocity. However, if the
accelerations depend on the positions, the UKF meth-
ods can still provide information of the position from
velocity measurements. The EKF methods cannot deal
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Fig. 11 RMS error of the cranks angles of the five-bar linkage
with angular rate sensors on the intermediate links. Initial veloc-
ity of the cranks was 5 rad/s. Dashed lines represent the low
modeling error test, while solid lines represent the high model-
ing error
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Fig. 12 RMS error of the crank angle in the four-bar linkage
with an angular rate sensor on the crank. Dashed lines represent
the low modeling error test, while solid lines represent the high
modeling error test

with this problem, so they are not considered here. In
this case, the acceleration varies with the position of the
cranks because the only actuating force is the gravity.
The results are similar for both mechanisms, as shown
in Fig. 12 for the four-bar linkage and in Fig. 13 for
the five-bar linkage. In this configuration, the type of
integrator considerably determines the accuracy of the
methods, providing better results using the trapezoidal
rule. This difference increases when the errors in the
plant are smaller, because if the errors in force model
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Fig. 13 RMS error of the crank angles of the five-bar linkage
with angular rate sensors on the cranks. Dashed lines represent
the low modeling error test, while solid lines represent the high
modeling error test
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Fig. 14 Error of the crank angle in the four-bar linkage with an
angular rate sensor on the crank, and its 95% CI. This test was
performed with 200 Hz sampling rate for the sensor, π/16 initial
error, and 1 m/s2 of error in gravity acceleration

are high enough, the integration error becomes negli-
gible.

One of the tests, performed with the UKF method
with the forward Euler integrator, 1 m/s2 of error in the
acceleration of gravity and π/16 rad of initial position
error is shown in Fig. 14.

5.3 Computational cost

For a state observer to be useful, it must be run
in real time. However, the tests presented here were
run in MATLAB�, and the design of the software
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Fig. 15 Real-time factor of the different methods running with
position sensors at 200 Hz

was intended to provide flexibility instead of effi-
ciency, not being appropriated to be used as practical
state observers. Nevertheless, the computational cost
of these methods is evaluated to provide guidance in
order to select a state observer for future applications.
Every test takes a different time to be run, depend-
ing on the number and type of sensors , their sam-
pling frequency, etc. However, as a comparison among
the different formulations is intended here, only the
results from the testswith position sensors at 200Hz are
depicted in Fig. 15. It can be seen that the two discrete-
time extended Kalman filters are the fastest methods,
being the errorEKF the only one which runs faster than
real time. The CEKF method is much slower than its
discrete counterparts. As for the unscented Kalman fil-
ters, the formulation employing the forward Euler inte-
grator is about twice faster than the same formulation
using the trapezoidal rule. TheUKFwith forward Euler
integrator is even faster than the CEKF for the prob-
lems considered in this work. However, its computa-
tional cost grows faster as the number of degrees of
freedom of the mechanism increases, so it is expected
that it would be slower than the CEKF for problems of
a higher number of degrees of freedom.

5.4 Observability analysis

The selection of the sensors needed to achieve the esti-
mation of the desired magnitudes is a problem to be
addressed when a state observer is designed. The study
of the observability provides guidance in order to select
the necessary sensors during the design process.
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The state of a system is said to be observable if it
is uniquely determined by the system model, its inputs
and its outputs [7]. From the results obtained in the pre-
vious tests, the most interesting methods to be studied
are the DEKF and the errorEKF for their efficiency,
and the UKFs due to their accuracy. Therefore, only
discrete-time methods are considered in this section.

The extended Kalman filters used here are based on
nonlinear models. However, due to the discretization
scheme employed (the forward Euler integrator), the
resulting transition matrices are constant, and the non-
linearities of the transition models are only revealed in
the calculation of the accelerations.

The sensor models, however, can be linear or not,
depending on the kinds of sensors installed and their
configuration. For example, the tests performed with
the four-bar mechanism considering an encoder or a
gyroscope on the first link lead to linear measurement
models, while the test with a gyroscope on the coupler
has a nonlinear measurement model.

As some of the cases have time-varyingmatrices, the
concept of local observability is used here, determined
by the rank of the following matrix [4]:

Mlo =

⎡
⎢⎢⎢⎢⎢⎣

hxk
hxk+1fxk

hxk+2fxk+1fxk
...

hxk+l−1fxk+l−2 . . . fxk

⎤
⎥⎥⎥⎥⎥⎦

(59)

If Mlo is full rank, the system is observable at a given
time spot. However, errors in the algorithm (not achiev-
ing a perfect fulfillment of the constraints, numerical
errors, etc.) can make Mlo full rank when the system
is actually non-observable. Moreover, the observabil-
ity of the system can be weak, or progressively become
non-observable in some conditions. For these reasons,
instead of the rank of the matrix, the condition number
of the matrix, κ(Mlo) is used [7], since it is a quan-
titative assessment of the observability. The condition
number is calculated as the relation between the maxi-
mum and the minimum singular value of Mlo:

κ(Mlo) = σmax

σmin
(60)

Since κ(Mlo) can reach very high values, its logarithm
is the magnitude to be studied. The smaller this mag-
nitude is, the better observability the system has.

When using sampled methods, such as the UKF, the
matrices fx and hx used to buildMlo are not available.

However, theUKFcanbe seen as a particular case of the
linear regressionKalman filter [10], in which thematri-
ces fx and hx are obtained as a statistical linear regres-
sion of several points propagated through the transition
and measurement functions. Once these matrices are
obtained from the transition and measurement updates
of the UKF, they can be used to build the local observ-
ability matrix [8].

Using thismethod, the observability of the EKFwith
constant matrices can be examined before implement-
ing the state observer. In the tests presented in this work
with the four-bar mechanism, the case with the encoder
and the case with the angular rate sensor on the crank
can be analyzed this way. With the encoder, the system
is always observable. However, if a gyroscope is used
in the first link, the system is never observable.

Unfortunately, when the EKF methods with nonlin-
ear measurement models or the UKF algorithms are
employed, the matrices needed to perform the observ-
ability analysis are not available beforehand. Conse-
quently, a simulation of the method under the expected
working conditions has to be performed, limiting the
interest of this observability analysis. However, the
observability analysis is still useful to detect conditions
in which the observability is weaker or temporarily lost
under some working conditions.

The observability of the errorEKF, DEKF and UKF
was examined during a test with each one of the con-
figurations tested. The results obtained from the DEKF
and the errorEKF were similar, being observable with
the encoders on the cranks, and with the gyroscopes on
the coupler bars, and non-observable when the gyro-
scopes were installed on the cranks, both for the four-
bar and thefive-bar linkages.When theUKF is used, the
system is observable with all the configurations tested.
The results from the observability study of the four-bar
mechanism are shown in Figs. 16, 17 and 18. As the
behavior of the errorEKF and theDEKF is similar, only
the results from the DEKF are shown for the sake of
clarity.

6 Conclusions

In thiswork, several state observers based onmultibody
models have been evaluated. The CEKF, DEKF and
UKF methods were already evaluated in other papers,
while the errorEKF is new in the multibody literature.
The first three methods considered here are formulated
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Fig. 16 Result from the observability analysis of the test with
the four-bar mechanism with an encoder on the crank
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Fig. 17 Result from the observability analysis of the test with
the four-bar mechanism with a gyroscope on the coupler
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Fig. 18 Result from the observability analysis of the test with
the four-bar mechanism with a gyroscope on the crank

in independent coordinates, namely the continuous
extended Kalman filter (CEKF), the discrete extended
Kalman filter (DEKF), and the unscented Kalman filter
(UKF), which has been tested with two different inte-
grators: forward Euler and the trapezoidal rule. The last
method described is an error-state extendedKalman fil-
ter (errorEKF), inwhich the position andvelocity errors
of the multibody simulation are estimated and then fed
back to the simulation. The methodology employed to
tune the matrices of covariance of measurement and
plant noise, and the shape of those matrices were also
indicated.

All the presented methods have been tested in two
mechanisms (four-bar and five-bar linkages), consider-
ing three different sensor configurations in each mech-
anism and 5 different sampling rates for the sensors.
All the discrete-time methods were able to handle all
the sampling rates considered, but the CEKF was not
robust enough to deal with the lowest sampling rates,

and its accuracy degraded faster as the sampling rate
decreased.

The tests with position sensors demonstrate that all
the state observers improve the accuracy of the sen-
sors, even if considering a sampling rate 4 times slower
than the original sensor. The tests with velocity sensors
demonstrate that, under certain circumstances, posi-
tion information can be obtained from velocity sen-
sors using a combination of a multibody model and
an Kalman filter, even if the initial position assumed
by the observer is wrong. Two different configurations
were conducted in each mechanism with velocity sen-
sors. In one of them, with the sensors on the couplers,
the relation between the crank angle and the velocity
measured by the sensors is time varying. In these tests,
all the methods tested could provide position informa-
tion. In the other configuration tested, the velocity sen-
sors were installed on the cranks of the mechanisms.
In this circumstance, the position of the crank and the
velocity measured by the sensor are not related, and
the methods based on the extended Kalman filter could
not get position information from this sensor configu-
ration. However, as the effect of the gravity varies with
the position of the mechanism, the UKF could still pro-
vide position information in these conditions with both
integrators tested.

The computational cost of the methods was also
compared, being the errorEKF the fastest method, and
also one of the less affected by the increase in size of the
system from the four-bar to the five-bar linkage. The
DEKF was the second one in efficiency. The UKF with
trapezoidal rule integrator provided the best results in
almost every test, but it was the slowest method. By
using the forward Euler integrator, this method was
executed about twice faster even when its accuracy
was not significantly decreased in most of the tests.
However, both methods are significantly slower in the
five-bar mechanism than in the four-bar mechanism.
The CEKF, although is less affected by the size of the
problem than the UKF with forward Euler integrator,
was slower than the latter in the tests performed in this
work.

All the methods and multibody models tested here
have been implemented inMATLAB� andmade avail-
able as Open Source.2

2 See https://github.com/MBDS/mbde-matlab.
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