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Appendix I 
Common SE(2) and SE(3) Geometric 

Operations 

Dealing with mobile robots necessarily implies dealing with geometric problems. Studying their 

kinematic models or their position and attitude in three-dimensional space, for example, 

requires us to handle spatial relationships. This appendix provides a summary of the basic 

mathematical concepts from 2D and 3D geometry that are needed for solving most mobile 

robotic problems. Some other mathematically more intricate concepts will be deferred until 

appendix IV. 

I.1 ABOUT GEOMETRIC OPERATIONS AND THEIR 

NOTATION 

The geometric operations we will discuss here work with two elements: spatial locations and 

spatial transformations. Locations are simply points in a two or three-dimensional Euclidean 

space, which we will describe with the vector of their (two or three) coordinates with respect to 

some reference frame, that is: 
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Regarding spatial transformations, we firstly find pure rotations. It can be shown that pure 

rigid rotations in 2D and 3D form mathematical groups whose elements are 2 2  and 3 3  

matrices, respectively, with unit determinants, and where the group inner operation is the 

standard matrix multiplication. These groups are named  2SO  and  3SO , after “special 

orthogonal group”. We will denote its elements (matrices) as: 

 
 2 2

3 3

2       (a pure rotation in 2D)

3        (a pure rotation in 3D)
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  (I.2) 

Spatial points or transformations are never absolute in the strict sense of the word: they only 

make sense with respect to some frame of coordinates. A frame of coordinates can be visualized 

as a set of two or three orthogonal axes (for 2D or 3D, respectively) fixed at some arbitrary 

placement. Sometimes such frames are informally referred to as corners. We can therefore 

visually imagine a  nSO  transformation as an arbitrary rotation of those axes, without 

translation.  



  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure I.1: Illustration of the four fundamental geometric operations with poses and points. (a)—(b) Two 

arbitrary poses 1p  and 2p , and their composition in (c). We also show (d) the pose inverse composition, (e) 

the pose-point composition and (f) the inverse pose-point composition. 

A broader class of spatial transformation also allows for spatial translations apart from 

rotation. It is common in robotics to name poses to those transformations. Thus, a pose can be 

visualized as a corner placed and rotated arbitrarily with respect to any other reference corner. 

Mathematically, poses form the “special Euclidean groups”  2SE  and  3SE , for 2D and 

3D, respectively. The group elements are 3 3  and 4 4  matrices, respectively, and the group 

operation is also here the standard matrix multiplication. We will denote pose matrices with a 

capitalized P , that is: 

 
 3 3

4 4

2       (a generic pose in 2D)

3        (a generic pose in 3D)
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P SE
  (I.3) 



Since pure rotations typically have less practical utility in mobile robotics than the more 

generic concept of poses (i.e., translations plus pure rotations), in most problems we will deal 

only with the latter. 

As we will see in the next sections, poses are usually represented in a parameterized form 

instead of their matrix forms P . The main reason is that pose matrices, while perfectly 

representing the spatial transformation, have far more DOFs than the actual poses. The number 

of independent values needed to completely specify a spatial pose is 3 or 6 (in 2D or 3D space, 

respectively), but the number of values in the matrices is much higher:  2SE  and  3SE have 

matrices with 3 3 9   and 4 4 16   elements, respectively.  

In general, we will denote pose parameterizations as vectors represented with an 

uncapitalized letter p , whose length will depend on the particular parameterization —but which 

can never be smaller than the number of spatial DOFs. We will often need to transform between 

the vector of a pose parameters and its matrix form, an operation which we will denoted by 

means of the function  M , specific for each parameterization: 

  
   Pose in

Pose matrix form
parameterization

P M p   

where the inverse function is defined as: 

  1

Pose   Pose in
parameterization matrix form

p M P  

(I.4) 

Formally, only the matrices P  belong to the  nSE  groups. However, in an abuse of 

notation we can also say that a pose parameterization p  is a member of the groups if we 

interpret such a statement as equivalent to    nM p SE .  

As shown below, mixing spatial transformations (poses) and spatial locations (points) 

requires working with pose P  matrices and point vectors of the correct length: although 2D and 

3D points are described by vectors of length 2 and 3, the matrices of 2D and 3D poses have, as 

said above, sizes of 3 3  and 4 4 , respectively. For each point vector a  we can define its 

associated extended vector A  by means of a function  V  which simply appends an extra unit 

element. That is: 

For 2D: 
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After all these preliminary definitions we are ready to describe the four fundamental 

geometric operations regarding poses and points, illustrated in Figure I.1: 

1. Composition of two poses 1p  and 2p : the resulting pose is 2p  as if it was expressed with 

respect to 1p . That is, as if 1p  was the new origin of coordinates for 2p . 

2. Inverse composition of two poses 1p  and 2p : the resulting pose is 1p  “as seen from” 2p . 

3. Composition of a pose p  and a point a : the resulting point is a  “as if” it was expressed 

in the coordinate frame defined by p . 

4. Inverse composition of a pose p  and a point a : the resulting point is a  “as seen from” 

p . 

It is worth carefully matching these four definitions with their representations in Figure 

I.1(c)—(f) in order to unambiguously grasp their geometrical meaning. 

In order to denote all these operations rigorously, it is common to find in the literature the so-

called “o plus” notation for pose operations, which employs the operators   and   (Smith, 

Self & Cheeseman, 1988; Thrun, Burgard & Fox, 2005). Under this notation, the four 

operations above and their matrix equivalents (with  P M p ,  ' A V a , etc. ) can be 

shown to become matrix multiplications, such that: 

1 2 1 2

1

1 2 2 1

Operation "o plus" notation Matrix notation

1. Pose-pose composition

2. Pose-pose inverse composition

3. Pose-point composition '

4. Pose-point inverse composition '


   
  
  
 

p p p P P P

p p p P P P

a p a A

a a p



 1

'

' 



PA

A P A

  

An extension to this basic notation is the unary   operator to denote pose inversion. It can 

be seen as a special case of pose inverse composition where the pose implicitly assumed at the 

left of the operator is the identity element of the  nSE  group, that is, the origin of coordinates: 

 
1 1

0 0

Pose at the 
  origin of 
coordinates

Pose inversion: ' '      
I

p p p p P P P P    

(I.6) 

The usage of this unary operator allows us to restate an alternative formulation of the two 

operations involving inverse pose composition (the operations numbered as 2 and 4 above), now 

in terms of “normal” (not inverse) pose compositions: 

  1 2 2 12) Pose-pose inverse composition

'4) Pose-point inverse composition

  
  

p p p p p

a a p p a

 
 

  (I.7) 

In the next sections we explore how all these operations can be implemented in practice for 

the cases of 2D and 3D geometry. 

I.2 OPERATIONS WITH SE(2) POSES 

A  2SE  pose is easily parameterized as a translation in 2D and a rotation, such as: 



x

y


      

p   (I.8) 

Under the convention of positive counterclockwise rotations, the corresponding matrix form 

reads as follows in order to satisfy the definitions of the operators   and   above: 

  cos sin

sin cos

0 0 1

x

y

 
 

       
P M p   (I.9) 

The inverse conversion is straightforward in this case, since: 

 

     

11 12 13

1

21 22 23

13

1 1

23 21 11 21 11

,

0 0 1

, tan atan 2 ,

m m m

with m m m

m

m with m m or m m 




 

       
        

p M P P

M P
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Given a 2D pose as a matrix we can easily carry out any of the four pose-point operations in 

matrix form. However, since in practice we may be normally interested in the parameterized 

representations instead of matrices, it would be valuable to have expressions that directly give 

us the parameters of the final poses and points, skipping the explicit operations with the 

intermediary matrices. Such expressions are quite simple for 2D geometry, thus we provide all 

of them below. Due to their utility in several robotics operations (e.g. uncertainty propagation in 

an EKF) we also provide the corresponding Jacobian matrices with respect to each argument. 

1. Composition of two poses: 

  1 2 1 2 1

1 2 1 2 1 2 1 2 1

1 2

cos sin

, sin cosc

x x x y

y y x y

 
 

  
                      

p p p f p p  

And its Jacobians: 

 

 

2 1 2 1

1 2

2 1 2 1

1 3 3

1 1

1 2

1 1

2 3 3

1 0 sin cos
,

0 1 cos sin

0 0 1

cos sin 0
,

sin cos 0

0 0 1

c

c

x y

x y

 
 

 
 





         
        

f p p

p

f p p
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2. Inverse composition of two poses: 



        1 2 2 1 2 2

1 2 1 2 1 2 2 1 2 2

1 2

cos sin

, sin cosi

x x x y y

y x x y y

 
 

  
                       

p p p f p p  

And its Jacobians: 

 

        

2 2

1 2

2 2

1 3 3

2 2 1 2 2 1 2 2

1 2

2 2 1 2 2 1 2 2

2 3 3

cos sin 0
,

sin cos 0

0 0 1

cos sin sin cos
,

sin cos cos sin

0 0 1

i

i

x x y y

x x y y

 
 
   
   





        
                 

f p p

p

f p p

p
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3. Composition of a pose and a point: 

 ' cos sin
' ,

' sin cos

x x y

pc

y x y

a x a a

a y a a

 
 

               a p a f p a  

And its Jacobians: 

 
  2 3

2 2

1 0 sin cos,

0 1 cos sin

, cos sin

sin cos

x ypc

x y

pc

a a

a a

 
 

 
 





       
      

f p a

p

f p a

a
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4. Inverse composition of a pose and a point: 

     
   

cos sin'
' ,

' sin cos

x yx

pi

y
x y

a x a ya

a a x a y

 
 

                  
a a p f a p  

And its Jacobians: 

 
     

   
2 2

2 3

, cos sin

sin cos

cos sin sin cos,

sin cos cos sin

pi

x ypi

x y

a x a y

a x a y

 
 
   
   





      
               

f a p

a

f a p

p
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Regarding the computation of the inverse of a pose, p , it can be easily done by applying 

eq. (I.6) and then eq. (I.12). 



I.3 OPERATIONS WITH SE(3) POSES 

A  3SE  pose comprises a pure translation and a pure rotation, the latter belonging to 

 3SO . There exist two main families of parameterizations for this rotational part: triplets of 

Euler angles and the unit quaternion. We describe both of them next. 

 

(a) (b) 

Figure I.2: (a) The particular convention adopted here for an Euler angles parameterization of 

3D rotations. (b) A geometric interpretation of the unit quaternion, where the rotation   relates 

to the quaternion parameters by  1cos 2 rq  . 

An important remark regarding Euler angles that is barely mentioned in the literature is the 

existence of 12 different such parameterizations depending on the order in which the three 

rotations are applied to arrive at the desired attitude (Diebel, 2006). Therefore, it becomes 

crucial to always clearly state the chosen order, since a reader will not be able to unambiguously 

guess it. In the following we will adopt the so-called yaw-pitch-roll representation, where the 

names of each rotation follow from their usage in airplane navigation. If we denote as   (yaw),   (pitch) and   (roll) the angles of these consecutive rotations (i.e. each rotation actuates 

around the already-rotated axes), which are applied in that same order as sketched in Figure 

I.2(a), then we can parameterize a 3D pose as: 

(yaw-pitch-roll parameterization)

x

y

z





           

p   (I.15) 

The corresponding matrix form of such a pose has the structure: 



   , ,

0 0 0 1

x

y

z

  
         

R
P M p   (I.16) 

where the 3 3  rotation matrix  , ,  R  can be easily found by concatenating successive 

rotations of  ,   and   radians around the z , y  and x  axes, respectively. Notice that 

rotations apply over the successively transformed axes (more on this below), which means that 

we must use right-hand matrix multiplications. Therefore, we have: 

       
st rdnd1 :yaw 3 : roll2 :pitch

, ,ypr z y x     R R R R 
  

with: 

 

 

 

cos sin 0 c s 0

sin cos 0 s c 0

0 0 1 0 0 1

cos 0 sin c 0 s

0 1 0 0 1 0

sin 0 cos s 0 c

1 0 0 1 0 0

0 cos sin 0 c s

0 sin cos 0 s c

z

y

x

   
    

   


   
    

   

                 
                 
                  

R

R

R

 

such that: 

   c c c s s s c c s c s s

, , s c s s s c c s s c c s

s c s c c

           
              

    
        

R  

(I.17) 

It is common (and frustrating for students) to find different and apparently incompatible 

definitions for what are the yaw-pitch-roll angles. We just mentioned that they are rotations 

around the (“dynamic”) z , y  and x  axes, with “dynamic” meaning that successive rotations 

take into account how the axes were transformed by previous rotations. An alternative definition 

states that roll-pitch-yaw angles (notice the reverse order) are defined as rotations around the 

global (or “fixed”) x , y  and z  axes. In spite of the apparent contradictory definitions, if we 

realize that rotating around global axes is achieved by left-hand matrix multiplication, it turns 

out that the roll-pitch-yaw parameterization defines this rotation matrix: 

       
rd stnd3 :yaw 1 : roll2 :pitch

, ,rpy z y x     R R R R 
  

(I.18) 

which coincides with the previous rotation in eq. (I.17). To make it clear: any rotation has 

exactly the same yaw, pitch and roll parameters, disregarding whether it is measured under the 

“dynamic” axes yaw-pitch-roll convention or under the “fixed” axes roll-pitch-roll convention. 



The trick here is that rotations are applied in reverse order in the two conventions but the 

difference between “dynamic” and “fixed” axes modifies the side on which rotation matrices 

accumulate, hence finally we obtain exactly the same rotation matrix. 

Once we have addressed this probable source of confusion, we must mention one of the 

problematic aspects of the yaw-pitch-roll parameterization: the degeneration of one degree of 

freedom when the pitch (  ) approaches 90º  —the so-called gimbal lock. Indeed, if 

90º    we have cos 0   and sin 1   , which leads to this degenerated rotation matrix: 

  0 c s s c c c s s

, 90º , 0 s s c c s c c s

1 0 0

       
         

              
R


 

(using well-known trigonometric expressions) 

      0 sin cos 0 sin cos

0 cos sin 0 cos sin

1 0 0 1 0 0

       
                     


 
 

 
 

(I.19) 

where the other two angles (yaw and roll) do not represent independent rotations anymore. 

Another important inconvenient of this parameterization, derived from the gimbal lock problem, 

is the lack of a unique inverse function for the matrix function in eq. (I.16). It can be shown that 

the matrix-to-parameterization function  1M    becomes in this case: 

   
11 12 13 14

21 22 23 241 1

31 32 33 34

,

0 0 0 1

x

m m m m y

m m m m z
with

m m m m 



 

                         

p M P P M P   

with  
 

  
 

2 2

31 11 21

23 13

14

24
21 11

34
32 33

23 13

atan 2 ,

atan 2 ,
if 90º

0

atan 2 ,
if 90º

atan 2 ,

atan 2 ,
if 90º

0

m m m

m m

x m

y m and m m
z m m m

m m


 

 
 

                              

 

(I.20) 

To end with our treatment of Euler angles, we must mention that inverting a pose, p , is 

more easily performed by first computing the pose in matrix form,  P M p , then inverting 

that matrix and then applying eq. (I.20) to retrieve the inverse pose parameters. It must be 

noticed that inverting  3P SE  matrices can be achieved without actually performing the 



costly matrix inversion: it can be shown that inverting  3P SE  is equivalent to transposing 

the 3 3  rotational part and using the following expression for the translational part: 

1

1 1 1 1 2 3
1

2 2 2 1 2 31

3 3 3 1 2 30 0 1

0 0 0 1 0 

 

0 0

0

1

i j k x i i i

i j k y j j j

i j k z k k k





                             

i t

i j k t j t
P

k t
  

(with a b standing for the dot product) 

(I.21) 

The complexity of the equations involved in every operation with Euler angles 

parameterizations prevents us from obtaining simple and closed-form equations for directly 

computing the parameters of the poses resulting from geometric operations, as we did in the 

previous section for  2SE  poses. However, this is still possible with the unit quaternion 

representation, which we address next. Notice that, in spite of its defects, the yaw-pitch-roll 

parameterization is widely used for the highly intuitive meaning of its parameters. 

Another popular parameterization of 3D poses is by means of a 3D translation plus a unit 

quaternion for the attitude, such that: 

2 2 2 2

(unit quaternion parameterization)

                          (with 1)

r

x

y

z

r x y z

x

y

z

q

q

q

q

q q q q

            
   

p
  (I.22) 

For better grasping the geometry of quaternions it reveals as more convenient to consider its 

four elements as two differentiated parts (Horn, 2001): the scalar rq  and the vector  Tx y zq q q . Any arbitrary rotation in the three-dimensional space can be interpreted as one 

single rotation (of magnitude   radians) around a conveniently-chosen axis of rotation, say, a 

unitary vector  Tx y zv v vv . It can be shown that the rq  component of a unit quaternion is 

related to the magnitude of the rotation, while the vector part indicates the rotation axis —see 

Figure I.2(b). More concretely,  

cos
2

sin
2

r

x x

y y

z z

q

q v

q v

q v






               
  (I.23) 

The matrix form of the pose represented as a unit quaternion can be obtained as: 



 
2 2 2 2

2 2 2 2

2 2 2 2

2( ) 2( )

2( ) 2( )

2( ) 2( )

0 0 0 1

r x y z x y r z z x r y

x y r z r x y z y z r x

z x r y y z r x r x y z

q q q q q q q q q q q q x

q q q q q q q q q q q q y

q q q q q q q q q q q q z

                   
 P M p   (I.24) 

As with the case of the Euler angles, it is not easy to invert this function. Some methods 

based on eigendecomposition have been proposed in the literature (Bar-Itzhack, 2000), but 

probably the easiest way to retrieve the quaternion parameters is to firstly obtain the yaw ( ), 

pitch (  ) and roll ( ) parameters as in eq. (I.20), then applying the following equivalence 

relations existing between both parameterizations:  

cos cos cos sin sin sin
2 2 2 2 2 2

sin cos cos cos sin sin
2 2 2 2 2 2

cos sin cos sin cos sin
2 2 2 2 2 2

cos cos sin sin sin cos
2 2 2 2 2 2

r

x

y

z

q

q

q

q

     
     
     
     


 
 
 



  (I.25) 

An advantage of quaternions is the simplicity of performing some operations with them. For 

example, it is easy to compute the inverse of a quaternion, that is, p . The rotational part is 

inverted be simply inverting the vector formed by  Tx y zq q q . It might seem more reasonable 

to inverse the sign of rq  instead, but notice that the actual rotation angle   is related to rq  by 

 1cos 2 rq  , as follows from eq. (I.23) above. Therefore,   is limited to the range of 

nonnegative values  0, , and the sign of rq  would be ignored. The common criterion is to 

always employ nonnegative values for rq . Regarding the inversion of the translational part of 

the pose p , it involves the function  pi f  introduced in eq. (I.30). To sum up, we end up with:  

  0 0 0 ,

'

T

pi

r

x

y

z

q

q

q

q

           

f p

p p   (I.26) 

Finally, an operation which is specific to this particular parameterization is the quaternion 

normalization. Its aim is to assure that 
2 2 2 2

r x y zq q q q    equals the unity, that is: 



qn 2 2 2 2 1/2

1
( )

| | ( )

'

'

'

'

r r

x x

y yr x y z

z z

q q

q q

q qq q q q

q q

                      

q
f q

q
  (I.27) 

This function, which must be employed after obtaining quaternion estimates from an EKF or 

any other least-squares estimation algorithm that do not respect the unit-length constraint, 

should be also applied when directly working with quaternions in order to eliminate potential 

numerical inaccuracies. 

We can now address the implementation of the four fundamental geometric operations, which 

we will describe for the unit-quaternion parameterization only since it leads to relatively simple 

expressions, in comparison to Euler angles. 

1. Composition of two poses: 

 
2 2 2

1 2 1 2 1 2 1 2

1 2 2 1 1 2 2 1
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1
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T
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r y r y z x z x

r z r z x y x y

x
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z

q

q

q

q

x y z

q q q q q q q q

with q q q q q q q q

q q q q q q q q

q q q q q q q q

            
   

    
  
 

 



1

1 2 1 2

f p

p

p f f p p

p

p p

p

f

     

 

And its Jacobians: 

(I.28) 
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r z y

y z r x

z y x r

q q q

q q q q
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where  
pcf  and the corresponding Jacobian submatrix will be defined in eq. (I.29) below. 

2. Inverse composition of two poses: In this case it is more convenient to employ the 

equivalence  1 2 2 1  p p p p p  , with 2p  evaluated as shown in eq. (I.26) 

and the pose composition performed as just described above. 

3. Composition of a pose and a point:  
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And its Jacobians: 
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(I.29) 
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4. Inverse composition of a pose and a point: 
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And its Jacobians: 

2 2

2 2

2 2

1 2( ) 2 2 2 2
( , )

2 2 1 2( ) 2 2

2 2 2 2 1 2( )

y z x y z y x z

z x y x z y z x

x z y x y z

p

x y

i

q q q q qrq qrq q q

qrq q q q q q q qrq

q q qrq qrq q q q q

                    
f a p

a
 

 
2 2

2 2

2 2

( , )

2 2 1 2 2 2 2  

( , )
2 2 2 2 1 2 2

, , ,

2 2 2 2 2 2 1  

pi

y z r z x y r y x z

pi

r z x y x z r x y z

r x y z

r y x z r x y z x y

q q q q q q q q q q

q q q q q q q q q q
q q q q

q q q q q q q q q q

 
                   

f a p

p

f a p
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(I.30) 

where for the sake of readability we introduced these replacements:  

y

x

z

x a x

y a y

z a z

  
  
  

 (I.31) 



As a final note to this appendix, we can mention that all the operations described here are 

readily available in the MRPT C++ libraries. More details about these geometry transformations 

and many others can be found in the report (Blanco, 2010). 
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Appendix II 
Resampling Algorithms 

A common problem of all particle filters is the degeneracy of weights, which consists of the 

unbounded increase of the variance of the importance weights 
[ ]i  of the particles with time. 

The term “variance of the weights” must be understood as the potential variability of the 

weights among the possible different executions of the particle filter. In order to prevent this 

growth of variance, which entails a loss of particle diversity, one of a set of resampling methods 

must be employed, as it was explained in chapter 7. 

The aim of resampling is to replace an old set of N particles by a new one, typically with the 

same population size, but where particles have been duplicated or removed according to their 

weights. More specifically, the expected duplication count of the i th  particle, denoted by 

iN , must tend to 
[ ]iN . After resampling, all the weights become equal to preserve the 

importance sampling of the target pdf. Deciding whether to perform resampling or not is most 

commonly done by monitoring the Effective Sample Size (ESS). As mentioned in chapter 7, the 

ESS provides a measure of the variance of the particle weights, e.g. the ESS tends to 1 when 

one single particle carries the largest weight and the rest have negligible weights in comparison. 

In the following we review the most common resampling algorithms. 

II.1 REVIEW OF RESAMPLING ALGORITHMS 

This section describes four different strategies for resampling a set of particles whose 

normalized weights are given by 
[ ]i , for 1,...,i N . All the methods will be explained using a 

visual analogy with a “wheel” whose perimeter is assigned to the different particles in such a 

way that the length of the perimeter associated to each particle is proportional to its weight. 

Therefore, picking a random direction in this “wheel” implies choosing a particle with a 

probability proportional to its weight. For a more formal description of the methods, please refer 

to the excellent reviews in (Arumlampalam, Maskell, Gordon & Clapp, 2002; Douc, Capp & 

Moulines, 2005). The four methods described here have  O N  implementations, that is, their 

execution times can be made to be linear with the number of particles (Carpenter, Clifford & 

Fearnhead, 1999; Arumlampalam, Maskell, Gordon & Clapp, 2002). 

Multinomial resampling: It is the most straightforward resampling method, where N  

independent random numbers are generated to pick a particle from the old set. In the “wheel” 

analogy, illustrated in Figure II.1, this method consists of picking N  independent random 

directions from the center of the wheel and taking the pointed particle. This method is named 

after the fact that the probability mass function for the duplication counts iN  is a multinomial 

distribution with the weights as parameters. A naïve implementation would have a time 

complexity of  logO N N , but applying the method of simulating order statistics (Carpenter, 

Clifford & Fearnhead, 1999), it can be implemented in  O N . 

Residual resampling: This method comprises two stages, as can be seen in Figure II.1. 

Firstly, particles are resampled deterministically by picking 
[ ]i

iN N     copies of the i th  



particle —where x    stands for the floor of x , the largest integer above or equal to x . Then, 

multinomial sampling is performed with the residual weights: 
[ ] [ ] /i i

iN N   . 

 

 

 

 

Figure II.1: The multinomial resampling algorithm. 

 

 



Figure II.2: The residual resampling algorithm. The shaded areas represent the integer parts of  [ ] 1i N . The residual parts of the weights, subtracting these areas, are taken as the modified weights 

[ ]i . 

 

 

 

Figure II.3: The stratified resampling algorithm. The entire circumference is divided into N  equal parts, 

represented as the N  circular sectors of 1 N  perimeter lengths each. 

 

 



 

Figure II.4: The systematic resampling algorithm. 

 

 

Stratified resampling: In this method, the “wheel” representing the old set of particles is 

divided into N  equally-sized segments, as represented in Figure II.3. Then, N  numbers are 

independently generated from a uniform distribution like in multinomial sampling, but instead 

of mapping each draw to the entire circumference, they are mapped within its corresponding 

partition out of the N  ones.  

Systematic resampling: Also called universal sampling, this popular technique draws only 

one random number, i.e., one direction in the “wheel”, with the others 1N   directions being 

fixed at 1 N  increments from that randomly picked direction. 

II.2 COMPARISON OF THE DIFFERENT METHODS 

In the context of Rao-Blackwellized particle filters (RBPF), where each particle carries a 

hypothesis of the complete history of the system state evolution, resampling becomes a crucial 

operation that reduces the diversity of the PF estimate for past states. We saw the application of 

those filters to SLAM in chapter 9. 

In order to evaluate the impact of the resampling strategy on this loss, the four different 

resampling methods discussed above have been evaluated in a benchmark that measures the 

diversity of different states remaining after t  time steps, assuming all the states were initially 

different. The results, displayed in Figure II.5, agree with the theoretical conclusions in (Douc, 

Capp & Moulines, 2005), stating that multinomial resampling is the worst of the four methods 

in terms of variance of the sample weights. Therefore, due to its simple implementation and 

good results, the systematic method is recommended when using a static number of particles in 

all the iterations. If a dynamic number of samples is desired, things get more involved and it is 

recommended to switch to a specific particle filter algorithm which simultaneously takes into 

account this particularity while also aiming at optimal sampling (Blanco, González & 

Fernandez-Madrigal, 2010). 



 

Figure II.5: A simple benchmark to measure the loss of hypothesis diversity with time in an RBPF for the 
four different resampling techniques discussed in this appendix. The multinomial method clearly emerges as 
the worst choice. 

REFERENCES 

Arumlampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A Tutorial on Particle 

Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions on 

Signal Processing, 50(2), 174—188. 

Blanco, J. L., González, J., & Fernández-Madrigal, J. A. (2010). Optimal Filtering for Non-

Parametric Observation Models: Applications to Localization and SLAM. The International 

Journal of Robotics Research, 29(14), 1726—1742. 

Carpenter, J., Clifford, P., & Fearnhead, P. (1999). Improved particle filter for nonlinear 

problems. IEEE Proceedings on Radar, Sonar and Navigation, 146(1), 2—7.  

Douc, R., Capp, O., & Moulines, E. (2005). Comparison of resampling schemes for particle 

filtering. 4th International Symposium on Image and Signal Processing and Analysis, 64–

69. 

 



Appendix III 
Generation of Pseudo-Random 

Numbers 

Computers are deterministic machines: if fed with exactly the same input data, a program will 

always arrive at exactly the same results. Still, there exist certain families of algorithms which 

require some sort of randomness. The most important cases studied in this book are the different 

kinds of Monte Carlo sequential filters, or particle filters, applied to mobile robot localization 

and SLAM. Other practical applications of randomness in mobile robotics include randomized 

path-planning methods and the generation of noise and errors in simulations. In all these cases, 

our goal is being able to draw samples from some given (discrete or continuous) probability 

distribution. 

The closest to real randomness that we can achieve with a computer program are the so called 

pseudo-random number generators (PRNG). The design of such algorithms is a complicated 

issue which requires both a solid mathematical ground and some doses of art and creativity. 

Unfortunately, it seems that the importance of choosing a “good” PRNG has been often 

overlooked in the past, sometimes leading to disastrous results as was the case of the RANDU 

algorithm, designed for the IBM System/360 and widely used in the 60s-70s (Press, Teukolsky, 

Vetterling & Flannery, 1992). 

Since all PRNG methods output (alleged) “random” numbers, it may seem strange at a first 

glance the claim that some PRNGs are of better quality than others. To understand this, we must 

firstly focus on what all PRNG methods have in common. All PRNGs consist of a sequence of 

mathematical operations which are applied to some internal state every time a new pseudo-

random number is required. As a result, we obtain one random sample and get the PRNG’s 

internal state modified. Since the operations are (typically) the same for each new sample, the 

evolution of the internal state over time is the only reason why each sample differs from the 

previous one —PRNGs are deterministic algorithms! The initial state of a PRNG is set by 

means of the so called seed of the algorithm, consisting of one or more numbers. As one would 

expect, feeding the same seed to the same PRNG algorithm and requesting an arbitrary number 

of random samples will always gives us exactly the same sequence of pseudo-random numbers. 

The quality of a PRNG depends on certain statistical characteristics of the so generated 

sequences. Two of the most important measures of the a PRNG “real randomness” are: (i) its 

period, i.e. how many samples can be generated before the exact sequence commences to repeat 

itself over and over again, and (ii) the statistical correlation between each sample and the 

preceding or following ones. An ideal PRNG would have an infinite period and a correlation of 

exactly zero for any given pairs of samples in the sequences associated to any arbitrary seed. 

Existing implementations successfully achieve these goals up to different degrees. 

From a practical perspective, the reader interested in generating random samples will do so in 

the context of some particular programming language. At present, C and C++ maintain their 

positions among the most widely-used languages (Tiobe, 2012). Even if a user does not directly 

use them, most modern languages inherit the basic syntax of C for sequential programming, and 

the implementations of many popular languages rely on C and its standard library under the 

hood. Unfortunately, the C and C++ language standards do not specify what algorithm should 

be behind the PRNG functions, which in these languages are rand() and random(). Most C 



library vendors implement both based on a Linear Congruential Generator (LCG) which, as will 

be discussed below, is not the best choice. Furthermore, another reason to discourage employing 

those two standard functions is that there exist no guarantees that the same program will behave 

exactly the same under different operating systems or even if it is built with different compilers. 

The implementation of pseudo-random numbers in MATLAB follows a totally different 

approach (Marsaglia, 1968) and can be considered as of the highest quality. 

In the following we will describe algorithms for generating high-quality uniformly-

distributed numbers from which we will see how to generate other common distributions. The 

algorithms described here can be found as part of the C++ MRPT libraries (MRPT, 2011). 

Additionally, some of them have been recently approved by the corresponding ISO 

standardization committee as part of the latest C++ language standard (ISO/IEC 14882:2011), 

under the namespace std::tr1. 

III.1 SAMPLING FROM A UNIFORM DISTRIBUTION 

We start with the most basic type of PRNG: the one producing integer numbers following a 

discrete uniform distribution. For convenience, assume that the support of the probability 

distribution is the range [0, 1]m   . If we start with a seed value of 0i  and denote the 

k th  sample returned by our PRNG as ki , we can express our goal as:  

 ;0, 1 , 1 (discrete pmf)ki U i m k     (III.1) 

Since PRNGs for all other probability distributions (e.g. continuous uniform pdf, Gaussians, 

etc.) can be derived from a discrete uniform PRNG, it comes at no surprise that this type of 

generators had received a huge attention by researchers during the last two decades.  

Without doubt, the most popular such PRNG methods belong to the family of Linear 

Congruential Generators (LCGs), which have been employed inside programming language 

libraries since the 60s. Their popularity follows from their simplicity: as it can be seen in 

Algorithm III.1, they only involve one multiplication, one addition and one modulus calculation 

(i.e. “wrapping” numbers above the given limit). 

algorithm draw_uniform_LCG 

  Inputs: none 

  Outputs: 1ki   (a pseudo-random sample, as an unsigned integer) 

  Internal state: ki  (an unsigned integer) 

 

1: if (this is the first call)  // Do we have to initialize from seed? 

1.1:  ki seed  

 

2:  1 modk ki a i c m    

3: 1k ki i                  // Save state for the next call 

 

Algorithm III.1. The generic LCG algorithm. Note that the index k  only has meaning for the invoker of the 

algorithm and is not used at all internally. 

Different LCG implementations only differ in the choice of its parameters: the multiplier a , 

the constant c  and the modulus m . The quality of the resulting random numbers vitally 

depends on a careful election of them. Some of the best combinations attainable in practice by 



an LCG were reported in (Park & Miller, 1988) to be 0c  , 
312 1m    and a  equaling either 

16807, 48271 or 69621. 

However, LCG algorithms in general (no matter what parameters you use) should be avoided 

if high-quality random numbers are desired, e.g., when performing a Monte Carlo simulation 

with tens of millions of random samples. There exist a variety of reasons that conspire to make 

LCGs undesirable: the important correlation existing between consecutive numbers for many 

choices of the parameters, a negligence in the ANSI C specification which might make standard 

library PRNG implementations (i.e. random() and rand()) to have periods as short as 
152 , etc. 

(Press, Teukolsky, Vetterling & Flannery, 1992).  

Instead, we strongly recommend using other PRNG algorithms. A good candidate is the 

Mersenne twister (Matsumoto & Nishimura, 1998), whose popular implementation known as 

MT19937 is sketched in Algorithm III.2. The method is named after its extremely large period 

of 
199372 1 , or roughly 

60014.315 10 . As can be seen in the pseudocode, the method actually 

generates random numbers in blocks of 624 samples, then outputs them one by one until all its 

elements have been used; then a new block is computed. The resulting natural numbers 

approximately follow the discrete uniform distribution  320,2 1U  . 

algorithm draw_uniform_MT19937_uint32 

  Inputs: none 

  Outputs: 1ki   (a pseudo-random sample in the range 
320,2 1     ) 

  Internal state: 0... 1Nb   (a vector of N  32bit unsigned integers) 

                  j  (index for next output number from b ) 

 

1: if (this is the first call)  // Do we have to initialize from seed? 

1.1:  0j   

1.2:  0b seed  

1.3:    1 1lowest 32bits of 30j j jb j L b b        // An auxiliary LCG 
  

2: if ( j N ) // Need to generate the vector b ? 

2.1:  0j     // Reset index 

2.2:  for each  0, 1i N   

2.2.1:   

 1 mod

bit 31 most significant bit of 

bits 0...30 31 least significant bits of 

i

i

i N

b
y

b 
   

2.2.2:      mod
1i ii M N

b b y    

2.2.3:   only if iy  is odd: i ib b A   

 

3:  k ky b b u    

4:   &y y y s B    

5:   &y y y t C    

6:  1ki y y l       // The output random sample 

7: 1j j             // Increment index for the next call 

 



Algorithm III.2. The 32bit version of the MT19937 algorithm for generating high-quality pseudo-random 

integer numbers. Note that the operation X N  stands for a right shift of X  by N bits, padding with 

zeros, X Y  is the bitwise exclusive or (xor) operation and &X Y  is the bitwise and operator. The 

constants employed in the algorithm are: 624N   (state length), 397M   (a period), 

1812433253L   (an arbitrarily-chosen multiplier for the auxiliary LCG) , 2567483615A   (from the 

matrix involved in the underlying linear recurrent formula), 2636928640B  , 4022730752C  ,  

11u  , 7s  , 18l   and 15t  . For further details, please refer to (Matsumoto & Nishimura, 1998). 

 

Up to this point we have seen how to draw samples from a discrete uniform distribution  ;0, 1ki U i m  . If we needed instead samples from a continuous uniform distribution, such 

as  ; ,k min maxx U x x x , we would easily generate the latter from the former as shown in 

Algorithm III.3. Notice that the so obtained real numbers will be all spaced at intervals 

determined by  , which for a typical situation (32bit PSRG algorithm and a 64bit type for 

floating point numbers) will be several orders of magnitude larger than the machine precision or 

“epsilon” (i.e. the smallest representable number larger than zero). However, this should not be 

seen as an inconvenience since the accuracy will be actually determined by the ratio between 

the size of the pdf domain ( max minx x ) and this smallest step ( ). This ratio is given by 1m  , 

which is high enough (typically 
322 1 ) as to assure an excellent approximation of a continuous 

pdf.  

algorithm draw_uniform_MT19937_real 

  Inputs: ,min maxx x  (the limits of the uniform distribution domain) 

  Outputs: 1ki   (a pseudo-random sample in the range 
320,2 1   ) 

  Internal state: (none) 

 

1:  draw _ uniform _ MT19937 _ uint32 ,k max mini x x  

2: 
1

max minx x

m

    

2: k min kx x i    

 

Algorithm III.3. The wrapper for the MT19937 algorithm in case of generating pseudo-random numbers 
approximating a continuous uniform distribution. Here, m  stand for the amount of different integer values 

provided by Algorithm III.2, that is, 
322m  . 

III.2 SAMPLING FROM A 1-DIMENSIONAL GAUSSIAN 

Although uniformly-distributed numbers may find its utility in mobile robotics, Gaussian 

distributions hold the undisputed first place in the list of continuous distributions regarding their 

number of practical applications. We address here the unidimensional case, leaving the more 

complex multivariate Gaussian distribution for the next section. 

The generic unidimensional Gaussian has an arbitrary mean   and variance 
2 , such that a 

sequence of numbers 1 2, ,...y y  drawn from that pdf can be represented as: 

 2; ,ky N y     (III.2) 



Using the rules for linear transformations of r.v.s described in section 3.8 (“Scaling and 

offsetting a continuous r.v.”), it is easily shown that drawing samples from an arbitrary 

Gaussian distribution can be achieved by sampling a new r.v. kz  from a standard normal 

distribution (with a mean of zero and unit variance) and then applying a linear transformation: 

   2;0,1 , ; ,k k k kz N z y z y N y         (III.3) 

Therefore, we can focus on generating samples from the standard normal distribution  0,1N . There exist several proposed algorithms to convert samples ( x ) from a uniform 

distribution, obtained as shown in the previous section, into samples ( z ) from a standard 

normal pdf. Since most of them rely on the fundamental rule for r.v. transformation already 

introduced in chapter 3, we repeat it here again for convenience.  

Assume we have a (let it be multivariate) r.v. x  which is transformed into a different r.v. z  

by means of a function  z g x . If we denote their density functions as  fx x  and  fz z , 

and the inverse of the transformation as  1x g z  respectively, it can be shown that in some 

usual cases both pdfs are related by (refer section 3.8): 

  1

1( ) ( ( )) detf f 
z x g

z g z J z   (III.4) 

where 1g
J  stands for the Jacobian matrix of the inverse transformation. This expression has an 

insightful geometrical interpretation, as it was represented in Figure 3.8 for the particular case of 

a scalar function. 

One of the most widely-spread methods for generating Gaussian samples for its simplicity is 

the Box-Muller transform in polar coordinates (Devroye, 1986; Press, Teukolsky, Vetterling & 

Flannery, 1992), which we will describe here —for an extensive review of other 15 different 

methods the reader can refer to (Thomas, Leong, Luk & Villaseñor, 2007).  This technique takes 

as input a pair of random samples from a uniform distribution and generates a pair of 

independent (uncorrelated) samples that follow a standard normal pdf. It is therefore convenient 

to approach the method as a transformation of multivariate r.v.s of dimension two. Let v  denote 

a vector comprising:  

  ' 0,1'
, such as 

0, 2

U

U


 
       v




  (III.5) 

We will interpret '   (that is, 
2'  ) and   as the polar coordinates (distance and 

angle, respectively) of a point in the plane, whose position therefore is constrained to the unit 

circle centered at the origin. The Box-Muller transformation proposes the following change og 

variables: 

 
1

2

2log ' cos

2log ' sin

y

y

 
 


           

y g v

  (III.6) 

which can be demonstrated to leave two Gaussian samples in the vector y . To demonstrate this, 

we can apply eq. (III.4). By dividing and squaring and summing the two equations of  g v  

above, we can easily arrive at the inverse transformation function: 



 
 2 2

1 2

1

1

2

1 2

1

'

1
tan

2

y y

e

y

y


 



 




               

v g y

  (III.7) 

whose Jacobian, and the absolute value of its determinant, read: 
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1 1
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2 2

1 1
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2 2
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d d
y e y edy dy

y yd d
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y y
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g

g

J

J

  (III.8) 

and by replacing this result into eq. (III.4) we arrive at the pdf of the transformed variable y : 

    2 2
1 2

1

1

1

1 2

Uniform distribution

where  is defined

1
( ) ( ( )) det , unit circle

2

y y

f f e



    y x g

g

y g y J z y  
(III.9) 

Realize how there exists no term where the two components of y  appear multiplying to each 

other, thus we can easily deduce that both are uncorrelated and that they follow an exact 

standard normal distribution, which was our goal: 

 
  

2 2 2 2
1 2 1 2

1 1 1

2 2 2

1

2

1 1 1
( )

2 2 2

0,1

0,1

y y y y

f e e e

y N

y N

  
           

 

y
y




  (III.10) 

To illustrate this method, we have depicted in Figure III.1 a number of random samples for 

the original r.v.s and the histograms of the transformed ones, which clearly match the expected 

theoretical pdf.  

 

 

 

 

 

 

 

 

 



(b) 

 

(a) (c) 

Figure III.1: (a) Two-dimensional random samples uniformly distributed on the unit circle. (b)—(c) If we 

transform those samples by means of the Box-Muller transformation  y g v  and plot the histograms for 

each of the two output components independently, we can verify how they follow a standard normal 

distribution. The theoretical pdf of  0,1N  has been overlaid for comparison. The mismatch between 

experimental histograms and the theoretical pdf is only due to the reduced number of samples (5000) 
employed here for illustrative purposes. 

Finally, we must address one optimization that is employed in virtually all implementations. 

In order to avoid evaluating the trigonometric functions of eq. (III.6) another change of 

variables is introduced: instead of starting from uniform samples of '  and  , we generate 

instead pairs of variables 1x  and 2x  such that, interpreted as two dimensional coordinates (in 

the x  and y  axes), are samples uniformly drawn from the unit circle —as shown in Figure 

III.1(a). One easy way to achieve this is by rejection sampling: first we generate samples for  1x  

and 2x  in the square region    1,1 1,1    using any of the uniform PRNGs introduced above, 

and then the samples are accepted only if they fall within the unit circle; otherwise, they are 

thrown away and the process is repeated. Notice that about 21.46% of the samples will be 

discarded in this procedure, as follows from the areas of the square and the circle, i.e.,  2 2 22 1 / 2 0.2146  . Once we have a valid sample within the unit circle, we apply the 

transformation 
2 2

1 2' x x    and  1

2 1tan /x x  , from which follows: 

1 1

2 2

1 2

2 2

2 2

1 2

cos
'

sin
'

x x

x x

x x

x x

 
 

 
 

  (III.11) 



It can be shown that by doing so, both '  and   follow uniform distributions as required 

initially by the algorithm. The complete procedure has been summarized in Algorithm III.4. 

algorithm draw_standard_Gaussian 

  Inputs: none 

  Outputs: y  (a pseudo-random sample from  0,1N , a real number) 

  Internal state: 'y  (cached sample, a real number) 

                  b   (flag for cached sample, boolean) 

 

1: if (this is the first call) 

1.1:  b false  

 

2: if  b true  

2.2:  'y y     // Output the cached sample 

2.3:  b false  

   else 

2.4:  repeat     // Rejection sampling loop 

2.4.1:   1 draw _ uniform _ MT19937 _ real 1,1x    // Draw two uniform samples 

2.4.2:   2 draw _ uniform _ MT19937 _ real 1,1x    // in the interval [-1,1] 

2.4.3:  
2 2

1 2' x x    

      until  ' 0 ' 1AND    

2.5: 
 

1

2log '

'
y x




     // Output one sample 

2.6: 
 

2

2log '
'

'
y x




    // and save another one for the next call 

2.7: b true  

 

Algorithm III.4. An implementation of a PRNG for the standard normal distribution using the Box-Muller 
transformation. Based on (Devroye, 1986; Press, Teukolsky, Vetterling & Flannery, 1992). 

III.3 SAMPLING FROM AN N-DIMENSIONAL GAUSSIAN 

After all the definitions in previous sections, we are finally ready to address the distribution 

with the most practical applications in probabilistic robotics. Our aim here will be drawing 

samples from an n  dimensional multivariate Gaussian distribution such as: 

 ; ,k Ny y μ Σ   (III.12) 

As an example of the applicability of this operation, in chapter 5 we analyzed several motion 

models whose uncertainty can be approximated as a multivariate Gaussian. When employing 

those models within a particle filter (either for localization or for SLAM), one needs to draw 

samples from those distributions just like in the equation above. 

Our first step will be to realize that, thanks to the properties of uncertainty propagation of 

Gaussians through linear transformations, we can simplify the problem by drawing samples 



from a different variable z  which has identical covariance matrix than y  but a mean of zero. 

That is: 

   ; , , ; ,k k k kN N  z z 0 Σ y μ z y y μ Σ    (III.13) 

Our approach to generate samples for z  will be quite simple: finding a linear change of 

variables from another auxiliary r.v., that we will denote as x , from which we already know 

how to draw samples. Since in the previous section we learned how to draw samples from a 

standard normal distribution  0,1N , the ideal situation would be that all the n  components of 

x  had a mean of zero and a unit variance and that they were all uncorrelated to each other. Put 

mathematically, we want x  to follow this distribution: 

 ; ,k nNx x 0 I   (III.14) 

where nI  is the identity matrix of size n n . By hypothesis, the relationship between x  and 

z is linear, thus we denote as M  the corresponding matrix: 

z Mx   (III.15) 

It is important to realize that all we need at this point is the value of M , since we already 

know how to draw samples for each individual component of x , which we could then stack into 

a vector, premultiply by M  and finally add the mean vector μ  to obtain a sample of y , our 

original r.v. 

There exist two different M  matrices which can serve us for our purposes. They are related 

to the eigendecomposition and the Cholesky decomposition of the covariance matrix Σ , 

respectively. While the latter is more numerically stable and is recommended in general, we will 

firstly explain the eigendecomposition approach since its geometrical meaning gives it a great 

didactic value. 

As we saw in chapter 3, a linear transformation of r.v.s as that in eq. (III.15) leads to a well 

known expression for the covariance of the target variable (which we want to equal Σ ) in terms 

of that of the source variable ( nI ), which is: 

T

nΣ M I M  

(since the identity matrix is superfluous) 

T M M  

(III.16) 

One particular way to factor a square symmetric matrix such as Σ  is by its 

eigendecomposition, which is defined as: 

TΣ VDV  (III.17) 

with V  being a square matrix where each column contains an eigenvector of  Σ  and D  is a 

diagonal matrix whose entries correspond to the covariance eigenvalues (in the same order than 

the columns in V ). If Σ  is positive definite, which is always desirable, the eigenvalues are all 

positive, whereas for positive-semidefinite matrices some eigenvalues are exactly zero. All the 

eigenvectors are orthogonal and of unit length, thus V  is called an orthonormal matrix. It is 

also said that D  is the canonical form of Σ  because the latter is just a “rotated version” of the 

former, as we will see immediately.  

Geometrically speaking, it is convenient to visualize covariance matrices by means of their 

corresponding confidence ellipses (for bidimensional variables) or ellipsoids (for higher 

dimensions) —refer to the examples at the right hand of Figure III.2. The eigendecomposition 

of a covariance matrix has a direct relation with this geometrical viewpoint: each eigenvector 

provides the direction for an axis of the ellipse, while eigenvalues state their lengths. For 



instance, if all the eigenvalues were equal, the ellipsoid would become a sphere, disregarding 

the particular value of the eigenvectors. When some of the eigenvalues are much larger than the 

others, it means that uncertainty is more prominent in some particular directions —those of the 

corresponding eigenvectors. In some degenerate cases we may find positive-semidefinite 

covariance matrices, where null eigenvalues imply the loss of one spatial degree of freedom for 

the r.v., i.e., some axes of the ellipsoid have a null length. A full understanding of all these 

geometrical concepts is of paramount importance when facing the interpretation of results of 

statistical problems as those discussed in this book. 

If we now wish to determine the value of M  according to eqs. (III.16)–(III.17) we can 

proceed as follows: 

 
1 1
2 2

1 1
2 2

T

T

T

T






Σ MM

VDV

VD D V

VD VD

 (III.18) 

where we have used these facts: (i) the square root of a diagonal matrix gives us another 

diagonal matrix with the square root of each of the original entries, and (ii) the transpose of a 

diagonal matrix is identical to itself. Therefore: 

1
2M VD   

(First version: based on eigendecomposition) 
(III.19) 

The linear transformation z Mx  then adopts an extremely intuitive form: we firstly draw 

independent standard normal samples “for each axis of the ellipsoid” that represent the target 

Gaussian uncertainty and then rotate those samples according to a change of coordinates where 

the new axes coincide with the eigenvectors (which, recall, are the ellipsoid axes). The scale 

introduced by the square root of the eigenvalues enlarges or reduces the uncertainty in each 

direction according to the real uncertainty encoded by the covariance matrix. 

Despite its didactic value, in practice it is advisable to employ instead the Cholesky 

decomposition of the covariance, for its simplicity and more efficient implementations. In this 

case, we have: 

T

T




Σ MM

LL
 (III.20) 

where the Cholesky factorization is, by definition, 
TΣ LL , thus obviously: 

M L   

(Second version: based on Cholesky decomposition) 
(III.21) 

To sum up, all the steps for drawing samples from a multivariate Gaussian distribution have 

been enumerated in Algorithm III.5. Notice that the usage of the Cholesky factorization assumes 

a positive-definite covariance. In situations where the appearance of semidefinite-positive 

matrices cannot be ruled out, either the 
T

LDL  decomposition (where we would find out that 
1
2M LD ) or the eigendecomposition described above should be employed instead. 

algorithm draw_multivariate_Gaussian 

  Inputs:  μ  (the mean vector)  
           Σ  (covariance matrix) 



  Outputs: y  (a pseudo-random sample from  ,N μ Σ ) 

  Internal state: (none) 

 

1:  choleskyL Σ   // Such as 
TΣ LL  

2: for 1...i n        // n being the dimensionality of μ  and Σ  

2.1:   draw _ standard _ Gaussianix   

3: z Lx  

4:  y μ z          // Output sample 

 

Algorithm III.5. A Cholesky decomposition-based implementation of a PRNG for multivariate Gaussian 
distributions. Only applicable to positive-definite covariance matrices. 
 
 
 

 

(a) 

(b) 

Figure III.2: An example of the process for generating pseudo-random samples for (a) 2D and (b) 3D 
multivariate Gaussian distributions. The ellipse (2D) and ellipsoid (3D) represent the 95% confidence 



intervals of each Gaussian. The two (scaled) eigenvectors of the 2D covariance matrix have been represented 
in the right-hand graph of (a) as thick lines. Observe how they coincide, by definition, with the axes of the 
ellipse. 

REFERENCES 

Devroye, L. (1986). Non-uniform random variate generation. New York: Springer-Verlag. 

Marsaglia, G. (1968). Random numbers fall mainly in the planes. Proceedings of the National 

Academy of Sciences, 61, 25—28. 

Matsumoto, M., & Nishimura, T. (1998). Mersenne twister: a 623-dimensionally equidistributed 

uniform pseudo-random number generator. ACM Transactions on Modeling and Computer 

Simulation (TOMACS), 8(1), 3—30. 

MRPT (2011). The Mobile Robot Programming Toolkit website. Retrieved Mar 1, 2012, from 

http://www.mrpt.org/ 

Park, S. K., & Miller, K. W. (1988). Random number generators: good ones are hard to find. 

Communications of the ACM, 31, 1192—1201. 

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical Recipes 

in C: the art of scientific programming (second edition). Cambridge University Press. 

Thomas, D. B., Leong, P. H. W., Luk, W., & Villaseñor, J. D. (2007). Gaussian Random 

Number Generators. ACM Computing Surveys, 39(4). 

Tiobe Software (2012). Tiobe programming community index. Retrieved April 11, 2012, from 

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html 

 



Appendix IV 
Manifold Maps for SO(n) and SE(n) 

As we saw in chapter 10, recent SLAM implementations that operate with three-dimensional 

poses often make use of on-manifold linearization of pose increments to avoid the shortcomings 

of directly optimizing in pose parameterization spaces. This appendix is devoted to providing 

the reader a detailed account of the mathematical tools required to understand all the 

expressions involved in on-manifold optimization problems. The presented contents will 

hopefully also serve as a solid base for bootstrapping the reader’s own solutions. 

IV.1 OPERATOR DEFINITIONS 

In the following we will make use of some vector and matrix operators which are rather 

uncommon in mobile robotics literature. Since they have not been employed throughout this 

book until this point, it is in order to define them here. 

 The “vector to skew-symmetric matrix” operator: A skew-symmetric matrix is any square 

matrix A  such that 
T A A . This implies that diagonal elements must be all zeros and 

off-diagonal entries the negative of their symmetric counterparts. It can be easily seen that 

any 2 2  or 3 3  skew-symmetric matrix only has 1 or 3 degrees of freedom (i.e. only 1 

or 3 independent numbers appear in such matrices), respectively, thus it makes sense to 

parameterize them as a vector. Generating skew-symmetric matrices from such vectors is 

performed by means of the    operator, defined as: 

   
 

0
2 2:    

0

0

3 3:    0

0

x
x

x

x z y

y z x

z y x

 




         
                         

v

v

  (IV.1) 

The origin of the symbol   in this operator follows from its application to converting a cross 

product of two 3D vectors ( x y ) into a matrix-vector multiplication ( x y ). 

 The “skew-symmetric matrix to vector” operator: The inverse of the    operator will be 

denoted in the following as   , that is: 



 0
2 2:    

0

0

3 3:    0

0

x
x

x

z y x

z x y

y x z





    
                 

  (IV.2) 

 The  vec   operator: it stacks all the columns of an M N  matrix to form a 1MN   

vector. For example: 

1

4

1 2 3 2

4 5 6 5

3

6

vec

                   

  (IV.3) 

 The Kronecker operator (also called matrix direct product): Denoted as A B  for any two 

matrices A  and B  of dimensions A AM N  and B BM N , respectively, it gives us a 

tensor product of the matrices as an A B A BM M N N  matrix. That is, 

11 12 13

21 22 23

...

...

...

a a a

a a a

       

B B B

A B B B B   (IV.4) 

IV.2 LIE GROUPS AND LIE ALGEBRAS 

Section 10.2 provided a brief mathematical definition for the concepts of manifold, Lie group 

and Lie algebra. For our purposes in this appendix, it will be enough to keep in mind these 

points: 

1. All  nSO  and  nSE  groups —refer to appendix I for their definitions— are Lie 

groups, with the main implication of this for us being that: 

2. they are also smooth manifolds embedded in 
2m —where m  does not have to 

coincide with n . 

3. Their tangent spaces at the identity matrix I (the “origin or coordinates” for both 

groups) are denoted as ( )T n
I
SO  and ( )T n

I
SE , respectively. The Lie algebras 

associated to those spaces provide us the space vector bases ( )nso  and ( )nse , 

respectively. 

We have summarized the main properties of the groups in which we are interested in the 

following table: 

 

 



 

 

 

 

 

 

Closed 

subgroup 

of: 

Manifold 

dimensionality 

(number of DOFs): 

Is a manifold 

embedded in: 
Diffeomorphic to: 

 2SO   2,GL   1 
22 4   – 

 3SO   3,GL   3 
23 9   – 

 2SE   3,GL   3 
23 9   

  22 SO  

( 2 2 2 6    

coordinates) 

 3SE   4,GL   6 
24 16   

  33 SO  

( 3 3 3 12    

coordinates) 

where  ,nGL   stands for the general linear group of n n  real matrices. Informally, two 

spaces are diffeomorphic if there exists a one-to-one smooth correspondence between all its 

elements. In this case, the mathematical equivalence between groups allows us to treat robot 

poses (in  nSE ) as a vector of coordinates with two separate parts: (i) the elements of the 

rotation matrix (from  nSE ) and (ii) the translational part (a simple vector in 
n ). We will 

see how to exploit such a representation in section IV.5. 

Regarding the Lie algebras of these manifolds, they are nothing more that a vector base: a set 

of linearly independent elements (as many as the number of DOFs) such that any element in the 

manifold can be decomposed in a linear combination of them. Since the manifold elements are 

matrices, every component of a Lie algebra is also a matrix, i.e., instead of a vector base we 

have a matrix base. 

The particular elements of the Lie algebra for  2SE , denoted as (2)se , are the following 

three matrices: 

(2)

1,2,3

(2

1 2

) (2)

3

(2)

(2) { }

0 0 1 0 0 0 0 1 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0

i
                           

i
G

G G G

se

se se se

se

 (IV.5) 

while for  3SE  the Lie algebra (3)se  comprises these six matrices: 



(3)

1 6

(3) (3) (3)

(3

1 2 3

4

)

(3) { }

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0

0

00 0 0 0

0

0

i




                                     

                

i
G

G G G

G


se

se se se

se

se

5

6

(3)

(3)

0 0 0 1 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 00 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0

0
0

0

0

0
0

0 0 00

0

0

0

0 0

1
0





     
                           
                           

G

G

se

se
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All these basis matrices of Lie algebras have a clear geometrical interpretation: they represent 

the directions of “infinitesimal transformations” along each of the different DOFs. Those 

“infinitesimal transformations” are actually the derivatives (the tangent directions), at the 

identity element I  of the corresponding  nSE  manifold, with respect to each DOF. For 

example, consider the derivative of a  2SE  pose (a 3 3  matrix) with respect to the rotation 

parameter  : 

cos sin sin cos 0

sin cos cos sin 0

0 0 1 0 0 0

x

y

   
   

                    
  (IV.7) 

By evaluating this matrix at the identity I , i.e. at    0 0 0x y   , we have: 

0 1 0

1 0 0

0 0 0

     
  (IV.8) 

which exactly matches 
(

3

2)
G
se

 in eq. (IV.5). All the other Lie algebra basis matrices are obtained 

by the same procedure. 



Regarding the Lie algebra bases of the pure rotation groups, it can be shown that  2SO  

only has one basis matrix 
(

1

2)
G
so

 which coincides with the top-left submatrix of 
(

3

2)
G
se

 in eq. 

(IV.5), while the three bases 1,2,3

(3)G so

 of  3SO  are the top-left submatrices of 
(

4

3)
G
se

, 
(

5

3)
G
se

 

and 
(

6

3)
G
se

 in eq. (IV.6), respectively. 

IV.3 EXPONENTIAL AND LOGARITHM MAPS  

Each Lie group M  has two associated mapping operators which convert matrices between M  

and its Lie algebra m . They are called the exponential and logarithm maps. 

For any manifold, the exponential map is simply the matrix exponential function, such as: 

: M
e

  ωexp
P

ω P

m
m

  (IV.9) 

Interestingly, the exponential function for matrices is defined as the sum of the infinite series: 

1 !

i

i

e
i




 A A

I   (IV.10) 

which coincides with the Taylor series expansion of the scalar exponential function and is 

always well-defined (i.e. the series converges) for any square matrix A . Moreover, it turns out 

that the exponential of any skew-symmetric matrix is a well-defined rotation matrix (Gallier, 

2001). This is in complete agreement with our purpose of converting elements from the Lie 

algebras  nso  into rotation matrices, since any linear combination of the basis skew-

symmetric matrices will still be skew-symmetric and, in consequence, will generate a rotation 

matrix when mapped through the exponential function. The conversion from  nse  requires a 

little further analysis regarding the matrix structure, as we show shortly. 

The universal definition of the exponential map is that one provided in eqs. (IV.9)-(IV.10), 

but in practice the matrix exponential leads to particular closed-form expressions for each of the 

manifolds of our interest. Next we provide a complete summary of the explicit equations for all 

the interesting exponential maps. Some expressions can be found in the literature (Gallier, 

2001), while the rest have been derived by the authors for completeness. For a manifold M  

with k  DOFs we will denote as  1, , kv vv   the vector of all the coordinates of a matrix Ω  

belonging to its Lie algebra m . This means that such matrix is composed as 
1

i

k

i

i

v


Ω G
m

, 

with the iG
m

 matrices given in the last section.  

Notice that the vector of parameters v  stands as the minimum-DOF representation of a value 

in the linearized manifold; hence it is the form in use in all robotics optimization problems 

where exponential maps are employed. That is also the why we will provide the expression of 

the manifold maps as functions of their vectors of parameters ( v ), not only their associated 

matrices (
1

k

i

i

iv
 G

m

). 

In  2SO , the unique Lie algebra coordinate   represents the rotation in radians and the 

exponential map has this form: 
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2 2 2 2
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In  3SO  we have three Lie algebra coordinates  1 2 3

T  v  which determine the 3D 

rotation by means of its modulus (related to the rotation angle) and its direction (the rotation 

axis). In this case, the exponential map employs the well-known Rodrigues’ formula: 

     
 3

3 3 3 3

: 33
e

 

 
Ω

exp SO
R

Ω v R

so
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In  2SE , the Lie algebra has three coordinates:   which represents the rotation in radians, 

and  ' ' '
T

x yt  which is related to the spatial translation. Note that  ' '
T

x y  is not the 

spatial translation of the corresponding pose in  2SE , which turns out to be  2
't V t

se
. The 

exponential map here becomes: 

     
  

2

3 3 3 3

: 2
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         22

2

0 ' '
'

0 ' Parameters: '

0 0 0

cos sin
''

sin cos
0 0 1

0 0 1

x x

y y

e
e




  

 
 

                      
                

Ψ

t
Ψ v

V tV t
P exp v

sese

se

 

with: 

(IV.13) 



 2

2 , if 0

sin cos 1

, otherwise
1 cos sin


 

  
 

         

I

V
se

 

Finally, the Lie algebra of  3SE  has six coordinates:  1 2 3

T  ω  which parameterize 

the 3D rotation exactly like described above for  3SO , and  ' ' ' '
T

x y zt  which is related 

to the spatial translation. Again, we must stress that this translation vector is not directly equal 

to the translation t  of the pose. The corresponding exponential map is: 

     
  

3

4 4 4 4

: 3
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ω ω ωV

I ω ω
ω ω
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(IV.14) 

Once we defined the exponential maps for all the manifolds of our interest, we turn now to 

the corresponding logarithm maps. The goal of this function is to provide a mapping between 

matrices in the manifold M  and in its Lie algebra m , that is: 

 : M  
log

ω log P
P ω

m
m

  (IV.15) 

This is clearly the inverse function of the exponential map defined in eq. (IV.9), thus it comes 

at no surprise that this operation also corresponds to a standard function called matrix 

logarithm, the inverse of eq. (IV.10). 

Iterative algorithms exist for numerically determining matrix logarithms of arbitrary matrices 

(Davies & Higham, 2010). Fortunately, efficient closed-form solutions are also available for the 

matrices of our interest. Notice that the logarithm of a matrix (in the manifold) is another matrix 



of the same size (in the Lie algebra), but in subsequent equations we will put the stress on 

recovering the coordinates (the vector v ) of the latter matrix in the Lie algebra bases. 

For  2SO , the coordinate v  only comprises one coordinate (the rotation  ). The 

corresponding logarithm map reads: 
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In the logarithm of a  3SO  matrix our aim is to find out the three parameters 

 1 2 3

T  v  that determine the 3D rotation. In this case: 
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3 3 3

3 3:



 




v
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Ω log RR Ω
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     log      Ω v v Ω v R  

with: 
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T
 log R R R  

(where the rotation angle   is computed as:) 
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(IV.17) 

As happened with the exponential map, the logarithm map of  2SE  forces us to tell 

between the translation parameters  ' ' '
T

x yt  in the Lie algebra, and the actual translation 

 T
x yt . In this case, the logarithm map can be shown to be:  

     
   3 3

2

3 3

: 2

'

0 0 1 0 1
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with parameters: 

(IV.18) 
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 are given in eq. (IV.16) and eq. (IV.13), respectively, 
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And finally, the logarithm for  3SE  takes this form: 
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(where    3
log

so
 and  3

V
se

 are given in eq. (IV.17) and eq. (IV.14), respectively) 

(IV.19) 

IV.4 PSEUDO-EXPONENTIAL AND PSEUDO-

LOGARITHM MAPS  

If the reader has carefully studied recent literature about on-manifold optimization, he or she 

may have noticed that the equations employed there for the different manifold maps are almost 

exactly those introduced in the previous section. In particular, the unique difference between the 

commonly-used formulas and those above are related to the treatment of the translation vectors 



in  nSE  groups, where the distinction between the vectors of translations in the pose ( t ) and 

in the Lie-algebra ( 't ) is ignored. 

We must highlight that the mathematically correct exponential and logarithm maps for  nSE  groups are, indeed, those reported in the previous section. As can be seen in eq. 

(IV.13)–(IV.14) and eq. (IV.18)–(IV.19), in these maps the two translation vectors are not 

equivalent since they are related to each other by   '
n

t V t
se

. However, it can be shown that we 

can safely replace the manifold maps with alternative versions where the translations in the 

manifold are identified with those of the real pose (i.e., ' t t ) and still perform optimizations 

as described in section 10.2 without varying the final results, i.e. the same minimum of the cost 

function will be reached. For the sake of rigorousness, we will name those alternative maps the 

pseudo-exponential (pexp
m

) and the pseudo-logarithm (plog
m

). Their practical usefulness is 

the obvious simplification of dropping the  n
V
se

 terms in all the transformations and, 

consequently, in all the Jacobian matrices involved in the optimization problem. 

Regarding the pseudo-exponential functions, for  2SE  we have: 
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while for  3SE : 
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with    3
exp

so
 defined in eq. (IV.12). 

The pseudo-logarithm for  2SE  becomes: 
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and for the  3SE  group we have: 

     
  

  3

4 4 4 4

: 3 Note:

Parameters:
0 0 0 1 0 0 1

3

0

 


 


                  

plog SE Ψ log P

P Ψ v

tR t ω t
v

ω

se
se

 

with 

   3 
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with the definition of    3
log

so
 already provided in eq. (IV.17). 

IV.5 ABOUT DERIVATIVES OF POSE MATRICES 

One of the goals of this appendix is providing the expressions for a set of useful Jacobians, 

which are reported in the next section. The most useful Jacobians in robotics applications (e.g. 

graph SLAM, bundle adjustment) can be split by means of the chain rule in a series of smaller 

Jacobians, of which many of them will be often related to geometry transformations. In 

particular, some of them may involve taking derivatives with respect to matrices. This topic has 

not been addressed anywhere else in this book, thus we devote the present section to introduce 

the related notation.  

Let us focus now exclusively on  3SE  poses. We know that any pose  3P SE  has the 

structure: 

3 3

0 0 0 1

x

y

z


        

R
P  (IV.24) 

and that it belongs to a manifold which is embedded in 
24  and is diffeomorphic to   33 SO  (see section IV.I). Thus, the manifold has a dimensionality of 12: nine coordinates 

for the 3 3 rotation matrix plus other three for the translation vector.  

Since we will be interested here in expressions involving derivatives of functions of poses, 

we need to define a clear notation for what a derivative of a matrix actually means. As an 



example, consider an arbitrary function, e.g. the map of pairs of poses 1P  and 2P  to their 

composition 1 2P P , that is, : (3) (3) (3)  f SE SE SE . Then, what does the expression 

1 2

1

( , )


f P P

P
 (IV.25) 

means? If iP  were vectors the expression above would be interpreted as a Jacobian matrix 

without further complications. But since they are poses, in the first place we must make explicit 

in which parameterization we are describing them. One possibility is to interpret that poses are 

given as the vectors of their parameters, in which case eq. (IV.25) would be a Jacobian. Indeed, 

that was the assumption followed in appendix I and we were able to provide the corresponding 

Jacobian of all the relevant geometric operations treated there. 

However, one must observe that, interpreted in this way, the geometry functions: (i) are 

typically non-linear, which entails inaccuracies when using their Jacobians for optimization, and 

(ii) may become somewhat complicated —see for example, eq. (I.30). Therefore, it makes sense 

to employ an alternative: to parameterize poses directly with coordinates in their diffeomorphic 

spaces. Put simple, this means that a  3SE  pose will be represented with 12 scalars, i.e. the 

three first rows in its corresponding 4 4  matrix. Although this implies a clear over-

parameterization of an entity with 6 DOFs, it turns out that many important operations become 

linear under this representation, enabling us to obtain exact derivatives in an efficient way. 

Observe how we are over-parameterizing poses only while evaluating Jacobians with respect to 

them, which does not have the adverse effects of employing over-parameterized pose 

representations within state spaces —as discussed in chapter 10.2.  

Recovering the example in eq. (IV.25), we can now say that the derivative will be a 12 12  

matrix. It is illustrative to further work on this example: using the standard notation for denoting 

matrix elements, that is,  

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

m m m m

m m m m

m m m m

m m m m

       
M  (IV.26) 

and denoting the resulting matrix from 1 2( , )f P P  as F , we can unroll the derivative in eq. 

(IV.25) as follows: 

11 11 11

11 21 34

11 21 31 12 22 33 14 24 34

11 21 31 12 22 33 14 24 34

34 34 34

11 21 34 12 12

( , )

( )

( )

...

[ ... ]
... ... ... ...

[ ... ]

...

vec

vec

f f f

p p p
f f f f f f f f f

p p p p p p p p p
f f f

p p p





  
 

                   

F PQf p q F

P P

F

P

 

(IV.27) 



where we have employed the  vec   operator (see section IV.I) to reshape the top 3 4  portion 

of its arguments as 12 1  vectors. 

While reading the following section the reader should keep in mind that each derivative taken 

with respect to a pose matrix should be interpreted as we have just described, i.e., they become 

12n  Jacobian matrices. 

IV.6 SOME USEFUL JACOBIANS 

We provide in the following a set of closed-form expressions which may be useful while 

designing optimization algorithms that involve 3D poses. Some of the Jacobians below already 

were employed while discussing graph SLAM and Bundle Adjustment methods in chapter 10.  

Notice that Jacobians for purely geometric operations are also provided here since they are 

intermediary results required while applying the chain rule within more complex (and more 

useful) functions. Those geometry functions differ from those already studied in appendix I in 

the adoption of a direct matrix parameterization of poses, for reasons explained in section IV.5. 

Jacobian of the SE(3) Pseudo-Exponential Map eε  

This is the most basic Jacobian that will be found in all on-manifold optimization problems, 

since the term eε  will always appear —see section 10.2. Notice that we focus on the pseudo-

exponential version instead of the actual exponential map for its simplicity. Therefore, we must 

assume the following replacement (which is not explicitly stated in graph SLAM literature): 

 e ε pexp ε  (IV.28) 

Furthermore, we will take derivatives at the Lie algebra coordinates ε 0  since our 

derivation is aimed at being used within the context of eq. (10.5). Proceeding so, and given the 

definition of the pseudo-exponential in eq. (IV.21), we obtain: 

  3 3

3 3

3 3

3 3 3

[ ]

[ ]
(A12 6 Jacobian)

[ ]

d

d

 
 
 



       

1

0ε

2

3

0 e

0 e

0 e

I 0

pexp ε
ε

 (IV.29) 

with 1 [1 0 0]Te , 2 [0 1 0]Te  and 3 [0 0 1]Te . Notice that the resulting Jacobian is for the 

ordering convention of  (3)se  coordinates in eq. (IV.21), which are denoted there as v  instead 

of ε . 

Jacobian of a b  

Let : (3) (3) (3)  f SE SE SE  denote the pose composition operation, such that 

( , )  f a b a b . Then we can take derivatives of ( , )f a b  with respect to the two poses 

involved. If the 4 4  transformation matrix associated to a pose x  is denoted as: 

0 0 0 1

    
X X

R t
X  (IV.30) 



then the matrix of the resulting pose becomes the product A B  which, if we expand element by 

element and rearrange the resulting terms, leads us to: 

( , )
(A 12 12 Jacobian)T      3

f a b AB
B I

a A
 (IV.31) 

( , )
(A 12 12 Jacobian)      4 A

f a b AB
I R

b B
 (IV.32) 

Jacobian of a p  

Let 
3 3: (3)  g SE    denote the pose-point composition operation such that 

 ,  g a p a p . Then we can take derivatives of   ,g a p  with respect to either the pose 

matrix A  or the point p . Using the same notation that in eq. (IV.30), we obtain in this case: 

 ( , )
A3 3 Jacob ( ian)        A A

A

R p tg a p Ap
R

p p p
 (IV.33) 

 ( , )
 1 A3 12Jaco an( bi )T      3

g a p Ap
p I

A A
 (IV.34) 

Jacobian of e ε d  

Let d  be a (3)SE pose with an associated 4 4  matrix: 

0 0 0 1

    
c1 c2 c3 t

d d d d
D  (IV.35) 

Following the convention of left-composition for the incremental pose  pexp ε  described 

in section 10.2 (see eq. (10.6)), we are interested in the derivative of  pexp ε D  with 

respect to the increment ε  in the manifold linearization. Applying the chain rule: 

   

 
 0 0

d

d

 

  

  





4A I

ε ε

pexp 0 0ε

pexp ε pexp ε D

ε ε

pexp ε

d

ε
AD

A

 

(using eq. (IV.31)) 

                             
 

3( )
d

d 
   

ε 0

pexp ε
D

ε
T I


 

(replacing eq. (IV.29) and rearranging) 

(IV.36) 



                                                        

3 3

3 3

3 3

3

[ ]

[ ]
(A 12 6 Jacobian)

[ ]
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c1

c2

c3

t

0 d

0 d

0 d

I d

 

Jacobian of e ε
d  

Let d  be a (3)SE pose with an associated 4 4  matrix: 

0 0 0 1 0 0 0 1

          
c1 c2 c3 D D D

d d d t R t
D  (IV.37) 

The derivative of e ε
d  with respect to the increment ε  can be obtained as follows: 

   

 
 0 0

,

d

d
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ε ε

peA D B I 0xp 0 ε

d

A

pexp ε Dpexp ε
ε ε

pexp ε
ε

B
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(using eq. (IV.32) and eq. (IV.29)) 
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(doing the math and rearranging) 
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(a 12 6 Jacobian)
 

 


 




       

c3 c2
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D
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(IV.38) 

Jacobian of e  ε
d p  

Let p  be a point in 
3  and d  a (3)SE pose with an associated matrix: 

11 12 13

21 22 23

31 32 33 0 0 0 1 0 0 0 1

0 0 0 1

tx

ty

tz

d d d d

d d d d

d d d d

                   
c1 c2 c3 t D t

d d d d R d
D  (IV.39) 

 



The derivative of   pexp ε d p  with respect to the increment ε  is an operation needed, 

for example, in Bundle Adjustment (see chapter 10) while optimizing the camera poses —when 

using the common convention of d  representing the inverse of a camera pose, such as d p  

represents the relative location of a landmark p  with respect to that camera. We can do: 

 
 

 
0 0  

    
  pexp 0ε A εD D

d p A p

A

pexp ε exp ε D

ε ε
 

(using eq. (IV.34) and eq. (IV.29)) 

   3 3

3 3

3 3

3

[ ]

[ ]
 1 
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[ ]
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c2

3

c3

t

0 d

0 d
p I

0 d

I d

 

(developing and rearranging) 

                          3 (a 3 6 Jacobian)   I D p  

(IV.40) 

Jacobian of e  ε
a d p  

This expression appears in problems such as relative Bundle Adjustment (Sibley, Mei, Reid 

& Newman, 2010). Let 
3p   be a 3D point (a landmark in relative coordinates) and 

, (3)SEa d  be two poses, so that 
A

R  is the 3 3  rotation matrix associated to a . We will 

denote the rows and columns of the matrix associated to d  as: 

0 0 0 1

0 0 0 1

tx

T

tz

T

ty

T

d

d

d

              

r1

c1 c2 c3 t r2

r3

d

d d d d d
D

d
 (IV.41) 

Then, the Jacobian of the chained poses-point composition with respect to the increment in 

the linearized manifold can be shown to be: 

   
0 0 

 
  


  

ε ε

a pexp ε d p A pexp ε D p

ε ε
 

(using eq. (IV.31), eq. (IV.34) and eq. (IV.29), and rearranging) 

3

0 · ( · )

( · ) 0 · (A 3 6 Jacobian)

· ( · ) 0

tz ty
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ty tx

d d

d d

d d

           



r3 r2

A r3 r1

r2 r1

p d p d

R p d p d

p d

I

p d

 

(IV.42) 

where a b stands for the scalar product of two vectors.  

Analyzing the expression above we can observe that an approximation can be used when both 

a  and d represent small pose increments. In that case: 



    3

0

(A3 6Jacobian)


       t

ε

a pexp ε d
d

p
I p

ε
 (IV.43) 
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Appendix V 
Basic Calculus and Algebra Concepts  

One of the aims of this text is provide the reader with as much self-contained expositions as 

possible, even of the most involved concepts. Since absolute self-containment cannot be 

achieved in practice, this appendix provides a brief review of some theoretical concepts and 

tools of calculus and matrix algebra that have wide-spread applicability throughout this book. If 

the reader wishes to delve into these issues more thoroughly, we recommend consulting (Meyer, 

2001; Apostol, 1967). An extensive repository of matrix formulas and identities, without 

demonstrations, can be found in (Petersen & Pedersen, 2008). 

V.1 BASIC MATRIX ALGEBRA 

A matrix is said to be an n m  matrix if it has n  rows and m  columns. Two matrices A  and 

B  can be added or subtracted only if they have exactly the same size: 

   is defined iff    ,

n m n m p q

n p m q

  
   R A B  

(V.1) 

Matrix addition and subtraction are commutative, 

  A B B A  
(V.2) 

and associative: 

          A B C A B C A B C  (V.3) 

Two matrices A  and B  can be multiplied only if they are conformant matrices, which 

means that the number of columns in the former matches the number of rows in the latter: 

 
n m n p p m  

R A B  
(V.4) 

Matrix multiplication is not commutative, thus left-multiplying and right-multiplying by a 

matrix M , assuming that in both cases the matrices are conformant, give us different results: 

(in general)M A AM  
(V.5) 

In turn, multiplication is distributive: 

 
 

  
  

A B C AB AC

A B C AC BC
 (V.6) 



and associative: 

    ABC AB C A BC  (V.7) 

The transpose of an n m  matrix A  is an m n  matrix denoted as 
T

A  whose columns are 

the rows of the original matrix A . Transposing twice gives us the original matrix: 

 T
T A A  (V.8) 

and for any symmetric matrix S , we have: 

T S S  (V.9) 

Only for n n  square matrices A  we can define its inverse matrix 
1

A  as that one fulfilling:  

1

n

 AA I  (V.10) 

with nI  the identity matrix of size n n , with all entries zeros but its diagonal which only has 

ones. Not all matrices have an inverse, thus those which have one are called invertible matrices 

or non-singular matrices. 

A square n n  matrix A  is said to be an orthogonal matrix (or sometimes orthonormal), iff: 

T

nAA I  (V.11) 

which implies, from eq. (V.10), that the inverse of any orthogonal matrix is always its 

transpose: 

1      (for  orthogonal)T A A A  (V.12) 

which can be exploited while working with rotation matrices, always orthogonal. 

In general, the order of matrix transposition and inversion can be always exchanged: 

   1
1

T
T

 A A  (V.13) 

Transposing a sum of matrices becomes the sum of their transposed versions: 

 
 

1 2 1 2

1 2 1 2

T T T

T T T T

n n

  

      

A A A A

A A A A A A



 

 (V.14) 

while transposing a product of matrices becomes the product, in reverse order, of the transposed 

versions: 



 
 

1 2 2 1

1 2 2 1

T T T

T T T T

n n





A A A A

A A A A A A



 

 (V.15) 

The inverse of a sum of matrices cannot be further simplified, in general. Do not assume that 

it equals the sum of the inverse of each matrix. In turn, inverting a product of conformant 

matrices can be converted into the product, in reverse order, of the inverted matrices: 

 
 

1 1 1

1 2 2 1

1 1 1 1

1 2 2 1n n

  

   





A A A A

A A A A A A



 

 (V.16) 

Given a square, real and symmetric n n  matrix A , it will always have n  eigenvectors iv  

and n  real eigenvalues i , which are defined as the solutions to the system of linear equations: 

, for 1, 2, ,i i i i n Av v   (V.17) 

Since for each eigenvalue i  there exist infinite possible eigenvectors fulfilling eq. (V.17), it 

is convention to impose the additional restriction that all eigenvectors must have a unit norm, 

i.e., 1i v . If a certain eigenvalue appears more than once, we say it is a degenerate 

eigenvalue and it implies the lost of additional degrees of freedom while determining the 

corresponding eigenvectors. 

Then, we define the eigen decomposition of the real symmetric matrix A  as its factorization 

as the product of these three matrices: 

1A VDV  

(and, since when A  is real we have 
1 T V V ) 

T VDV  

(V.18) 

with: 

1

2

1 2

0 0

0 0

0 0

n

n






                 
V v v v D




  



 (V.19) 

Matrix factorizations find numerous applications in simplifying the solution of numerical 

problems. For instance, the inverse of a real symmetric matrix can be computed as: 



 
 

1
1

1
1 1

1 1

T

T



  

 





A VDV

V D V

VD V

 (V.20) 

which only involves the trivial inversion of a diagonal matrix (i.e. inverting one by one its 

diagonal entries). Another useful factorization is the Cholesky decomposition, which is 

addressed in section V.3. 

An n n  matrix A  is said to be a positive-semidefinite matrix if it fulfills: 

0 , (excepting 0)T n   x Ax x x  (V.21) 

or a positive-definite matrix if it fulfills instead the more restrictive condition: 

0 , (excepting 0)T n   x Ax x x  (V.22) 

where the terms 
T

x Ax  are called quadratic forms. 

Two completely equivalent definitions are saying that positive-definite matrices only have 

positive eigenvalues while positive-semidefinite matrices have nonnegative eigenvalues, a 

weaker condition since one or more null eigenvalues are permitted. Any positive-semidefinite 

matrix has a determinant of zero and is, therefore, noninvertible. 

Covariance matrices, introduced in chapter 3, are especial matrices because they are always 

real symmetric matrices and usually positive-definite —although, occasionally, can be positive-

semidefinite. If a covariance matrix Σ  is positive-definite, its inverse will always exist and will 

be also positive-definite and symmetric: 

   1
1 1 (with  definite-positive )

T
T

   Σ Σ Σ Σ  (V.23) 

Dense matrices are defined in opposition to sparse matrices. A sparse matrix is one whose 

ratio of nonzero entries is somewhat reduced, typically a 10% or less of the entire matrix. 

Efficient storage of sparse matrices can be achieved by only keeping the nonzero entries, i.e. we 

assume that all non-stored elements are zeros. A popular storage format for sparse matrices is 

the column-compressed sparse (CCS) matrix form, available in C/C++ via the set of ubiquitous 

libraries SuiteSparse, by Timoty Davis (Davis, 2006), and in MATLAB via the sparse() 

function —which internally relies on SuiteSparse. Sparse matrices require especial algorithms 

for replacing the most common operations such as addition or multiplication but, in turn, they 

can dramatically increase the efficiency of solving certain mathematical problems, as we 

explored in chapter 10. 

V.2 THE MATRIX INVERSION LEMMA 

A useful result which we need for the derivation of the Kalman filter in chapter 7 is the equality 

called the matrix inversion lemma: 

    111111   HEFHEGFEEFGHE  (V.24) 

That this equality holds can be demonstrated by using only the basic concepts described 

above: 



(post-multiplying by  E FGH  both sides of the equality, which can be done since it 

is not zero —otherwise it would not appear inverted in the original expression—) 

        FGHEHEFHEGFEEFGHEFGHE

I

  1111111

  
 

   1
1 1 1 1 1

       I E E F G HE F HE E FGH  

(by associativity with the second factor of the right-hand side) 

    FGHEHEFHEGFEFGHEEEI
I

  1111111

    1
1 1 1 1 1

        I I E FGH E F G HE F HE E FGH  

(canceling the two identity matrices and by associativity in the underlined term) 

    1 1
1 1 1 1 1 1 1 1 1

             
I

0 E FGH E F G HE F H E E E F G HE F HE FGH

   1 1
1 1 1 1 1 1 1 1

            0 E FGH E F G HE F H E F G HE F HE FGH  

(using associativity with the underlined factor) 

    1 1
1 1 1 1 1 1

          0 E F GH G HE F H G HE F HE FGH  

(inserting the factor 
1

G G  the result is not altered, since 
1 G G I  and we know that 

1
G  exists for it appears in the initial expression) 

    1 1
1 1 1 1 1 1 1

           0 E F GH G HE F G GH G HE F HE FGH

 (taking out the common factor GH ) 

    1 1
1 1 1 1 1 1 1

              0 E F GH G HE F G G HE F HE F GH  

(by associativity in the underlined term) 

   1
1 1 1 1 1

           I

0 E F GH G HE F G HE F GH


 

 1 
0

0 E F GH GH  

0 0  

(V.25) 

V.3 CHOLESKY DECOMPOSITION 

Some of the algorithms presented in this text require decomposing a positive-definite matrix A  

(e.g. a covariance or an information matrix) into the product of two triangular matrices such 

that: 



TA LL  (V.26) 

with L  being a lower triangular matrix (i.e., all the entries above the main diagonal are zero) 

with strictly positive diagonal entries. This is the Cholesky decomposition of a matrix, 

sometimes simply called a 
T

LL  decomposition. Let us denote the thk   column of a d d  

matrix A  as  
*,k

A , and the entry at the thj   row and thk   column as  
,j k

A . Then, we 

can refer to the elements of this lower triangular matrix as follows: 

 
   
     

1,1

2,1 2,2

,1 ,2 ,

0 0

0
, 1,2,...,

d d d d

i d

        

L

L L
L

L L L





   


 (V.27) 

There are several ways of computing the matrix L . One that is specially concise and clear is 

the Cholesky–Banachiewicz algorithm, which finds the elements of L  going from top to 

bottom and from left to right: 

     
         

1
2

, , ,
1

1

, , , ,
1,

1
, for 

i

i i i i i k
k

j

i j i j i k j k
kj j

i j








 
     




L A L

L A L L
L

 (V.28) 

This algorithm is appropriate when dealing with dense covariance matrices, as those found in 

chapters 7 and 9. In case of handling sparse real symmetric matrices we should turn to 

specialized algorithms which efficiently exploit the sparse structure of such matrices. One such 

specialized Cholesky decomposition methods is CHOLMOD, available as a C library and as a 

function within MATLAB (Chen, Davis, Hager & Rajamanickam, 2008). This algorithm finds 

its applicability in the advanced SLAM methods discussed in chapter 10. 

Positive-semidefinite matrices (either dense or sparse) cannot be decomposed by means of 

the Cholesky factorization 
T

LL , but require an 
T

LDL  factorization instead, which includes an 

extra diagonal matrix D  and, usually, a permutation matrix to reorder the terms such that only 

the latest elements in the diagonal are zeros. Refer to Eigen (Guennebaud & Jacob, 2010), a 

popular C++ library, for an efficient implementation of 
T

LDL  algorithms. 

Finally, let us derive an auxiliary result regarding the Cholesky factorization 
TA LL , 

which reveals useful in chapter 7. We start by evaluating the entry at the thj   row and thk   

column of A : 

TA LL  

(by the definition of matrix multiplication) 

   
, ,, ,

1

d
T T

j k j ij k i k
i

        A LL L L  

(since        
, , *, ,* ,j i i k i i j k

   X Y X Y ) 

(V.29) 



 
*, ,* ,1

d
T

i i j ki
      L L  

(changing the scope of the transpose) 

   
*, *,

,
1

d
T

i i
j k

i
    L L  

(since the sum does not alter the position of elements in the resulting matrix) 

   
*, *,

1 ,

d
T

i i
i j k

     L L  

And therefore, by generalization over all the entries of the A  matrix: 

   
*, *,

1

d
T

i i
i

A L L  (V.30) 

 

V.4 THE GAUSSIAN CANONICAL FORM 

In chapter 3 we introduced the standard form of a Gaussian pdf —not to be confused with the 

standard normal distribution, which is a normal distribution with zero mean and unit variance. 

There exists, however, another way to parameterize a multivariate Gaussian pdf: the canonical 

form. Among other applications, this formulation becomes useful during our derivation of the 

Kalman filter in chapter 7. We have included it in the present appendix since its definition 

consists almost entirely on the application of elementary algebra transformations to the standard 

form. 

We start repeating here for convenience the standard form of a multivariate Gaussian pdf:  

       11 1
; , exp

22 det( )

T

d
p

π
      x μ Σ x μ Σ x μ

Σ
 (V.31) 

where both the column vector x  (i.e. the point at which we evaluate the pdf) and the mean 

vector μ  have d  elements, while Σ  is a d d  covariance matrix. 

The canonical form of a Gaussian pdf assumes instead the following alternative 

parameterization of the same pdf (Wu, 2005): 

  1
; , exp

2

T Tp
      x μ Σ x Λx η x į  (V.32) 

Here, Λ  is called the information matrix or precision matrix and η  is the information vector. 

Both the standard and the canonical representations of a Gaussian density distribution function 

are equivalent, and thus they can be derived from each other.  

Actually, such derivation can be carried out in a more general form than the standard form. 

Consider the following function, which we will call the generalized standard form of a 

Gaussian pdf, slightly more general than the exponential of a standard form Gaussian, where E  

is any dd   matrix (we have dropped the constant factor of the pdf): 



     11
exp exp

2

T       Ex μ Σ Ex μ  (V.33) 

We can also derive a canonical form for this exponential by expanding this exponent, using 

just the basic algebra concepts mentioned above: 
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 (V.34) 

where we have established these identities: 

1

1

11

2

T

T

T








 

Λ E Σ E

η E Σ μ

į μ Σ μ

 
(V.35) 

Therefore, we have demonstrated a how to pass from generalized standard exponents to 

canonical form exponents. Now, by setting dE I , with dI  the dd   identity matrix, we 

obtain the formulas for passing from standard form exponents to canonical exponents: 
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Additionally, we can easily find from the equation above the reverse transformation, that is, 

passing from a canonical form exponent to a standard form exponent: 

1

1





 

Σ Λ
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where the inverse of Λ  exists iff Σ  is positive-definite and, therefore, non-singular. Anyway, 

if Σ  was positive-semidefinite (i.e., it has at least one null eigenvalue), we would not have any 

valid finite representation of Λ . 



Note that when doing this transformation for going back from a canonical to a standard form 

exponent one only needs the two mentioned equations for calculating Σ  and μ , but a few 

words are in order about the parameter  į , which must also be determined. It is common to find 

a canonical form that presents this structure: 

  1
; , exp

2

T Tp
       x μ Σ x Λx η x į İ  (V.38) 

with İ  being an additional nonzero term independent of the variable x . That exponent can be 

considered as actually comprising two exponents:  

 one corresponding to an exact canonical form, 
1

2

T T  x Λx η x į ,  

 and another one corresponding to the additional term İ .  

Once the former is transformed into the exponent of a Gaussian in standard form by 

computing the Σ  and μ  parameters as indicated above, we must account for the extra term in 

the canonical exponent: it will represent a term that multiplies the standard Gaussian form 

outside the exponential. The complete transformation in this case will produce the scaled 

standard form: 

       11
; , exp exp

2

T
p       x μ Σ İ x μ Σ x μ  (V.39) 

Since both, this density, and the standard form in eq. (V.31) must integrate up to one to be 

valid pdfs it becomes clear that this extra constant  exp İ  must coincide with the constant term 

in eq. (V.31), thus it must hold that: 
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V.5 JACOBIAN AND HESSIAN OF A FUNCTION 

The Jacobian is a natural extension to the concept of derivative of a function for the case of 

multivariate functions. Let   : n mf x    denote an arbitrary vector function, with 1n   and 

1m  . Since it generates vectors of m  real numbers we can consider it instead comprising m  

individual scalar functions : n

if   , such that: 
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Then, we denote the Jacobian matrix (or simply, the Jacobian) of  f x  as either  ,f x
J x  or 

 xf x , and define it to be the following m n  matrix: 
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...

1 1
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Sometimes we may be interested in the Jacobian of a function with respect to a given subset 

of its parameters z x . In those cases, the Jacobian is defined exactly the same but replacing 

the parameter x  above by z  and considering the other parameters as constants with regard to 

derivatives. Naturally, the resulting Jacobian will have less columns that the full Jacobian with 

respect to all the parameters. As an example, consider the following division of a Jacobin into 

two parts when we split its parameters x  into two disjoint sets of variables , y z x  (such that  

 x y z ): 

   , ,   
y z y z

f y z f f  
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For scalar functions   : nf x    the Jacobian becomes a row vector, which is the 

transposed gradient of the scalar field defined by that function: 

  
Gradient
  vector

T
f xg x  

(V.44) 

Therefore, the Jacobian reflects all the first-order derivatives for a vector function. The next 

higher-order derivative equivalent for multivariate functions is the Hessian matrix. In this case 

we only address the case of scalar functions, which are the simplest to formulate and the most 

useful for mobile robotics. Thus, given a scalar function   : nf x   , its Hessian will be 

always a square n n  matrix containing all the second-order derivatives with respect to the 

parameters x : 
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In the context of localization and SLAM, the Hessian will mostly appear while working with 

least-squares optimization (refer to chapter 10). In that case, if the evaluation point x  is close to 

a minimum of the function  f x  it can be shown (Triggs, McLauchlan, Hartley & Fitzgibbon, 

2000) that the Hessian can be accurately approximated without evaluating second-order 

derivatives as:  

     2
T

f f f     x x xx x x  (V.46) 

which only requires computing the simpler Jacobian  f
x

x . This is called the Gauss-Newton 

approximation to the Hessian and is at the core of the most relevant optimization algorithms. 

V.6 TAYLOR SERIES EXPANSIONS  

The Taylor series expansion of a function  f x  is a tool developed by the English 

mathematician Brooks Taylor in the 18th century and consists of another function  f̂ x  which 

approximates the original one in the vicinity of a given point ax   (called the linearization 

point when using a linearized, first-order Taylor series expansion). 

The Taylor series is based on the infinite derivatives of the function  f x  at the 

linearization point —obviously, assuming that the function is infinitely differentiable at that 

point. More concretely, the Taylor series expansion for a scalar function is defined as: 
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If the original function can be expressed as a convergent sum of infinite power terms, that is, 

making n   in the equation above, it is then called an analytic function. The maximum 

index n  included in the series is called the order of the series expansion, and as one could 

expect, the larger the order, the better will be the approximation of the function at points far 

from ax  . Taylor expansions are prominently used throughout this book for linearization of 

non-linear functions, mostly corresponding to first order ( 1n  ) expansions, although second 

order ( 2n  ) approximations are also touched while discussing least-squares methods in 

chapter 10. 



In the case of multivariate functions, the same principle applies by replacing derivatives with 

Jacobian matrices. For example, a second-order Taylor series expansion of both, a univariate 

( )f x  and a multivariate function  ( )F x , read: 
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In order to illustrate how a scalar function can be approximated by Taylor series of 

increasingly higher orders, please refer to the example in Figure V.1. 

 

 

Figure V.1. Example of Taylor expansion of the function corresponding to the pdf of an exponentially 

distributed r.v. (i.e., ( )
x

f x e
   with mean 1). The more terms considered in the Taylor series 

expansion of that function, the better the approximation in the neighborhood of the point x=1. 
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