
Derivation and Implementation of a Full 6D

EKF-based Solution to Bearing-Range SLAM

Jose-Luis Blanco
jlblanco@ctima.uma.es

Technical Report

Perception and Mobile Robots Research Group
University of Málaga, Spain

March 7, 2008

Abstract

This report addresses the formulation and the implementation of a full 6D (3D
positions plus 3D attitude angles) solution to Simultaneous Localization and
Mapping (SLAM) using a range and bearing sensor. It will be not assumed
here that the sensor coordinate reference system coincide with that of the robot,
which severely complicates the equations required for the implementation but in
turn allows the usage of any number of sensors on a robot without restrictions.
It is also briefly discussed two implementations in C++ within the context of
the Mobile Robot Programming Toolkit (MRPT) project, corresponding to a
straightforward O(N3) and a more efficient O(N2) algorithm. Update rates in
excess of 120Hz are demonstrated for a simulated sensor.

An online version of this document is available in:
http://babel.isa.uma.es/mrpt/index.php/6D-SLAM

Contents

1 Definitions 2

2 EKF equations 4

2.1 Prediction . 4
2.1.1 The Motion model . 4
2.1.2 Updating the state vector – x̂k|k−1 5
2.1.3 Updating the covariance – Pk|k−1 5
2.1.4 Jacobians . 6

2.2 Update . 7
2.2.1 The Observation model 7
2.2.2 Observation Noise – R . 8
2.2.3 Kalman innovation – S 8
2.2.4 Calculation of the Jacobian ∂h

∂x
. 9

3 Creating new landmarks 10

3.1 Map expansion . 10
3.2 Inverse sensor model . 11

4 Complete Algorithms 12

4.1 Naive EKF – O(N3) . 12
4.2 A More Efficient Method – O(N2) 12

5 C++ implementation 14

6 Results 15

7 Comments 17

A Homogeneous coordinates 18

B Jacobians of the observation model 19

1

Chapter 1

Definitions

Our goal is to estimate the 6D pose of a robot equipped with any kind of sensor
capable of detecting 3D landmarks in its environment. The solution aims for
real-time localization while simultaneously building a map of the environment.

Our implementation will make use of 3D Cartesian coordinates and the three
angles yaw, pitch, and roll for attitudes. Following the notation of Davison et
al. in [2], let xv denote the vector of the vehicle pose:

xv = [x y z φ χ ψ]T (1.1)

φ : yaw, χ : pitch, ψ : roll

The geometry of such a coordinate configuration is illustrated in Fig. 1. At
any instant of time k we will have a number L of landmarks or feature points
in the map, each one described by its 3D global coordinates yi:

yi = [xi yi zi]
T (1.2)

The complete state vector of our problem is the concatenation of the vehicle
pose and the position of all the landmarks, and is denoted with x:

Figure 1.1: The coordinate system used in this work. Typically, yaw=0 (i.e.
the +x axis) points in the robot forward direction.

2

x =













xv

y1

y2

...

yL













(1.3)

Due to uncertainties inherent to sensors and actuators, we must use a proba-
bilistic representation of this state rather than keeping just one single estimation
at each time step. As common in the SLAM literature, we model this joint dis-
tribution for each time step k as a multivariate Gaussian with mean x̂kk and
covariance matrix Pkk of size (6+3L)× (6+3L). It is advantageous for further
reference to denote each of the submatrices of Pkk according to the involved
variables:

Pkk|6+3L×6+3L
=









Pxx|6×6
Pxy1|6×3

... PxyL|6×3

Py1x|3×6
Py1y1|3×3

... Py1yL|3×3

...

PyLx|3×6
PyLy1|3×3

... PyLyL|3×3









(1.4)

It is common to initialize the vehicle pose to all zeros (i.e. the world reference
is the robot starting position), while the covariance matrix should be initialized
to zero, since this uncertainty will determinate the best the robot can localize
itself from now on [3].

The estimated probability distribution evolves according to an Extended
Kalman Filter (EKF) [4], a Bayesian filter that updates our current belief ac-
cording to the new observations as they are gathered by the robot in successive
time steps. The EKF consists on two steps: prediction and update, whose
generic equations are given by:

Prediction :

x̂k|k−1 = f(x̂k−1|k−1, uk) (1.5)

Pk|k−1 =
∂f

∂x
Pk−1|k−1

∂f

∂x

T

+Qk (1.6)

Update :

ỹk = zk − h(x̂k|k−1) (1.7)

Sk =
∂h

∂x
Pk|k−1

∂h

∂x

T

+Rk (1.8)

Kk = Pk|k−1
∂h

∂x

T

S−1
k (1.9)

x̂k|k = x̂k|k−1 +Kkỹk (1.10)

Pk|k = (1−Kk

∂h

∂x
)Pk|k−1 (1.11)

Where f(·) and h(·) stand for the transition and observation models of the
system, respectively. The rest of the report is devoted to the calculation of
each of the required terms in these equations, as well as to exploit their special
configuration to speed up their implementation.

3

Chapter 2

EKF equations

In this chapter we derive all the expressions stated by the generic EKF equations
(1.5)-(1.11). In Chapter 4 we will give more details about how to employ all
these equations in the EKF implementation.

2.1 Prediction

We define a robot action uk at time step k as any “motor actuation” performed
by the robot since the last time step k − 1. A typical situation for ground
vehicles is to take the increment of the robot odometry (increments in x, y, and
the heading yaw) as the action.

We will assume here that actions uk are 6D pose increments since the last
time step k − 1. In practice, these increments can be estimations from visual
odometry, inertial sensors, or they must just consist of planar pose increments
from wheels odometry. In fact, the algorithm will also works without any kind
of “actions”: one alternative is to set u = 0 with a large uncertainty U , i.e. the
robot is close to its last position up to a degree of uncertainty.

2.1.1 The Motion model

Since we assume static landmarks, the only variables of the state vector that
actually change over time are those of the vehicle pose. At each time step, the
pose of the vehicle xv changes according to the transition model:

xv{k} = fv(xv{k−1}, uk) = xv{k−1} ⊕ uk (2.1)

Where ⊕ stands for the pose composition operator [5], and the components
of u are u = {xu yu zu φu χu ψu}. Using homogeneous coordinates it can be
shown that the function fv becomes:































xk = xk−1 +R11xu +R12yu +R13zu

yk = yk−1 +R21xu +R22yu +R23zu

zk = zk−1 +R31xu +R32yu +R33zu

φk = φk−1 + φu

χk = χk−1 + χu

ψk = ψk−1 + ψu

(2.2)

4

Where Rij stands for the corresponding entries in the 4 × 4 homogeneous
coordinates matrix of xk−1 (see Appendix A).

2.1.2 Updating the state vector – x̂k|k−1

Thus, updating the state vector (1.3) according to the first step in the EKF
(1.5) becomes simply modifying the first 6 elements of x̂, that is, x̂v, as:

x̂v{k|k−1} = fv(x̂v{k−1|k−1}, u) (2.3)

Using (2.2), whereas all the landmark positions remain unmodified.

2.1.3 Updating the covariance – Pk|k−1

The second step in the EKF implies updating the whole covariance Pk|k−1 ac-
cording to the new predicted vehicle pose x̂k|k−1. For this we need the Jacobian
of the transition function relative to the state vector:

∂f

∂x

∣

∣

∣

∣

6+3L×6+3L

=















∂fv

∂xv

∣

∣

∣

6×6
0|6×3 0|6×3 ... 0|6×3

0|3×3 I|3×3 0|3×3 ... 0|3×3

0|3×3 0|3×3 I|3×3 ... 0|3×3

...

0|3×3 0|3×3 0|3×3 ... I|3×3















(2.4)

If we expand (1.6) taking into account the specific structure of the above
Jacobian, we have:

Pk|k−1 =
∂f

∂x
Pk−1|k−1

∂f

∂x

T

+Qk (2.5)

=













∂fv

∂xv
Pxx

∂fv

∂xv

T ∂fv

∂xv
Pxy1 ... ∂fv

∂xv
PxyL

Py1x
∂fv

∂xv

T

... Unmodified

PyLx
∂fv

∂xv

T













+Qk

Note how just the first row and column are modified in this step (actually,
the first column is the transpose of the first row, so it is enough to make half
the computations).

The Qk term stands for the uncertainty in the new vehicle state due to the
uncertainty in the robot action (e.g. noisy odometry). Recall that we denote the
increment in pose as the 6-length vector u, which is associated a 6×6 covariance
matrix U . Thus, Qk is computed through the Jacobian of the transition function
with respect to the robot action:

Qk|6+3L×6+3L =
∂f

∂u

∣

∣

∣

∣

6+3L×6+3L

U
∂f

∂u

T

(2.6)

Since this Jacobian is zero for the landmark variables we can just compute
the 6× 6 covariance Qkv

:

5

Qkv
|6×6 =

∂fv

∂u

∣

∣

∣

∣

6×6

U|6×6
∂fv

∂u

T

(2.7)

and add it to the top-left sub-matrix (the updated vehicle covariance) in (2.5).
Note that there is no reason to assume here that U is a diagonal matrix since it
would imply a negligible speed-up while a full-matrix can model more accurately
the possible correlations in the incremental pose estimations.

2.1.4 Jacobians

Here we derive the expressions for the Jacobians ∂fv

∂xv
and ∂fv

∂u
which have been

used in the previous section.

Calculation of ∂fv

∂xv

The elements of this 6×6 Jacobian for our case of 6D odometry can be obtained
from (2.2) and are:

∂fv

∂xv

=

















1 0 0 F14 F15 F16

0 1 0 F24 F25 F26

0 0 1 0 F35 F36

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















(2.8)

where:
F14 = -sy*cp*xu+(-sy*sp*sr-cy*cr)*yu+(-sy*sp*cr+cy*sr)*zu
F15 = -cy*sp*xu + cy*cp*sr*yu+cy*cp*cr*zu
F16 = (cy*sp*cr+sy*sr)*yu+(-cy*sp*sr+sy*cr)*zu
F24 = cy*cp*xu+(cy*sp*sr-sy*cr)*yu+(cy*sp*cr+sy*sr)*zu
F25 = -sy*sp*xu+sy*cp*sr*yu+sy*cp*cr*zu
F26 = (sy*sp*cr-cy*sr)*yu+(-sy*sp*sr-cy*cr)*zu
F35 = -cp*xu-sp*sr*yu-sp*cr*zu
F36 = cp*cr*yu-cp*sr*zu

Here (xu yu zu)T is the 3D position increment of the action u (e.g. visual
odometry), and the following abbreviations have been used for quantities related
to the vehicle attitude angles at time step k − 1:

sy = sinφk−1 cy = cosφk−1 (Y aw)

sp = sinχk−1 cp = cosχk−1 (Pitch)

sr = sinψk−1 cr = cosψk−1 (Roll)

Calculation of ∂fv

∂u

It is straightforward from (2.2) to arrive at:

6

∂fv

∂u
=

















R11 R12 R13

R21 R22 R23 0
R31 R32 R33

0 I3

















(2.9)

where the Rij components are the corresponding elements of the homogeneous
matrix for the robot pose x̂k−1|k−1 (see Appendix A).

2.2 Update

2.2.1 The Observation model

Given the robot pose xv and the 3D coordinates of a landmark yi = (xi yi zi)
T ,

our observation model for a bearing-range sensor is:

zi = hi(xv,yi) (2.10)

where each observation zk comprises the following three values:

zk =





r

α

β



 →







r : Range (distance) to the landmark
α : Yaw (azimuth) to the landmark
β : Pitch (elevation) to the landmark

(2.11)

These values are computed through:

r =
√

x̄2
i + ȳ2

i + z̄2
i (2.12)

α = arctan
ȳi

x̄i

(2.13)

β = − arctan
z̄i

√

x̄2
i + ȳ2

i

(2.14)

where ȳi = (x̄i ȳi z̄i)
T is the landmark yi in coordinates relative to the vehicle

xv. We also want to incorporate in the calculations the pose of the sensor
relative to the robot, which we will denote as xs.

Then, the relative coordinates can be computed using homogeneous coordi-
nates, in such a way that:

ȳi = yi ⊖ (xv ⊕ xs) (2.15)

becomes:









x̄i

ȳi

z̄i

0 0 0 1









= (R(xv)R(xs))
−1









xi

0 yi

zi

0 0 0 1









(2.16)

7

Note that only the three marked components from the resulting matrix are
required for the function hi. Using the MATLAB symbolic toolbox the inverse
of the product of the rotation matrices has been computed analytically, so the
required Jacobians can be computed (see sections 2.2.4).

2.2.2 Observation Noise – R

The matrix R in (1.8) stands for the uncertainty due to the sensor noise, and is
typically modelled trough a diagonal matrix:

R =





σ2
r 0 0
0 σ2

α 0
0 0 σ2

β



 (2.17)

where each value is the variance of the corresponding range or bearing mea-
surement. These are parameters of the system, and must be established from a
characterization of the sensor or heuristically.

The fact of this matrix being diagonal, which implies the reasonable assump-
tion of uncorrelated errors in each of the measurement components and between
landmarks, is the basis for the optimized EKF implementation presented later
on [2].

2.2.3 Kalman innovation – S

The full matrix S

In general, the matrix S is computed by 1.8 as:

Sk =
∂h

∂x
Pk|k−1

∂h

∂x

T

+Rk (2.18)

Note how Sk becomes a fully populated 6 + 3L× 6 + 3L matrix, in despite
of the peculiar structure of the Jacobian ∂h

∂x
(see 2.21).

The scalar S
j
i

In turn, the innovation matrix becomes a scalar if the components of the ob-
servations are considered sequentially once at a time (range, yaw, pitch, range,
yaw, pitch, etc.) as remarked in [2].

Let Sj
i be this scalar for the j’th component of the i’th observed landmark.

Then:

S
j
i =

∂h
j
i

∂x

(

Pxx|6×6
Pxyi|6×3

Pyix|3×6
Pyiyi|3×3

)

∂h
j
i

∂x

T

+Rjj

=
∂h

j
i

∂xv

Pxx

∂h
j
i

∂xv

T

+
∂h

j
i

∂yi

Pyix

∂h
j
i

∂xi

T

+
∂h

j
i

∂xv

Pxyi

∂h
j
i

∂yi

T

+
∂h

j
i

∂yi

Pyiyi

∂h
j
i

∂yi

T

+Rjj

=
∂h

j
i

∂xv

Pxx

∂h
j
i

∂xv

T

+ 2
∂h

j
i

∂yi

Pyix

∂h
j
i

∂xi

T

+
∂h

j
i

∂yi

Pyiyi

∂h
j
i

∂yi

T

+Rjj (2.19)

8

where the partial Jacobians are the j’th row of
∂h

j

i

∂x
and Rjj is the j’th diagonal

element of (2.17). Note how this R term assure that Sj
i will be always invertible.

Note as well that the last step in the equation above (the union of two terms)
is possible just in the case of Sj

i being scalar and does not hold in general.

2.2.4 Calculation of the Jacobian ∂h

∂x

In general, we have that this Jacobian of the full vector of observations h =
{h1, h2, ...} is composed of:

∂h

∂x

∣

∣

∣

∣

3L×(6+3L)

=











∂h1

∂xv

∂h1

∂y1

∂h1

∂y2
...

∂h2

∂xv

∂h2

∂y1

∂h2

∂y2
...

∂h3

∂xv

∂h3

∂y1

∂h3

∂y2
...

...











(2.20)

But due to the fact that the observation of each landmark i depends on the
vehicle pose and its corresponding landmark yi, the matrix is actually sparsely
populated:

∂h

∂x

∣

∣

∣

∣

3L×(6+3L)

=









∂h1

∂xv

∂h1

∂y1
0 ...

∂h2

∂xv
0 ∂h2

∂y2
...

∂h3

∂xv
0 0 ...

...









(2.21)

Hence we only need to compute the two partial Jacobians ∂hi

∂xv
and ∂hi

∂yi
for

each landmark yi:

∂hi

∂x

∣

∣

∣

∣

3×6+3L

=

(

∂hi

∂xv

∣

∣

∣

∣

3×6

...
∂hi

∂yi

∣

∣

∣

∣

3×3

...

)

(2.22)

where each row

∂h
j
i

∂x

∣

∣

∣

∣

∣

1×6+3L

=

(

∂h
j
i

∂xv

∣

∣

∣

∣

∣

1×6

...
∂h

j
i

∂yi

∣

∣

∣

∣

∣

1×3

...

)

(2.23)

for j = 1, 2, 3 corresponds to each of the three components of a single range-
bearing observation. The procedure to compute the partial Jacobians is given
in the Appendix B.

9

Chapter 3

Creating new landmarks

A common step to both algorithms discussed in Chapter 4 is the introduction
of new landmarks the first time they are observed, what is performed as follows.

3.1 Map expansion

Let L − 1 denote the number of landmarks in the map at some time step.
Then, introducing a new landmark L requires the evaluation of the inverse
sensor model yL(xv, hL), with xv being the vehicle pose and hL the range and
bearing observation of the landmark. The system state is expanded with the
new landmark estimation:

x̂ ← (x̂ ŷL) (3.1)

ŷL = yL(x̂v, hL) (3.2)

and the covariance matrix is also expanded with a new row and column, such
as [2]:

Pkk =

















Pxx Pxy1
... PxyL−1

Pxx
∂yL

∂xv

T

Py1x Py1y1
... Py1yL−1

Py1x
∂yL

∂xv

T

...

PyL−1x PyL−1y1
... PyL−1yL−1

PyL−1x
∂yL

∂xv

T

∂yL

∂xv
Pxx

∂yL

∂xv
Pxy1

... ∂yL

∂xv
PxyL−1

A

















(3.3)

where:

A =
∂yL

∂xv

Pxx

∂yL

∂xv

T

+
∂yL

∂hL

R
∂yL

∂hL

T

(3.4)

with R being the sensor noise covariance matrix given in (2.17).

10

3.2 Inverse sensor model

The inverse model yL(xv, h) simply consists of a projection of the landmark
from the sensor point using the range (hr) and bearing angles (yaw hα and
pitch hβ), that is:

yL(xv, hL) =





xL

yL

zL



 = xv ⊕ xs ⊕





hr coshα coshβ

hr sinhα coshβ

−hr sinhβ



 (3.5)

with xs being the relative pose of the sensor on the robot. The correspond-
ing Jacobians ∂yL

∂xv
and ∂yL

∂hL
have been computed using the MATLAB symbolic

toolbox.

11

Chapter 4

Complete Algorithms

In this chapter we summarize two implementations of an EKF for range-bearing
SLAM.

4.1 Naive EKF – O(N 3)

A straightforward implementation consists of following all the steps (1.5)-(1.11)
taking the whole vector of observations zk at once. The algorithm then is:

1. Predict new robot pose x̂vk|k−1 using (2.2). O(1)
2. Modify the covariance following (2.5). O(N)
3. Predict observations hi (2.12) and Jacobians of hi. O(N)
4. Compute the whole matrix S (2.18). O(N3)
5. Inverse of S and computation of Kk (1.9). O(N3)
6. Update the filter state vector x̂vk|k using (1.10). O(N2)
6. Update the filter covariance Pk|k using (1.11). O(N3)
8. If necessary, introduce new landmarks in the map. O(N)

Where N stands here for the number of landmarks, the most decisive quan-
tity for complexity analysis since the rest of dimensions remain constant as the
filter evolves. This approach is therefore unpractical for real-time purposes for
maps of more than a few dozens of landmarks.

4.2 A More Efficient Method – O(N 2)

This alternative method consists of considering sequentially the observations,
taking one scalar value at each time. It has been already shown in (2.19) that
in this case the Kalman innovation matrix Sj

i becomes a scalar.

Now we derive the expressions for the column matrix Kalman gain K
j
i , for

the j’th scalar component of the i’th observed landmark:

12

K
j
i |6+3L×1 = Pk|k−1

∂h
j
i

∂x

T
1

S
j
i

=

















Pxx

Pxy1

Pxy2

...









∂h
j
i

∂xv

T

+









Pxyi

Py1yi

Py2yi

...









∂h
j
i

∂yi

T









1

S
j
i

(4.1)

Note how the sparse structure of the Jacobian allows the separation of this
equation in two parts where only two columns of the full Pk|k−1 are involved.

Once computed this column Kalman gain, the position of the involved land-
mark and the vehicle is also simplified:

x̂k|k = x̂k|k−1 +K
j
i (zj

i − h
j
i) (4.2)

where the scalar (zj
i −h

j
i) represents the difference between the actual measure-

ment and the prediction of the filter.
Regarding the update of the covariance matrix Pkk, following [2]:

Pk|k = Pk|k−1 − S
j
iK

j
iK

j
i

T (4.3)

The multiplication Kj
iK

j
i

T can be made faster by noting that its result must
be symmetric thus it is only required to compute half the values.

Finally, the overall algorithm can be summarized as:

1. Predict new robot pose x̂vk|k−1 using (2.2). O(1)
2. Modify the covariance following (2.5). O(N)
3. For each of the M observed landmarks i: ×O(M)
3.1. Compute hi (2.12) and its Jacobian. O(1)
3.2. For each dimension j of the observation hi:

3.2.1 Compute the scalar Sj
i (2.19). O(1)

3.2.2 Computation of Kj
i (4.1). O(N)

3.2.3 Update the filter state vector x̂vk|k using (4.2). O(N)
3.2.4 Update the filter covariance Pk|k using (4.3). O(N2)

4. If necessary, introduce new landmarks in the map. O(N)

Although there are two nested loops, they must be executed a fixed number
of times that depends mainly on the number of observed landmarks M , thus
the complexity of the algorithm becomes O(M · N2). However, in practice M
remains bounded, hence this algorithm reduces the complexity from O(N3) to
O(N2).

13

Chapter 5

C++ implementation

Both the naive and the improved EKF algorithms have been implemented in the
MRPT C++ library, concretely in the class MRML::CRangeBearingKFSLAM. In-
ternally, this class calls the generic EKF implemented in UTILS::CKalmanFilterCapable

which can be employed by any problem for arbitrary sizes the the state, obser-
vations, and landmark vectors. For more information refer to [1].

14

Chapter 6

Results

A simulated dataset has been generated for a square robot path moving on a
plane while detecting 3D landmarks. The experiment includes a loop closure,
whose effects can be observed in Fig. 6. At the end of the experiment, 92
landmarks are mapped out of a total of 100. This is due to the limited range
and field of view of the simulated sensor. In average 6.6 landmarks are observed
simultaneously over the 2199 time steps of the experiment.

Statistical results are summarized next for the execution of each of the al-
gorithms, including the errors in the estimated landmark 3D positions:

Value Naive method Improved method

Overall time 293 sec 17.15 sec
Average execution rate 7.5 Hz 128.2 Hz

Average landmark error 0.157 m 0.138 m
Maximum landmark error 0.278 m 0.245 m
Minimum landmark error 0.037 m 0.064 m

This results are for an Intel Core2 Duo T7500 @ 2.20GHz. The reduced
average error in the case of the improved algorithm may be caused by the more
exact computation of the Jacobians, since they are linearized at increasingly
more accurate positions as the scalar components of the observation vector are
integrated sequentially.

15

Figure 6.1: Two snapshots of the filter state, before (top) and after (bottom)
closing a loop.

16

Chapter 7

Comments

This report has given a detailed description of an efficient implementation of an
EKF for the specific problem of 6D SLAM. It has been shown the efficiency of
the method for small maps, which immediately raises potential applications as:

• Stereo Vision-based SLAM: Matched features from a stereo camera are the
perfect input to the algorithm in the form of range and direction angles.

• Visual Odometry: Used incrementally, i.e. taking the map as the last
observation, the EKF presents a grounded method to estimate the dis-
placement and associated covariance of full 6D pose increments between
consecutive time steps.

• Image tracking: The generic implementation allows the easy development
of efficient trackers in the space of the image plane.

17

Appendix A

Homogeneous coordinates

Let B be a change of coordinates in 3D described through a increment in x, y,
and z and rotations in yaw, pitch, and roll, that is,

B = {x y z φ χ ψ},

The homogeneous coordinates matrix of B is given by:

R(B) =









R11 R12 R13 x

R21 R22 R23 y

R31 R32 R33 z

0 0 0 1









(A.1)

=









cosφ cosχ cosφ sinχ sinψ − sinφ cosψ cosφ sinχ cosψ + sinφ sinψ x

sinφ cosχ sinφ sinχ sinψ + cosφ cosψ sinφ sinχ cosψ − cosφ sinψ y

− sinχ cosχ sinψ cosχ cosψ z

0 0 0 1









Composing two poses A and B is equivalent to multiplying their correspond-
ing homogeneous matrices. For example, to obtain C = A⊕B we can compute
R(A)R(B), what gives us the homogeneous matrix of C.

The equivalent operation in the MRPT C++ library is denoted by the +
operator between MRML::CPose3D objects, e.g.

CPose3D A(1,2,3),B(4,0,0),C;
C = A + B;

18

Appendix B

Jacobians of the

observation model

The following abbreviations are used in this appendix:

x0 = x̂v

y0 = ŷv

z0 = ẑv

y = φ̂v

p = χ̂v

r = ψ̂v

x0s = xs

y0s = ys

z0s = zs

ys = φs

ps = χs

rs = ψs

The complexity of the obtained equations is a consequence of allowing an
arbitrary pose xs = (xs ys zs φs χs ψs)

T for each sensor on the robot. The
complete formulas can be found in the source code of the MRPT C++ library,
concretely in the file MRML/CRangeBearingKFSLAM.cpp.

We reproduce next the MATLAB scripts employed to derive the correspond-
ing symbolic expressions. Here the 3 × 6 Jacobian ∂hi

∂xv
is denoted by J_hi_xv

and the 3× 3 Jacobian ∂hi

∂yi
is denoted by J_hi_yi:

19

% compute_jacobians.m script
syms x0 y0 z0 y p r % robot 6D pose
syms x0s y0s z0s ys ps rs % sensor 6D pose on robot
syms xi yi zi Xi % landmakr absolute 3D point
syms xi_ yi_ zi_ % landmark relative 3D point

% Homog. matrix for the robot pose:
R_x = [cos(y)*cos(p) cos(y)*sin(p)*sin(r)-sin(y)*cos(r) cos(y)*sin(p)*cos(r)+sin(y)*sin(r) x0;

sin(y)*cos(p) sin(y)*sin(p)*sin(r)+cos(y)*cos(r) sin(y)*sin(p)*cos(r)-cos(y)*sin(r) y0;
-sin(p) cos(p)*sin(r) cos(p)*cos(r) z0;
0 0 0 1];

% Homog. matrix for the sensor pose on robot:
R_xs = [cos(ys)*cos(ps) cos(ys)*sin(ps)*sin(rs)-sin(ys)*cos(rs) cos(ys)*sin(ps)*cos(rs)+sin(ys)*sin(rs) x0s;

sin(ys)*cos(ps) sin(ys)*sin(ps)*sin(rs)+cos(ys)*cos(rs) sin(ys)*sin(ps)*cos(rs)-cos(ys)*sin(rs) y0s;
-sin(ps) cos(ps)*sin(rs) cos(ps)*cos(rs) z0s;
0 0 0 1];

% Inverse of the composition: x (+) x_s
R_xxs = R_x * R_xs;

disp(’Computing inverse matrix....’);
[R_xxs_1, how_R]=simple(inv(R_xxs));

Xi=[1 0 0 xi;
0 1 0 yi;
0 0 1 zi;
0 0 0 1];

RES = R_xxs_1*Xi;

xi_ = simple(RES(1,4));
yi_ = simple(RES(2,4));
zi_ = simple(RES(3,4));

xi_
yi_
zi_

% The observation model:
syms H h_range h_yaw h_pitch J_hi_xv J_hi_yi

h_range = sqrt(xi_^2+yi_^2+zi_^2);

h_yaw = atan(yi_/xi_);

h_pitch = -atan(zi_/ sqrt(xi_^2 + yi_^2));

H=[h_range ; h_yaw ; h_pitch];

disp(’Computing jacobian wrt xv....’);

J_hi_xv=jacobian(H,[x0 y0 z0 y p r]);

disp(’Computing jacobian wrt yi....’);

J_hi_yi=jacobian(H,[xi yi zi]);

20

Bibliography

[1] J.L. Blanco. The Mobile Robot Programming Toolkit (MRPT) website,
2008.

[2] A.J. Davison, I. Reid, N. Molton, and O. Stasse. MonoSLAM: Real-Time
Single Camera SLAM. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(6), June 2007.

[3] M. Dissanayake, P. Newman, S. Clark, HF Durrant-Whyte, and M. Csorba.
A solution to the simultaneous localization and map building (SLAM) prob-
lem. IEEE Transactions on Robotics and Automation, 17(3):229–241, 2001.

[4] S.J. Julier and J.K. Uhlmann. A new extension of the Kalman filter to non-
linear systems. Int. Symp. Aerospace/Defense Sensing, Simul. and Controls,
3, 1997.

[5] R. Smith, M. Self, and P. Cheeseman. A stochastic map for uncertain spatial
relationships. The fourth international symposium on Robotics Research,
pages 467–474, 1988.

21

