
Juan-Antonio Fernández-Madrigal
Universidad de Málaga, Spain

José Luis Blanco Claraco
Universidad de Málaga, Spain

Simultaneous Localization
and Mapping for Mobile
Robots:
Introduction and Methods

390

Appendix A: Common SE (2) and SE (3) 	
Geometric Operations

Dealing with mobile robots necessarily implies dealing with geometric problems. Studying their kine-
matic models or their position and attitude in three-dimensional space, for example, requires us to
handle spatial relationships. This appendix provides a summary of the basic mathematical concepts from
2D and 3D geometry that are needed for solving most mobile robotic problems. Some other mathemat-
ically more intricate concepts will be deferred until Appendix D.

1. ABOUT GEOMETRIC OPERATIONS AND THEIR NOTATION

The geometric operations we will discuss here work with two elements: spatial locations and spatial
transformations. Locations are simply points in a two or three-dimensional Euclidean space, which we will
describe with the vector of their (two or three) coordinates with respect to some reference frame, that is:

a

a

2

3

=











=



















x

y

x

y

z

 (a 2D point)

 (aa 3D point)

	 (1)

Regarding spatial transformations, we firstly find pure rotations. It can be shown that pure rigid
rotations in 2D and 3D form mathematical groups whose elements are 2 2× and 3 3× matrices, re-
spectively, with unit determinants, and where the group inner operation is the standard matrix multipli-
cation. These groups are named SO 2() and SO 3() , after “special orthogonal group.” We will denote
its elements (matrices) as:

R SO

R SO
2 2

3 3

2

3
×

×

∈ ()
∈ ()

 (a pure rotation in 2D)

 (a pure rotation in 3D)
	 (2)

Spatial points or transformations are never absolute in the strict sense of the word: they only make
sense with respect to some frame of coordinates. A frame of coordinates can be visualized as a set of
two or three orthogonal axes (for 2D or 3D, respectively) fixed at some arbitrary placement. Sometimes

 391

such frames are informally referred to as corners. We can therefore visually imagine a SO n() transfor-
mation as an arbitrary rotation of those axes, without translation.

A broader class of spatial transformation also allows for spatial translations apart from rotation. It is
common in robotics to name poses to those transformations. Thus, a pose can be visualized as a corner
placed and rotated arbitrarily with respect to any other reference corner. Mathematically, poses form the
“special Euclidean groups” SE 2() and SE 3() , for 2D and 3D, respectively. The group elements are
3 3× and 4 4× matrices, respectively, and the group operation is also here the standard matrix multi-
plication. We will denote pose matrices with a capitalized P , that is:

P SE

P SE
3 3

4 4

2

3
×

×

∈ ()
∈ ()

 (a generic pose in 2D)

 (a ggeneric pose in 3D)
	 (3)

Since pure rotations typically have less practical utility in mobile robotics than the more generic
concept of poses (i.e., translations plus pure rotations), in most problems we will deal only with the latter.

As we will see in the next sections, poses are usually represented in a parameterized form instead of
their matrix forms P . The main reason is that pose matrices, while perfectly representing the spatial
transformation, have far more DOFs than the actual poses. The number of independent values needed
to completely specify a spatial pose is 3 or 6 (in 2D or 3D space, respectively), but the number of values
in the matrices is much higher: SE 2() and SE 3()have matrices with 3 3 9× = and 4 4 16× = ele-
ments, respectively.

In general, we will denote pose parameterizations as vectors represented with an uncapitalized letter
p , whose length will depend on the particular parameterization —but which can never be smaller than
the number of spatial DOFs. We will often need to transform between the vector of a pose parameters
and its matrix form, an operation which we will denoted by means of the function M ⋅() , specific for
each parameterization:

P M p
 Pose in
matrix form Pose

parameterization





= () 	

where the inverse function is defined as:

p M P
Pose

parameterization
 Pose in
matrix form





= ()−1 	 (4)

Formally, only the matrices P belong to the SE n() groups. However, in an abuse of notation we
can also say that a pose parameterization p is a member of the groups if we interpret such a statement
as equivalent to M p SE() ∈ ()n .

As shown below, mixing spatial transformations (poses) and spatial locations (points) requires work-
ing with pose P matrices and point vectors of the correct length: although 2D and 3D points are described
by vectors of length 2 and 3, the matrices of 2D and 3D poses have, as said above, sizes of 3 3× and

392

4 4× , respectively. For each point vector a we can define its associated extended vector A by means
of a function V ⋅() which simply appends an extra unit element. That is:

For 2D:

V A V a V:  2 3

1

→ = () ⇒









=













a

a

a

ax

y

x

y 	

For 3D:

V A V a V:  3 4

1

→ = () ⇒












=







a

a

a

a

a

a

x

y

z

x

y

z







	 (5)

After all these preliminary definitions, we are ready to describe the four fundamental geometric
operations regarding poses and points, illustrated in Figure 1:

1. Composition of two poses p1 and p2 : the resulting pose is p2 as if it was expressed with respect to
p1 . That is, as if p1 was the new origin of coordinates for p2 .

2. Inverse composition of two posesp1 and p2 : the resulting pose is p1 “as seen from” p2 .
3. 	 Composition of a pose p and a point a : the resulting point is a “as if” it was expressed in

the coordinate frame defined by p .
4. 	 Inverse composition of a pose p and a point a : the resulting point is a “as seen from” p .

It is worth carefully matching these four definitions with their representations in Figure 1c-f in order
to unambiguously grasp their geometrical meaning.

In order to denote all these operations rigorously, it is common to find in the literature the so-called
“o plus” notation for pose operations, which employs the operators ⊕ and  (Smith, Self, & Cheese-
man, 1988; Thrun, Burgard, & Fox, 2005). Under this notation, the four operations above and their
matrix equivalents (with P M p= () , A V a' = () , etc.) can be shown to become matrix multiplications,
such that:

Operation "o plus" notation Matrix notation

1. Pose-pose compoosition

 Pose-pose inverse composition

 Pose-point comp

2

3

.

. oosition

4. Pose-point inverse composition

p p p
p p p
a

= ⊕
=
=

1 2

1 2
' pp a
a a p

P P P
P P P
A PA
A P A

⊕
=

→
→
→
→

=
=
=
=

−

−'

'

'

1 2

2
1

1

1

 393

An extension to this basic notation is the unary  operator to denote pose inversion. It can be seen
as a special case of pose inverse composition where the pose implicitly assumed at the left of the op-
erator is the identity element of the SE n() group, that is, the origin of coordinates:

Pose inversion:
Pose at the
 origin of
coordinates

p p p' = ≡ 0
 

 p P P P P
I

→ = =− −' 1
0

1 	 (6)

Figure 1. Illustration of the four fundamental geometric operations with poses and points. (a) – (b) Two
arbitrary poses p1 and p2 , and their composition in (c). We also show (d) the pose inverse composition,
(e) the pose-point composition, and (f) the inverse pose-point composition.

394

The usage of this unary operator allows us to restate an alternative formulation of the two opera-
tions involving inverse pose composition (the operations numbered as 2 and 4 above), now in terms of
“normal” (not inverse) pose compositions:

2

4

)

)

 Pose-pose inverse composition

 Pose-point inverse compoosition

p p p p p
a a p p a
= ≡ ()⊕
= ≡ ()⊕

1 2 2 1 
 '

	 (7)

In the next sections, we explore how all these operations can be implemented in practice for the cases
of 2D and 3D geometry.

2. OPERATIONS WITH SE(2) POSES

A SE 2() pose is easily parameterized as a translation in 2D and a rotation, such as:

p =













x

y

θ
	 (8)

Under the convention of positive counterclockwise rotations, the corresponding matrix form reads
as follows in order to satisfy the definitions of the operators ⊕ and  above:

P M p= () ≡
−











cos sin

sin cos

θ θ
θ θ

x

y

0 0 1

	 (9)

The inverse conversion is straightforward in this case, since:

p M P P

M

= () =













→

−

−

1
11 12 13

21 22 23

0 0 1

, with

m m m

m m m

11
13

23
1

21 11P() =











= () =−

m

m with m m or

θ
θ θ, tan ataan 2 ,m m21 11()

	 (10)

Given a 2D pose as a matrix we can easily carry out any of the four pose-point operations in matrix
form. However, since in practice we may be normally interested in the parameterized representations
instead of matrices, it would be valuable to have expressions that directly give us the parameters of the
final poses and points, skipping the explicit operations with the intermediary matrices. Such expressions
are quite simple for 2D geometry, thus we provide all of them below. Due to their utility in several ro-

 395

botics operations (e.g. uncertainty propagation in an EKF) we also provide the corresponding Jacobian
matrices with respect to each argument.

Composition of two poses:

x

y

x x y

c

θ

θ θ










= = ⊕ = () =

+ −
p p p f p p1 2 1 2

1 2 1 2

,

cos sin 11

1 2 1 2 1

1 2

y x y+ +
+












sin cosθ θ
θ θ

	

and its Jacobians:

∂ ()
∂

=
− −

−







×

f p p

p
c

x y

x y1 2

1 3 3

2 1 2 1

2 1 2 1

1 0

0 1

0 0 1

,
sin cos

cos sin

θ θ
θ θ









∂ ()
∂

=
−

×

f p p

p
c 1 2

2 3 3

1 1

1 1

0

0

0

,
cos sin

sin cos

θ θ
θ θ

00 1













	 (11)

Inverse composition of two poses:

x

y

x x y y

i

θ

θ










= = = () =

−() + −
p p p f p p1 2 1 2

1 2 2 1

 ,

cos 22 2

1 2 2 1 2 2

1 2

()
− −() + −()

−













sin

sin cos

θ
θ θ
θ θ

x x y y


	

and its Jacobians:

∂ ()
∂

= −












×

f p p

p
i 1 2

1 3 3

2 2

2 2

0

0

0 0 1

,
cos sin

sin cos

θ θ
θ θ 

∂ ()
∂

=
− − − −() + −()

×

f p p

p
i

x x y y
1 2

2 3 3

2 2 1 2 2 1 2,
cos sin sin cosθ θ θ θθ
θ θ θ θ

2

2 2 1 2 2 1 2 2

0 0 1

sin cos cos sin− − −() − −()
−












x x y y 

	 (12)

Composition of a pose and a point:

a

a

x a a

y a
x

y
pc

x y

x

'

'
' ,

cos sin

sin










= = ⊕ = () =

+ −
+

a p a f p a
θ θ
θ ++









ay cos θ
	

396

and its Jacobians:

∂ ()
∂

=
− −

−











×

f p a

p
pc x y

x y

a a

a a

, sin cos

cos sin
2 3

1 0

0 1

θ θ
θ θ

∂∂ ()
∂

=
−









×

f p a

a
pc , cos sin

sin cos
2 2

θ θ
θ θ

	 (13)

Inverse composition of a pose and a point:

a

a

a x a y

a

x

y
pi

x y'

'
' ,

cos sin








= = = () =

−() + −()
−

a a p f a p
θ θ

xx yx a y−() + −()











sin cosθ θ
	

and its Jacobians:

∂ ()
∂

=
−











∂ ()
∂

×

×

f a p

a

f a p

p

pi

pi

, cos sin

sin cos

,

2 2

2 3

θ θ
θ θ

==
− − − −() + −()

− − −() − −

cos sin sin cos

sin cos cos

θ θ θ θ

θ θ θ

a x a y

a x a

x y

x y yy()











sin θ

	 (14)

Regarding the computation of the inverse of a pose, p , it can be easily done by applying equation
(6) and then equation (12).

3. OPERATIONS WITH SE(3) POSES

A SE 3() pose comprises a pure translation and a pure rotation, the latter belonging to SO 3() . There
exist two main families of parameterizations for this rotational part: triplets of Euler angles and the unit
quaternion. We describe both of them next.

An important remark regarding Euler angles that is barely mentioned in the literature is the existence
of 12 different such parameterizations depending on the order in which the three rotations are applied
to arrive at the desired attitude (Diebel, 2006). Therefore, it becomes crucial to always clearly state the
chosen order, since a reader will not be able to unambiguously guess it. In the following, we will adopt
the so-called yaw-pitch-roll representation, where the names of each rotation follow from their usage in
airplane navigation. If we denote as φ (yaw), χ (pitch) and ψ (roll) the angles of these consecutive
rotations (i.e. each rotation actuates around the already-rotated axes), which are applied in that same
order as sketched in Figure 2a, then we can parameterize a 3D pose as:

 397

Figure 2. (a) The particular convention adopted here for an Euler angles parameterization of 3D rota-
tions. (b) A geometric interpretation of the unit quaternion, where the rotation θ relates to the quater-
nion parameters by θ = ()−cos 1 2qr .

398

p =













x

y

z

φ
χ
ψ

(yaw-pittch-roll parameterization) 	 (15)

The corresponding matrix form of such a pose has the structure:

P M p
R

= () ≡
()













φ χ ψ, ,

x

y

z

0 0 0 1

	 (16)

where the 3 3× rotation matrix R φ χ ψ, ,() can be easily found by concatenating successive rotations
of φ , χ and ψ radians around the z , y and x axes, respectively. Notice that rotations apply over the
successively transformed axes (more on this below), which means that we must use right-hand matrix
multiplications. Therefore, we have:

R R R Rypr z y xφ χ ψ φ χ ψ, ,

:

() = () () ()
1 yaw 2 :pitch 3st nd
� ��� ��� � ��� ���

rrd : roll

� ��� ��� 	

with:

Rz φ
φ φ
φ φ

φ φ
φ φ() =

−










=

−cos sin

sin cos

c s

s c

0

0

0 0 1

0

00

0 0 1

0

0 1 0

0













() =
−





Ry χ
χ χ

χ χ

cos sin

sin cos







=
−













() =

c s

s c

χ χ

χ χ

ψ

0

0 1 0

0

1 0 0

0Rx ccos sin

sin cos

c s

s c

ψ ψ
ψ ψ

ψ ψ
ψ ψ

−












= −







0

1 0 0

0

0








	

such that:

 399

R φ χ ψ
φ χ φ χ ψ φ ψ φ χ ψ φ ψ
φ χ φ χ ψ φ ψ φ χ ψ, ,

c c c s s s c c s c s s

s c s s s c c s s c c() =
− +
+ − φφ ψ

χ χ ψ χ ψ
s

s c s c c−












	 (17)

It is common (and frustrating for students) to find different and apparently incompatible definitions
for what are the yaw-pitch-roll angles. We just mentioned that they are rotations around the (“dynamic”)
z , y , and x axes, with “dynamic” meaning that successive rotations take into account how the axes
were transformed by previous rotations. An alternative definition states that roll-pitch-yaw angles (notice
the reverse order) are defined as rotations around the global (or “fixed”) x , y , and z axes. In spite of
the apparent contradictory definitions, if we realize that rotating around global axes is achieved by left-
hand matrix multiplication, it turns out that the roll-pitch-yaw parameterization defines this rotation
matrix:

R R R Rrpy z y xψ χ φ φ χ ψ, ,

:

() = () () ()
3 yaw 2 :pitch 1rd nd
� ��� ��� � ��� ���

sst : roll

� ��� ��� 	 (18)

which coincides with the previous rotation in equation (17). To make it clear: any rotation has exactly
the same yaw, pitch, and roll parameters, disregarding whether it is measured under the “dynamic” axes
yaw-pitch-roll convention or under the “fixed” axes roll-pitch-roll convention. The trick here is that
rotations are applied in reverse order in the two conventions but the difference between “dynamic” and
“fixed” axes modifies the side on which rotation matrices accumulate, hence finally we obtain exactly
the same rotation matrix.

Once we have addressed this probable source of confusion, we must mention one of the problem-
atic aspects of the yaw-pitch-roll parameterization: the degeneration of one degree of freedom when the
pitch (χ) approaches ±90º —the so-called gimbal lock. Indeed, if χ = ±90º we have cosχ = 0 and
sinχ = ±1 , which leads to this degenerated rotation matrix:

R φ ψ
φ ψ φ ψ φ ψ φ ψ
φ ψ φ ψ φ ψ φ ψ, º ,

c s s c c c s s

s s c c s c c s±() =
± − ± +
± + ± −90

0

0

1 0 0












= 	

(using well-known trigonometric expressions)

=
− () ()
() ()













0

0

1 0 0

sin cos

cos sin

φ ψ φ ψ
φ ψ φ ψ
 

 




=

−











=α φ ψ
α α
α α





0

0

1 0 0

sin cos

cos sin 	 (19)

where the other two angles (yaw and roll) do not represent independent rotations anymore. Another
important inconvenient of this parameterization, derived from the gimbal lock problem, is the lack of a
unique inverse function for the matrix function in equation (16). It can be shown that the matrix-to-
parameterization function M − ⋅()1 becomes in this case:

400

p M P P= () =






−1

11 12 13 14

21 22 23 24

31 32 33 34

0 0 0 1

, with

m m m m

m m m m

m m m m









→ () =







−M P1

x

y

z

φ
χ
ψ







	

with

x m

y m

z m

and

m m m

=
=
=










= − +()
= −

14

24

34

31 11
2

21
2χ

χ

atan 2 ,

if 990
0

90

23 13

21 11

º
atan 2 ,

º
atan 2 ,

→
= − −()
=







≠ →
= − −

φ
ψ

χ
φ

m m

m m
if

(()
= − −()







= + →
= ()
=



ψ

χ
φ
ψ

atan 2 ,

º
atan 2 ,

m m

m m

32 33

23 1390
0

if 














	 (20)

To end with our treatment of Euler angles, we must mention that inverting a pose, p , is more eas-
ily performed by first computing the pose in matrix form, P M p= () , then inverting that matrix and
then applying equation (20) to retrieve the inverse pose parameters. It must be noticed that inverting
P SE∈ ()3 matrices can be achieved without actually performing the costly matrix inversion: it can be
shown that inverting P SE∈ ()3 is equivalent to transposing the 3 3× rotational part and using the
following expression for the translational part:

P
i j k t−

−

=









=






1

1
1 1 1

2 2 2

3 3 30 0 0 1

0 0 0 1

i j k x

i j k y

i j k z








=

− ⋅
− ⋅
− ⋅

−1

1 2 3

1 2 3

1 2 3

0

i i i

j j j

k k k

i t
j t
k t

 00 0 1













	

(with a b⋅ standing for the dot product)	 (21)

The complexity of the equations involved in every operation with Euler angles parameterizations
prevents us from obtaining simple and closed-form equations for directly computing the parameters of
the poses resulting from geometric operations, as we did in the previous section for SE 2() poses. How-
ever, this is still possible with the unit quaternion representation, which we address next. Notice that, in
spite of its defects, the yaw-pitch-roll parameterization is widely used for the highly intuitive meaning
of its parameters.

Another popular parameterization of 3D poses is by means of a 3D translation plus a unit quaternion
for the attitude, such that:

 401

p =













x

y

z

q

q

q

q

r

x

y

z



(unit quaternion parameterization)

 (with q q q qr x y z
2 2 2 2 1+ + + =)

	 (22)

For better grasping the geometry of quaternions it reveals as more convenient to consider its four

elements as two differentiated parts (Horn, 2001): the scalar qr and the vector q q qx y z

T() . Any arbitrary
rotation in the three-dimensional space can be interpreted as one single rotation (of magnitude θ radians)

around a conveniently-chosen axis of rotation, say, a unitary vector v = ()v v vx y z

T
. It can be shown

that the qr component of a unit quaternion is related to the magnitude of the rotation, while the vector
part indicates the rotation axis—see Figure 2b. More concretely:

q

q

q

q

v

v

v

r

x

y

z

x

y

z

=












=













cos

sin

θ

θ

2

2


	 (23)

The matrix form of the pose represented as a unit quaternion can be obtained as:

P M p= () ≡

+ − − − +
+

q q q q q q q q q q q q x

q q q q
r x y z x y r z z x r y

x y r z

2 2 2 2 2 2

2

() ()

()) ()

() ()

q q q q q q q q y

q q q q q q q q q
r x y z y z r x

z x r y y z r x r

2 2 2 2

2

2

2 2

− + − −
− + −qq q q zx y z

2 2 2

0 0 0 1

− +













	 (24)

As with the case of the Euler angles, it is not easy to invert this function. Some methods based on
eigendecomposition have been proposed in the literature (Bar-Itzhack, 2000), but probably the easiest
way to retrieve the quaternion parameters is to firstly obtain the yaw (φ), pitch (χ) and roll (ψ) pa-
rameters as in equation (20), then applying the following equivalence relations existing between both
parameterizations:

402

q

q

r

x

= +

= −

cos cos cos sin sin sin

sin cos cos cos

ψ χ φ ψ χ φ

ψ χ φ ψ
2 2 2 2 2 2

2 2 2 2
ssin sin

cos sin cos sin cos sin

cos cos

χ φ

ψ χ φ ψ χ φ

ψ χ

2 2

2 2 2 2 2 2

2 2

q

q

y

z

= +

= ssin sin sin cos
φ ψ χ φ
2 2 2 2
−

	 (25)

An advantage of quaternions is the simplicity of performing some operations with them. For ex-
ample, it is easy to compute the inverse of a quaternion, that is, p . The rotational part is inverted be

simply inverting the vector formed by q q qx y z

T() . It might seem more reasonable to inverse the sign
of qr instead, but notice that the actual rotation angle θ is related to qr by θ = ()−cos 1 2qr , as follows
from equation (23) above. Therefore, θ is limited to the range of nonnegative values 0,π[] , and the sign
of qr would be ignored. The common criterion is to always employ nonnegative values for qr . Regard-
ing the inversion of the translational part of the pose p , it involves the function fpi ⋅() introduced in
equation (30). To sum up, we end up with:

p p

f p

'

,

= =

[]()

−
−
−














pi

T

r

x

y

z

q

q

q

q

0 0 0



	 (26)

Finally, an operation which is specific to this particular parameterization is the quaternion normaliza-
tion. Its aim is to assure that q q q qr x y z

2 2 2 2+ + + equals the unity, that is:

q

q

q

q

q

r

x

y

z

r

'

'

'

'

()
| | (qn













= = =
+

f q
q
q

1
2 qq q q

q

q

q

q
x y z

r

x

y

z

2 2 2 1 2+ +












) /

	 (27)

This function, which must be employed after obtaining quaternion estimates from an EKF or any
other least-squares estimation algorithm that do not respect the unit-length constraint, should be also
applied when directly working with quaternions in order to eliminate potential numerical inaccuracies.

We can now address the implementation of the four fundamental geometric operations, which we will
describe for the unit-quaternion parameterization only since it leads to relatively simple expressions, in
comparison to Euler angles.

Composition of two poses:

 403

x

y

z

q

q

q

q

r

x

y

z













=

= () =

= ⊕p p p

p f f p p f p p

f p

1 2 1 2

1

1 2

2 2

qn c c

pc

with

x y

(,) , (,)

(,[zz

q q q q q q q q

q q q q q q q q

T

r r x x y y z z

r x r x y z y

2

1 2 1 2 1 2 1 2

1 2 2 1 1 2 2

])

− − −
+ + − zz

r y r y z x z x

r z r z x y x y

q q q q q q q q

q q q q q q q q

1

1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1

+ + −
+ + −













	

and its Jacobians:

∂
∂

=

∂

∂

− − −

×

×

f p p
p

f p

p

1 2

1

1

1

c

pc
T

r x y z

x y z

q q q q(,)

(,[])

7 7

2 2 2

3 7

2 2 2

22

4 3 2 2 2 2

2 2 2 2

2 2 2 2

0 × −
−

−





 q q q q

q q q q

q q q q

x r z y

y z r x

z y x r









∂
∂

=

∂

×

f p p
p

f p

1 2

2

c

pc

(,)

(

7 7

11 0

0

,[])

[]

x y z

x y z

q q q q

q q

T

r x y z

x r

2 2 2

2 2 2 3 3

3 4

1 1 1 1

4 3 1

∂

− − −
×

×

×



11 1 1

1 1 1 1

1 1 1 1

−
−

−









q q

q q q q

q q q q

z y

y z r x

z y x r 



	 (28)

where fpc and the corresponding Jacobian submatrix will be defined in equation (29) below.

2. 	 Inverse composition of two poses: In this case it is more convenient to employ the equivalence
p p p p p= ≡ ()⊕1 2 2 1  , with p2 evaluated as shown in equation (26) and the pose composi-
tion performed as just described above.

Composition of a pose and a point:

404

a

a

a

x a q

x

y

z

pc

x y

'

'

'

'

' ,

(












= = ⊕

= () =

+ + −

a p a

a f p a

2 2 ++ + − + +





+ + +

q a q q q q a q q q q a

y a q q q q

z x x y r z y r y x z z

y r z x y

2

2

) () ()

()) () ()

() (

a q q a q q q q a

z a q q q q a q

x x z y y z r x z

z x z r y x

− + + −





+ + − +

2 2

2 rr x y z y x y zq q q a q q a+ − +















) ()2 2

	

and its Jacobians:

∂ ()
∂

=
∂ ()
∂






×

f p a

p

f p apc pc

qrqxqyqz

, ,

[]
3 7

1 0 0

0 1 0

0 0 1








	

with

∂ ()
∂

=

− + + − + +

f p apc

z y y z y y z z y x x y r

qrqxqyqz

q a q a q a q a q a q a q

,

[]

2

2 aa q a q a q a

q a q a q a q a q a q a q a q a
z z x r y x z

z x x z y x x y r z x x z z r x

− − +
− − − + −

2

2 2qq a q a

q a q a q a q a q a q a q a q a q a q
z y y z

y x x y z x r y x z r x z y y z x x y

+
− + + − − + − +2 2 aay













	

and

∂

∂
=

− − − +

+ −
×

f p a

a
pc

y z x y r z r y x z

r z x y x

q q q q q q q q q q

q q q q q
(,)

3 3

2 2

2

1
2

1
2

22 2

2 21
2

− −

− + − −







q q q q q

q q q q q q q q q q

z y z r x

x z r y r x y z x y








	 (29)

Inverse composition of a pose and a point:

 405

a

a

a

x

y

z

'

'

'

'












= =a a p

a f a p' ,

() ()() ()() (

= () =

− + − + − + − − +

pi

x y z x x y r z y ra x q q a x q q q q a y q2 2 2 qq q q a z

a y q q q q a x q q a

y x z z

y r z x y x x z

+ −





− + + − − +

)()

() ()() ()(2 2 2
yy y z r x z

z x z r y x r

y q q q q a z

a z q q q q a x q

− + − −





− + − − +

) ()()

() ()() (2 qq q q a y q q a zx y z y x y z+ − − + −

















)() ()()2 2


and its Jacobians:

∂

∂
=

− + + − +
− +

f a p

a
pi

y z x y z y x z

z x

q q q q qrq qrq q q

qrq q q
(,)

()1 2 2 2 2 2

2 2

2 2

yy x z y z x

x z y x y z x y

q q q q qrq

q q qrq qrq q q q q

1 2 2 2

2 2 2 2 1 2

2 2

2

− + +
+ − + − +

()

(22)












	

∂

∂
=

+ − − − −

−

f a p

p
pi

y z r z x y r y x z

r z x y

q q q q q q q q q q

q q q q

(,)

2 2 1 2 2 2 2

2 2

2 2

22 2 1 2 2

2 2

2 2q q q q q q
q q q q

q q q q

x z r x y z
pi

r x y z

r y x

+ − − −
∂

∂{ }
− −

f a p(,)

, , ,

zz r x y z x yq q q q q q2 2 2 2 12 2− + −











�

	

with

∂

∂{ }
=

− + − +

f a ppi

r x y z

y z y z x y

q q q q

q z q y q y q z q y q x

(,)

, , ,

2 2 2 2 2 4∆ ∆ ∆ ∆ ∆ ∆ 22 2 2 4

2 2 2 4 2 2 2

qr z q z qr y q x

q x q z q x q y q z q x
x z

z x y x r x

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆

− −
− − − + qq z q x q y q z

q y q x q x qr y q z q y q
z r z y

x y z x z

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆

2 4 2

2 2 2 2 4 2 2

− +
− + − − rr x q z q x q yy x y∆ ∆ ∆ ∆− +











4 2 2

	

(30)

where for the sake of readability we introduced these replacements:

∆

∆

∆

x a x

y a y

z a z

x

z

y

= −

= −

= −

	 (31)

406

As a final note to this appendix, we can mention that all the operations described here are readily
available in the MRPT C++ libraries. More details about these geometry transformations and many
others can be found in the report (Blanco, 2010).

REFERENCES

Bar-Itzhack, I. Y. (2000). New method for extracting the quaternion from a rotation matrix. Journal of
Guidance, Control, and Dynamics, 23(6), 1085–1087. doi:10.2514/2.4654

Blanco, J. L. (2010). A tutorial on SE(3) transformation parameterizations and on-manifold opti-
mization. University of Málaga. Retrieved Mar 1, 2012, from http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.172.7103

Diebel, J. (2006). Representing attitude: Euler angles, unit quaternions, and rotation vectors. University of
Stanford. Retrieved Mar 1, 2012, from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.5134

Horn, B. K. P. (2001). Some notes on unit quaternions and rotation. Massachusetts Institute of Technol-
ogy. Retrieved Mar 1, 2012, from http://people.csail.mit.edu/bkph/articles/Quaternions.pdf

Smith, R. C., & Cheeseman, P. (1986). On the representation and estimation of spatial uncertainty. The
International Journal of Robotics Research, 5(4), 56–68. doi:10.1177/027836498600500404

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, MA: The MIT Press.

407

Appendix B: Resampling Algorithms

A common problem of all particle filters is the degeneracy of weights, which consists of the unbounded
increase of the variance of the importance weights ω[]i of the particles with time. The term “variance
of the weights” must be understood as the potential variability of the weights among the possible dif-
ferent executions of the particle filter. In order to prevent this growth of variance, which entails a loss
of particle diversity, one of a set of resampling methods must be employed, as it was explained in chap-
ter 7.

The aim of resampling is to replace an old set of N particles by a new one, typically with the same
population size, but where particles have been duplicated or removed according to their weights. More
specifically, the expected duplication count of the i th− particle, denoted by Ni , must tend to N iω[] .
After resampling, all the weights become equal to preserve the importance sampling of the target pdf.
Deciding whether to perform resampling or not is most commonly done by monitoring the Effective
Sample Size (ESS). As mentioned in chapter 7, the ESS provides a measure of the variance of the par-
ticle weights, e.g. the ESS tends to 1 when one single particle carries the largest weight and the rest have
negligible weights in comparison. In the following we review the most common resampling algorithms.

1. REVIEW OF RESAMPLING ALGORITHMS

This section describes four different strategies for resampling a set of particles whose normalized weights
are given by ω[]i , for i N= 1, ..., . All the methods will be explained using a visual analogy with a
“wheel” whose perimeter is assigned to the different particles in such a way that the length of the pe-
rimeter associated to each particle is proportional to its weight. Therefore, picking a random direction
in this “wheel” implies choosing a particle with a probability proportional to its weight. For a more
formal description of the methods, please refer to the excellent reviews in (Arumlampalam, Maskell,
Gordon, & Clapp, 2002; Douc, Capp, & Moulines, 2005). The four methods described here have O N()
implementations, that is, their execution times can be made to be linear with the number of particles
(Carpenter, Clifford, & Fearnhead, 1999; Arumlampalam, Maskell, Gordon, & Clapp, 2002).

Multinomial resampling: It is the most straightforward resampling method, where N independent
random numbers are generated to pick a particle from the old set. In the “wheel” analogy, illustrated in
Figure 1, this method consists of picking N independent random directions from the center of the wheel
and taking the pointed particle. This method is named after the fact that the probability mass function
for the duplication counts Ni is a multinomial distribution with the weights as parameters. A naïve
implementation would have a time complexity of O N Nlog() , but applying the method of simulating
order statistics (Carpenter, Clifford, & Fearnhead, 1999), it can be implemented in O N() .

408

Figure 1. The multinomial resampling algorithm

Figure 2. The residual resampling algorithm. The shaded areas represent the integer parts of
ω[]i N1() . The residual parts of the weights, subtracting these areas, are taken as the modified weights
ω[]i .

 409

Figure 4. The systematic resampling algorithm

Figure 3. The stratified resampling algorithm. The entire circumference is divided into N equal parts,
represented as the N circular sectors of 1 N perimeter lengths each.

410

Residual resampling: This method comprises two stages, as can be seen in Figure 1. Firstly, par-
ticles are resampled deterministically by picking N Ni

i= 

ω

[] copies of the i th− particle—where x 
stands for the floor of x , the largest integer above or equal to x . Then, multinomial sampling is per-
formed with the residual weights: ω ω[] [] /i i

iN N= − (see Figure 1-4).
Stratified resampling: In this method, the “wheel” representing the old set of particles is divided

into N equally-sized segments, as represented in Figure 3. Then, N numbers are independently gener-
ated from a uniform distribution like in multinomial sampling, but instead of mapping each draw to the
entire circumference, they are mapped within its corresponding partition out of the N ones.

Systematic resampling: Also called universal sampling, this popular technique draws only one
random number, i.e., one direction in the “wheel,” with the others N −1 directions being fixed at 1 N
increments from that randomly picked direction.

2. COMPARISON OF THE DIFFERENT METHODS

In the context of Rao-Blackwellized Particle Filters (RBPF), where each particle carries a hypothesis of
the complete history of the system state evolution, resampling becomes a crucial operation that reduces the
diversity of the PF estimate for past states. We saw the application of those filters to SLAM in chapter 9.

Figure 5. A simple benchmark to measure the loss of hypothesis diversity with time in an RBPF for the
four different resampling techniques discussed in this appendix. The multinomial method clearly emerges
as the worst choice.

 411

In order to evaluate the impact of the resampling strategy on this loss, the four different resampling
methods discussed above have been evaluated in a benchmark that measures the diversity of different
states remaining after t time steps, assuming all the states were initially different. The results, displayed
in Figure 5, agree with the theoretical conclusions in Douc, Capp, and Moulines (2005), stating that
multinomial resampling is the worst of the four methods in terms of variance of the sample weights.
Therefore, due to its simple implementation and good results, the systematic method is recommended
when using a static number of particles in all the iterations. If a dynamic number of samples is desired,
things get more involved and it is recommended to switch to a specific particle filter algorithm which
simultaneously takes into account this particularity while also aiming at optimal sampling (Blanco,
González, & Fernandez-Madrigal, 2010).

REFERENCES

Arumlampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for
online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2),
174–188. doi:10.1109/78.978374

Blanco, J. L., González, J., & Fernández-Madrigal, J. A. (2010). Optimal filtering for non-parametric
observation models: Applications to localization and SLAM. The International Journal of Robotics
Research, 29(14), 1726–1742. doi:10.1177/0278364910364165

Carpenter, J., Clifford, P., & Fearnhead, P. (1999). Improved particle filter for nonlinear problems. IEEE
Proceedings on Radar. Sonar and Navigation, 146(1), 2–7. doi:10.1049/ip-rsn:19990255

Douc, R., Capp, O., & Moulines, E. (2005). Comparison of resampling schemes for particle filtering.
In Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, (pp.
64–69). IEEE.

412

Appendix C: Generation of Pseudo-Random
Numbers

Computers are deterministic machines: if fed with exactly the same input data, a program will always
arrive at exactly the same results. Still, there exist certain families of algorithms, which require some
sort of randomness. The most important cases studied in this book are the different kinds of Monte
Carlo sequential filters, or particle filters, applied to mobile robot localization and SLAM. Other practi-
cal applications of randomness in mobile robotics include randomized path-planning methods and the
generation of noise and errors in simulations. In all these cases, our goal is being able to draw samples
from some given (discrete or continuous) probability distribution.

The closest to real randomness that we can achieve with a computer program are the so called
Pseudo-Random Number Generators (PRNG). The design of such algorithms is a complicated issue,
which requires both a solid mathematical ground and some doses of art and creativity. Unfortunately, it
seems that the importance of choosing a “good” PRNG has been often overlooked in the past, sometimes
leading to disastrous results as was the case of the RANDU algorithm, designed for the IBM System/360
and widely used in the 60s-70s (Press, Teukolsky, Vetterling, & Flannery, 1992).

Since all PRNG methods output (alleged) “random” numbers, it may seem strange at a first glance
the claim that some PRNGs are of better quality than others. To understand this, we must firstly focus
on what all PRNG methods have in common. All PRNGs consist of a sequence of mathematical opera-
tions which are applied to some internal state every time a new pseudo-random number is required. As a
result, we obtain one random sample and get the PRNG’s internal state modified. Since the operations are
(typically) the same for each new sample, the evolution of the internal state over time is the only reason
why each sample differs from the previous one—PRNGs are deterministic algorithms! The initial state
of a PRNG is set by means of the so called seed of the algorithm, consisting of one or more numbers.
As one would expect, feeding the same seed to the same PRNG algorithm and requesting an arbitrary
number of random samples will always gives us exactly the same sequence of pseudo-random numbers.

The quality of a PRNG depends on certain statistical characteristics of the so generated sequences.
Two of the most important measures of the a PRNG “real randomness” are: (1) its period, i.e. how many
samples can be generated before the exact sequence commences to repeat itself over and over again,
and (2) the statistical correlation between each sample and the preceding or following ones. An ideal
PRNG would have an infinite period and a correlation of exactly zero for any given pairs of samples
in the sequences associated to any arbitrary seed. Existing implementations successfully achieve these
goals up to different degrees.

From a practical perspective, the reader interested in generating random samples will do so in the
context of some particular programming language. At present, C and C++ maintain their positions
among the most widely used languages (Tiobe, 2012). Even if a user does not directly use them, most
modern languages inherit the basic syntax of C for sequential programming, and the implementations

 413

of many popular languages rely on C and its standard library under the hood. Unfortunately, the C and
C++ language standards do not specify what algorithm should be behind the PRNG functions, which
in these languages are rand() and random(). Most C library vendors implement both based on a Linear
Congruential Generator (LCG) which, as will be discussed below, is not the best choice. Furthermore,
another reason to discourage employing those two standard functions is that there exist no guarantees
that the same program will behave exactly the same under different operating systems or even if it is
built with different compilers. The implementation of pseudo-random numbers in MATLAB follows a
totally different approach (Marsaglia, 1968) and can be considered as of the highest quality.

In the following, we will describe algorithms for generating high-quality uniformly distributed num-
bers from which we will see how to generate other common distributions. The algorithms described
here can be found as part of the C++ MRPT libraries (MRPT, 2011). Additionally, some of them have
been recently approved by the corresponding ISO standardization committee as part of the latest C++
language standard (ISO/IEC 14882:2011), under the namespace std::tr1.

1. SAMPLING FROM A UNIFORM DISTRIBUTION

We start with the most basic type of PRNG: the one producing integer numbers following a discrete
uniform distribution. For convenience, assume that the support of the probability distribution is the range
[,]0 1m − ⊂  . If we start with a seed value of i0 and denote the k th− sample returned by our PRNG
as ik , we can express our goal as:

i U i m kk  ; , ,0 1 1−() ∀ ≥ (discrete pmf) 	 (1)

Since PRNGs for all other probability distributions (e.g. continuous uniform pdf, Gaussians, etc.)
can be derived from a discrete uniform PRNG, it comes at no surprise that this type of generators had
received a huge attention by researchers during the last two decades.

Without doubt, the most popular such PRNG methods belong to the family of Linear Congruential
Generators (LCGs), which have been employed inside programming language libraries since the 60s.

Algorithm 1. The generic LCG algorithm. Note that the index k only has meaning for the invoker of the
algorithm and is not used at all internally.

algorithm draw_uniform_LCG
Inputs: none
Outputs: ik+1

(a pseudo-random sample, as an unsigned integer)

Internal state: ik (an unsigned integer)
1: if (this is the first call) // Do we have to initialize from seed?
 1.1: i seedk ←
2: i a i c mk k+ ← +()1 mod
3: i ik k← +1

 // Save state for the next call

414

Their popularity follows from their simplicity: as it can be seen in Algorithm 1, they only involve one
multiplication, one addition and one modulus calculation (i.e. “wrapping” numbers above the given limit).

Different LCG implementations only differ in the choice of its parameters: the multiplier a , the
constant c and the modulus m . The quality of the resulting random numbers vitally depends on a care-
ful election of them. Some of the best combinations attainable in practice by an LCG were reported in
Park and Miller (1988) to be c = 0 , m = −2 131 and a equaling either 16807, 48271, or 69621.

However, LCG algorithms in general (no matter what parameters you use) should be avoided if high-
quality random numbers are desired, e.g., when performing a Monte Carlo simulation with tens of mil-
lions of random samples. There exist a variety of reasons that conspire to make LCGs undesirable: the
important correlation existing between consecutive numbers for many choices of the parameters, a
negligence in the ANSI C specification which might make standard library PRNG implementations (i.e.
random() and rand()) to have periods as short as 215 , etc. (Press, Teukolsky, Vetterling, & Flannery,
1992).

Instead, we strongly recommend using other PRNG algorithms. A good candidate is the Mersenne
twister (Matsumoto & Nishimura, 1998), whose popular implementation known as MT19937 is
sketched in Algorithm 2. The method is named after its extremely large period of 2 119937 − , or
roughly 4 315 106001. ⋅ . As can be seen in the pseudocode, the method actually generates random num-
bers in blocks of 624 samples, then outputs them one by one until all its elements have been used;
then a new block is computed. The resulting natural numbers approximately follow the discrete uni-
form distribution U 0 2 132, −().

Up to this point we have seen how to draw samples from a discrete uniform distribution
i U i mk  ; ,0 1−() . If we needed instead samples from a continuous uniform distribution, such as
x U x x xk min max ; ,() , we would easily generate the latter from the former as shown in Algorithm 3.
Notice that the so obtained real numbers will be all spaced at intervals determined by ∆ , which for a
typical situation (32bit PSRG algorithm and a 64bit type for floating point numbers) will be several
orders of magnitude larger than the machine precision or “epsilon” (i.e. the smallest representable num-
ber larger than zero). However, this should not be seen as an inconvenience since the accuracy will be
actually determined by the ratio between the size of the pdf domain (x xmax min−) and this smallest step
(∆). This ratio is given by m −1 , which is high enough (typically 2 132 −) as to assure an excellent
approximation of a continuous pdf.

2. SAMPLING FROM A 1-DIMENSIONAL GAUSSIAN

Although uniformly distributed numbers may find its utility in mobile robotics, Gaussian distributions
hold the undisputed first place in the list of continuous distributions regarding their number of practical
applications. We address here the unidimensional case, leaving the more complex multivariate Gaussian
distribution for the next section.

The generic unidimensional Gaussian has an arbitrary mean µ and variance σ2 , such that a sequence
of numbers y y1 2, , ... drawn from that pdf can be represented as:

y N yk  ; ,µ σ2()	 (2)

 415

Algorithm 2. The 32bit version of the MT19937 algorithm for generating high-quality pseudo-random
integer numbers. Note that the operation X N>> stands for a right shift of X by N bits, padding
with zeros, X Y⊕ is the bitwise exclusive or (xor) operation and X Y& is the bitwise and operator.
The constants employed in the algorithm are: N = 624 (state length), M = 397 (a period),
L = 1812433253 (an arbitrarily-chosen multiplier for the auxiliary LCG), A = 2567483615 (from
the matrix involved in the underlying linear recurrent formula), B = 2636928640, C = 4022730752,
u = 11, s = 7, l = 18, and t = 15. For further details, please refer to Matsumoto and Nishimura (1998).

algorithm draw_uniform_MT19937_uint32
Inputs: none
Outputs: ik+1

 (a pseudo-random sample in the range 0 2 132, −



 ⊂ )

Internal state: b N0 1... − (a vector of N 32bit unsigned integers)
 j (index for next output number from b)

1: if (this is the first call) // Do we have to initialize from seed?
 1.1: j ← 0
 1.2: b seed0 ←

 1.3: b j b bLj j j← + ⊕ >>()()



− −lowest 32bits of 1 1 30 // An auxiliary LCG

2: if (j N≥) // Need to generate the vector b ?
 2.1: j ← 0 // Reset index
 2.2: for each i N∈ −[]0 1,

 2.2.1: y
b

i

i←
←
←

bit most significant bit of

bits 0...30 31 least si

31

ggnificant bits of b i N+()





 1 mod

 2.2.2: b b yi i M N i← ⊕ >>()+()mod 1
 2.2.3: only if yi is odd: b b Ai i← ⊕
3: y b b uk k← ⊕ >>()
4: y y y s B← ⊕ <<()()&

5: y y y t C← ⊕ <<()()&

6: i y y lk+ ← ⊕ >>()1 // The output random sample
7: j j← + 1 // Increment index for the next call

Algorithm 3. The wrapper for the MT19937 algorithm in case of generating pseudo-random numbers
approximating a continuous uniform distribution. Here, m stand for the amount of different integer
values provided by Algorithm 2, that is, m = 232 .

algorithm draw_uniform_MT19937_real
Inputs: x xmin max, (the limits of the uniform distribution domain)
Outputs: xk (a pseudo-random sample in the range x x

min max
,



)

Internal state: (none)
1: i x xk max min← ()draw uniform MT19937 uint32_ _ _ ,

2: ∆ =
−
−

x x

m
max min

1
3: x x ik min k= + ⋅∆

416

Using the rules for linear transformations of r.v.s described in chapter 3 section 8 (“Scaling and
Offsetting a Continuous r.v.”), it is easily shown that drawing samples from an arbitrary Gaussian dis-
tribution can be achieved by sampling a new r.v. zk from a standard normal distribution (with a mean
of zero and unit variance) and then applying a linear transformation:

z N z y z y N yk k k k ; , , ; ,0 1 2() = + → ()µ σ µ σ 	 (3)

Therefore, we can focus on generating samples from the standard normal distribution N 0 1,() . There
exist several proposed algorithms to convert samples (x) from a uniform distribution, obtained as shown
in the previous section, into samples (z) from a standard normal pdf. Since most of them rely on the
fundamental rule for r.v. transformation already introduced in chapter 3, we repeat it here again for
convenience.

Assume we have a (let it be multivariate) r.v. x which is transformed into a different r.v. z by means
of a function z g x= () . If we denote their density functions as fx x() and fz z() , and the inverse of the
transformation as x g z= ()−1 respectively, it can be shown that in some usual cases both pdfs are re-
lated by (refer to chapter 3 section 8):

f fz x g
z g z J z() (()) det= ()()−

−
1

1 	 (4)

where J
g−1 stands for the Jacobian matrix of the inverse transformation. This expression has an insight-

ful geometrical interpretation, as it was represented in chapter 3 Figure 8 for the particular case of a
scalar function.

One of the most widely-spread methods for generating Gaussian samples for its simplicity is the
Box-Muller transform in polar coordinates (Devroye, 1986; Press, Teukolsky, Vetterling, & Flannery,
1992), which we will describe here—for an extensive review of other 15 different methods the reader
can refer to Thomas, Leong, Luk, and Villaseñor (2007). This technique takes as input a pair of random
samples from a uniform distribution and generates a pair of independent (uncorrelated) samples that
follow a standard normal pdf. It is therefore convenient to approach the method as a transformation of
multivariate r.v.s of dimension two. Let v denote a vector comprising:

v =









()
()







ρ
θ

ρ
θ π

'
,

' ,

,
such as





U

U

0 1

0 2
	 (5)

We will interpret ρ ρ= ' (that is, ρ ρ' = 2) and θ as the polar coordinates (distance and angle,
respectively) of a point in the plane, whose position therefore is constrained to the unit circle centered
at the origin. The Box-Muller transformation proposes the following change og variables:

 417

y g v= ()









=

−

−












y

y
1

2

2

2

log ' cos

log ' sin

ρ θ

ρ θ

	 (6)

which can be demonstrated to leave two Gaussian samples in the vector y . To demonstrate this, we can
apply equation (4). By dividing and squaring and summing the two equations of g v() above, we can
easily arrive at the inverse transformation function:

v g y= ()









= 









−

− +()

−

1

1
2

1 2

1

1
2

2
2

1
2

ρ
θ

π

'

tan

e

y

y

y y















	 (7)

whose Jacobian, and the absolute value of its determinant, read:

J
g−
=













=
−

1

1 2

1 2

1

d
dy

d
dy

d
dy

d
dy

y
ρ ρ

θ θ

' '
ee y e

y

y y

y

y y

y y y y− +() − +()
−

−
+

−
+





1
2

2

1
2

2

1
2

2
2

1

1
2

2
2

1
2

2
2

1
2

2
2

1
2

1
2π π









() = − +
+

−

− +
det J

g 1

1
21

2
1
2

2
2

1
2

2
2

1
2

π
y y

y y
e

y yy y y
e

2
2

1
2

2
21

2

1
2

() − +()
=
π

	 (8)

and by replacing this result into equation (4) we arrive at the pdf of the transformed variable y :

f fy x

g

y g y() (())= −

−

1

1
Uniform distribution
where is defined

� ������ ����� det J z y
g− ()() = ∀ ∈

− +()
1

1
2

2
21

2

1
2

π
e

y y
, unit circle 	 (9)

Realize how there exists no term where the two components of y appear multiplying to each other,
thus we can easily deduce that both are uncorrelated and that they follow an exact standard normal
distribution, which was our goal:

f e e e
y y y y

y y()= =













− +() − −1

2
1

2

1

2

1
2

1
2

1
21

2
2
2

1
2

2
2

π π π







→
()
()







y N

y N
1

2

0 1

0 1





,

,

	 (10)

418

To illustrate this method, we have depicted in Figure 1 a number of random samples for the original
r.v.s and the histograms of the transformed ones, which clearly match the expected theoretical pdf.

Finally, we must address one optimization that is employed in virtually all implementations. In order
to avoid evaluating the trigonometric functions of equation (6) another change of variables is introduced:
instead of starting from uniform samples of ρ ' and θ , we generate instead pairs of variables x1 and x2
such that, interpreted as two dimensional coordinates (in the x and y axes), are samples uniformly
drawn from the unit circle—as shown in Figure 1a. One easy way to achieve this is by rejection sampling:
first, we generate samples for x1 and x2 in the square region −[]× −[]1 1 1 1, , using any of the uniform
PRNGs introduced above, and then the samples are accepted only if they fall within the unit circle;
otherwise, they are thrown away and the process is repeated. Notice that about 21.46% of the samples
will be discarded in this procedure, as follows from the areas of the square and the circle, i.e.,

Figure 1. (a) Two-dimensional random samples uniformly distributed on the unit circle. (b) – (c) If we
transform those samples by means of the Box-Muller transformation y g v= () and plot the histograms
for each of the two output components independently, we can verify how they follow a standard normal
distribution. The theoretical pdf of N 0 1,() has been overlaid for comparison. The mismatch between
experimental histograms and the theoretical pdf is only due to the reduced number of samples (5000)
employed here for illustrative purposes.

 419

2 1 2 0 21462 2 2−() =π / . . Once we have a valid sample within the unit circle, we apply the transforma-
tion ρ ' = +x x1

2
2
2 and θ = ()−tan /1

2 1x x , from which follows:

cos
'

sin
'

θ
ρ

θ
ρ

=
+

=

=
+

=

x

x x

x

x

x x

x

1

1
2

2
2

1

2

1
2

2
2

2

	 (11)

It can be shown that by doing so, both ρ ' and θ follow uniform distributions as required initially
by the algorithm. The complete procedure has been summarized in Algorithm 4.

3. SAMPLING FROM AN N-DIMENSIONAL GAUSSIAN

After all the definitions in previous sections, we are finally ready to address the distribution with the
most practical applications in probabilistic robotics. Our aim here will be drawing samples from an n −
dimensional multivariate Gaussian distribution such as:

y yk N ; ,µ Σ() 	 (12)

Algorithm 4. An implementation of a PRNG for the standard normal distribution using the Box-Muller
transformation (based on Devroye, 1986; Press, Teukolsky, Vetterling, & Flannery, 1992)

algorithm draw_standard_Gaussian
Inputs: none
Outputs: y (a pseudo-random sample from N 0 1,() , a real number)
Internal state: y ' (cached sample, a real number)
 b (flag for cached sample, boolean)

1: if (this is the first call)
 1.1: b false←
2: if b true=()
 2.2: y y← ' // Output the cached sample
 2.3: b false←
 else
 2.4: repeat // Rejection sampling loop
 2.4.1: x1 1 1← −()draw uniform MT19937 real_ _ _ , // Draw two uniform samples
 2.4.2: x2 1 1← −()draw uniform MT19937 real_ _ _ , // in the interval [-1,1]
 2.4.3: ρ '← +x x1

2
2
2

until ρ ρ' '> <()0 1AND

 2.5: y x←
− ()2

1

log '

'

ρ

ρ
 // Output one sample

 2.6: y x'
log '

'
←
− ()2

2

ρ

ρ
 // and save another one for the next call

 2.7: b true←

420

As an example of the applicability of this operation, in chapter 5 we analyzed several motion models
whose uncertainty can be approximated as a multivariate Gaussian. When employing those models within
a particle filter (either for localization or for SLAM), one needs to draw samples from those distributions
just like in the equation above.

Our first step will be to realize that, thanks to the properties of uncertainty propagation of Gaussians
through linear transformations, we can simplify the problem by drawing samples from a different vari-
able z which has identical covariance matrix than y but a mean of zero. That is:

z z 0 y z y yk k k kN N ; , , ; ,Σ µ µ Σ() = + → () 	 (13)

Our approach to generate samples for z will be quite simple: finding a linear change of variables
from another auxiliary r.v., that we will denote as x , from which we already know how to draw samples.
Since in the previous section we learned how to draw samples from a standard normal distribution
N 0 1,() , the ideal situation would be that all the n components of x had a mean of zero and a unit
variance and that they were all uncorrelated to each other. Put mathematically, we want x to follow this
distribution:

x x 0 Ik nN ; ,() 	 (14)

where In is the identity matrix of size n n× . By hypothesis, the relationship between x and z is linear,
thus we denote as M the corresponding matrix:

z Mx= 	 (15)

It is important to realize that all we need at this point is the value of M , since we already know how
to draw samples for each individual component of x , which we could then stack into a vector, premul-
tiply by M and finally add the mean vector µ to obtain a sample of y , our original r.v.

There exist two different M matrices, which can serve us for our purposes. They are related to the
eigendecomposition and the Cholesky decomposition of the covariance matrix Σ , respectively. While
the latter is more numerically stable and is recommended in general, we will firstly explain the eigen-
decomposition approach since its geometrical meaning gives it a great didactic value.

As we saw in chapter 3, a linear transformation of r.v.s as that in equation (15) leads to a well known
expression for the covariance of the target variable (which we want to equal Σ) in terms of that of the
source variable (In), which is:

Σ = MI M
n

T 	

(since the identity matrix is superfluous)

=MMT 	 (16)

 421

One particular way to factor a square symmetric matrix such as Σ is by its eigendecomposition,
which is defined as:

Σ = VDVT 	 (17)

with V being a square matrix where each column contains an eigenvector of Σ and D is a diagonal
matrix whose entries correspond to the covariance eigenvalues (in the same order than the columns in
V). If Σ is positive definite, which is always desirable, the eigenvalues are all positive, whereas for
positive-semidefinite matrices some eigenvalues are exactly zero. All the eigenvectors are orthogonal
and of unit length, thus V is called an orthonormal matrix. It is also said that D is the canonical form
of Σ because the latter is just a “rotated version” of the former, as we will see immediately.

Geometrically speaking, it is convenient to visualize covariance matrices by means of their corre-
sponding confidence ellipses (for bidimensional variables) or ellipsoids (for higher dimensions)—refer
to the examples at the right hand of Figure 2. The eigendecomposition of a covariance matrix has a
direct relation with this geometrical viewpoint: each eigenvector provides the direction for an axis of
the ellipse, while eigenvalues state their lengths. For instance, if all the eigenvalues were equal, the
ellipsoid would become a sphere, disregarding the particular value of the eigenvectors. When some of
the eigenvalues are much larger than the others, it means that uncertainty is more prominent in some
particular directions—those of the corresponding eigenvectors. In some degenerate cases, we may find
positive-semidefinite covariance matrices, where null eigenvalues imply the loss of one spatial degree of
freedom for the r.v., i.e., some axes of the ellipsoid have a null length. A full understanding of all these
geometrical concepts is of paramount importance when facing the interpretation of results of statistical
problems as those discussed in this book.

If we now wish to determine the value of M according to equations (16) – (17) we can proceed as
follows:

Σ =
=

=

= ()

MM

VDV

VD D V

VD VD

T

T

T

T

1
2

1
2

1
2

1
2

	 (18)

where we have used these facts: (1) the square root of a diagonal matrix gives us another diagonal
matrix with the square root of each of the original entries, and (2) the transpose of a diagonal matrix is
identical to itself. Therefore:

M VD=
1
2 	

(First version: based on eigendecomposition) 	 (19)

The linear transformation z Mx= then adopts an extremely intuitive form: we firstly draw inde-
pendent standard normal samples “for each axis of the ellipsoid” that represent the target Gaussian
uncertainty and then rotate those samples according to a change of coordinates where the new axes

422

Algorithm 5. A Cholesky decomposition-based implementation of a PRNG for multivariate Gaussian
distributions. Only applicable to positive-definite covariance matrices.

algorithm draw_multivariate_Gaussian
Inputs: µ (the mean vector)
 Σ (covariance matrix)
Outputs: y (a pseudo-random sample from N µ Σ,())
Internal state: (none)

1: L ← ()cholesky Σ // Such as Σ = LLT

2: for i n= 1... // n being the dimensionality of µ and Σ
 2.1: xi ← ()draw standard Gaussian_ _
3: z Lx←
4: y z← +µ // Output sample

Figure 2. An example of the process for generating pseudo-random samples for (a) 2D and (b) 3D
multivariate Gaussian distributions. The ellipse (2D) and ellipsoid (3D) represent the 95% confidence
intervals of each Gaussian. The two (scaled) eigenvectors of the 2D covariance matrix have been rep-
resented in the right-hand graph of (a) as thick lines. Observe how they coincide, by definition, with
the axes of the ellipse.

 423

coincide with the eigenvectors (which, recall, are the ellipsoid axes). The scale introduced by the square
root of the eigenvalues enlarges or reduces the uncertainty in each direction according to the real uncer-
tainty encoded by the covariance matrix.

Despite its didactic value, in practice it is advisable to employ instead the Cholesky decomposition
of the covariance, for its simplicity and more efficient implementations. In this case, we have:

Σ =
=

MM

LL

T

T

	 (20)

where the Cholesky factorization is, by definition, Σ = LLT , thus obviously:

M L= 	

(Second version: based on Cholesky decomposition) 	 (21)

To sum up, all the steps for drawing samples from a multivariate Gaussian distribution have been
enumerated in Algorithm 5. Notice that the usage of the Cholesky factorization assumes a positive-
definite covariance. In situations where the appearance of semidefinite-positive matrices cannot be ruled
out, either the LDLT decomposition (where we would find out that M LD=

1
2) or the eigendecomposi-

tion described above should be employed instead.

REFERENCES

Devroye, L. (1986). Non-uniform random variate generation. New York, NY: Springer-Verlag.

Marsaglia, G. (1968). Random numbers fall mainly in the planes. Proceedings of the National Academy
of Sciences of the United States of America, 61, 25–28. doi:10.1073/pnas.61.1.25

Matsumoto, M., & Nishimura, T. (1998). Mersenne twister: A 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation, 8(1),
3–30. doi:10.1145/272991.272995

MRPT. (2011). The mobile robot programming toolkit website. Retrieved Mar 1, 2012, from http://
www.mrpt.org/

Park, S. K., & Miller, K. W. (1988). Random number generators: Good ones are hard to find. Com-
munications of the ACM, 31, 1192–1201. doi:10.1145/63039.63042

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in C: The
art of scientific programming (2nd ed.). Cambridge, UK: Cambridge University Press.

Thomas, D. B., Leong, P. H. W., Luk, W., & Villaseñor, J. D. (2007). Gaussian random number genera-
tors. ACM Computing Surveys, 39(4). doi:10.1145/1287620.1287622

Tiobe Software. (2012). Tiobe programming community index. Retrieved April 11, 2012, from http://
www.tiobe.com/index.php/content/paperinfo/tpci/index.html

424

Appendix D: Manifold Maps for SO(n) and SE(n)

As we saw in chapter 10, recent SLAM implementations that operate with three-dimensional poses
often make use of on-manifold linearization of pose increments to avoid the shortcomings of directly
optimizing in pose parameterization spaces. This appendix is devoted to providing the reader a detailed
account of the mathematical tools required to understand all the expressions involved in on-manifold
optimization problems. The presented contents will, hopefully, also serve as a solid base for bootstrap-
ping the reader’s own solutions.

1. OPERATOR DEFINITIONS

In the following, we will make use of some vector and matrix operators, which are rather uncommon
in mobile robotics literature. Since they have not been employed throughout this book until this point,
it is in order to define them here.

The “vector to skew-symmetric matrix” operator: A skew-symmetric matrix is any square matrix A
such that A A= − T . This implies that diagonal elements must be all zeros and off-diagonal entries the
negative of their symmetric counterparts. It can be easily seen that any 2 2× or 3 3× skew-symmetric
matrix only has 1 or 3 degrees of freedom (i.e. only 1 or 3 independent numbers appear in such matrices),
respectively, thus it makes sense to parameterize them as a vector. Generating skew-symmetric matrices
from such vectors is performed by means of the ⋅[]

×
 operator, defined as:

2 2
0

0

3 3

× [] = ()  ≡
−









× [] =






× ×

×

:

:

v

v

x
x

x

x

y

z





























≡
−

−
−













×

0

0

0

z y

z x

y x



	 (1)

The origin of the symbol × in this operator follows from its application to converting a cross prod-
uct of two 3D vectors (x y×) into a matrix-vector multiplication (x y[]

×
).

The “skew-symmetric matrix to vector” operator: The inverse of the ⋅[]
×

 operator will be denoted in
the following as ⋅[]

∇
, that is:

 425

2 2
0

0

3 3

0

0

0

×
−








≡ ()

×
−

−
−







∇

:

:

x

x
x

z y

z x

y x






≡












∇

x

y

z

	 (2)

The vec ⋅() operator: it stacks all the columns of an M N× matrix to form a MN ×1 vector. For ex-
ample:

vec
1 2 3

4 5 6

1

4

2

5

3

6






















=













	 (3)

The Kronecker operator (also called matrix direct product): Denoted as A B⊗ for any two matrices
A and B of dimensions M NA A× and M NB B× , respectively, it gives us a tensor product of the
matrices as an M M N NA B A B× matrix. That is:

A B
B B B
B B B⊗ =













a a a

a a a
11 12 13

21 22 23

...

...

...

	 (4)

2. LIE GROUPS AND LIE ALGEBRAS

Chapter 10 section 2 provided a brief mathematical definition for the concepts of manifold, Lie group
and Lie algebra. For our purposes in this appendix, it will be enough to keep in mind these points:

1. 	 All SO n() and SE n() groups—refer to Appendix A for their definitions—are Lie groups, with
the main implication of this for us being that:

2. 	 they are also smooth manifolds embedded in m2

—where m does not have to coincide with n .
3. 	 Their tangent spaces at the identity matrix I (the “origin or coordinates” for both groups) are

denoted as T nISO() and T nISE() , respectively. The Lie algebras associated to those spaces provide
us the space vector bases so()n and se()n , respectively.

We have summarized the main properties of the groups in which we are interested in Table 1.where
GL n,() stands for the general linear group of n n× real matrices. Informally, two spaces are dif-

426

feomorphic if there exists a one-to-one smooth correspondence between all its elements. In this case,
the mathematical equivalence between groups allows us to treat robot poses (in SE n()) as a vector of
coordinates with two separate parts: (1) the elements of the rotation matrix (from SE n()) and (2) the
translational part (a simple vector in n). We will see how to exploit such a representation in section
5.

Regarding the Lie algebras of these manifolds, they are nothing more that a vector base: a set of
linearly independent elements (as many as the number of DOFs) such that any element in the manifold
can be decomposed in a linear combination of them. Since the manifold elements are matrices, every
component of a Lie algebra is also a matrix, i.e., instead of a vector base we have a matrix base.

The particular elements of the Lie algebra for SE 2() , denoted as se()2 , are the following three
matrices:

se se

se

() { }()
, ,

()

2

0 0 1

0 0 0

0 0 0

2
1 2 3

2
1

=

=













=G

G

i i



=













=
−

G G2 3
2 2

0 0 0

0 0 1

0 0 0

0 1 0

1 0 0

0 0

se se() ()

00













	 (5)

while for SE 3() the Lie algebra se()3 comprises these six matrices:

Table 1. Main properties of the groups

Closed subgroup of:
Manifold dimensionality

(number of DOFs):
Is a manifold
embedded in: Diffeomorphic to:

SO 2() GL 2,() 1  2 42

= –

SO 3() GL 3,() 3  3 92

= –

SE 2() GL 3,() 3  3 92

= SO 2 2()× (2 2 2 6× + = coordinates)

SE 3() GL 4,() 6  4 162

= SO 3 3()× (3 3 3 12× + = coordinates)

 427

se se

se

() { }()

()

3

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

3
1 6

3
1

=

=







=G

G

i i 







=













G2
3

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

se()



=











G3
3

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

se()


=





























×

G4
3

1

0

0

0

0

0

0 0 0 0

0

0

0

se()



=
−













0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


=































×

G5
3

0
0

0

0

1

0

0

0

0

0 0 0 0

se()


=
−













0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

=






























×

G6
3

0

0

1

0

0

0

0

0

0

0 0 0 0

se() 

=

−











0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

	 (6)

All these basis matrices of Lie algebras have a clear geometrical interpretation: they represent the
directions of “infinitesimal transformations” along each of the different DOFs. Those “infinitesimal
transformations” are actually the derivatives (the tangent directions), at the identity element I of the
corresponding SE n() manifold, with respect to each DOF. For example, consider the derivative of a
SE 2() pose (a 3 3× matrix) with respect to the rotation parameter θ :

∂
∂

−










=
− −

θ

θ θ
θ θ

θ θcos sin

sin cos

sin cos

co

x

y

0 0 1

0

ss sinθ θ−












0

0 0 0

	 (7)

By evaluating this matrix at the identity I , i.e. at x y θ() = ()0 0 0 , we have:

0 1 0

1 0 0

0 0 0

−










	 (8)

which exactly matches G3
2se() in equation (5). All the other Lie algebra basis matrices are obtained by

the same procedure.

428

Regarding the Lie algebra bases of the pure rotation groups, it can be shown that SO 2() only has
one basis matrix G1

2so() which coincides with the top-left submatrix of G3
2se() in equation (5), while the

three bases G1 2 3
3

, ,
()so of SO 3() are the top-left submatrices of G4

3se() , G5
3se() , and G6

3se() in equation (6),
respectively.

3. EXPONENTIAL AND LOGARITHM MAPS

Each Lie group M has two associated mapping operators which convert matrices between M and its
Lie algebra m . They are called the exponential and logarithm maps.

For any manifold, the exponential map is simply the matrix exponential function, such as:

exp
P

Pm
m: →
→

=
M

e
ω

ω 	 (9)

Interestingly, the exponential function for matrices is defined as the sum of the infinite series:

e
i

i

i

A I
A

= +
=

∞

∑ !1

	 (10)

which coincides with the Taylor series expansion of the scalar exponential function and is always well-
defined (i.e. the series converges) for any square matrix A . Moreover, it turns out that the exponential
of any skew-symmetric matrix is a well-defined rotation matrix (Gallier, 2001). This is in complete
agreement with our purpose of converting elements from the Lie algebras so n() into rotation matrices,
since any linear combination of the basis skew-symmetric matrices will still be skew-symmetric and, in
consequence, will generate a rotation matrix when mapped through the exponential function. The con-
version from se n() requires a little further analysis regarding the matrix structure, as we show shortly.

The universal definition of the exponential map is that one provided in equations (9)-(10), but in
practice the matrix exponential leads to particular closed-form expressions for each of the manifolds of
our interest. Next, we provide a complete summary of the explicit equations for all the interesting ex-
ponential maps. Some expressions can be found in the literature (Gallier, 2001), while the rest have been
derived by the authors for completeness. For a manifold M with k DOFs we will denote as v = { }v vk1, ,
the vector of all the coordinates of a matrix Ω belonging to its Lie algebra m . This means that such
matrix is composed as Ω =

=
∑vi
i

k

i
Gm

1

, with the Gi
m matrices given in the last section.

Notice that the vector of parameters v stands as the minimum-DOF representation of a value in the
linearized manifold; hence it is the form in use in all robotics optimization problems where exponential
maps are employed. That is also the why we will provide the expression of the manifold maps as func-

tions of their vectors of parameters (v), not only their associated matrices (vi
i

k

iG
m

=
∑

1

).

 429

In SO 2() , the unique Lie algebra coordinate θ represents the rotation in radians and the exponential
map has this form:

exp SO

v R
Rso

so
2

2 2 2 2

2 2()

× ×

() → ()
() →

=
:

Ω
Ωe 	

Ω = ()

 =

−










= ()

=

×

()

θ
θ

θ
θ

0

0

2

Parameters: v

R exp
so
vv() ≡ =

−










eΩ

cos sin

sin cos

θ θ
θ θ

	 (11)

In SO 3() we have three Lie algebra coordinates v = ()ω ω ω1 2 3

T which determine the 3D rotation
by means of its modulus (related to the rotation angle) and its direction (the rotation axis). In this case,
the exponential map employs the well-known Rodrigues’ formula:

exp SO

v R
Rso

so
3

3 3 3 3

3 3()

× ×

() → ()
() →

=
:

Ω
Ωe 	

Ω = 

 =

































=
−

×

×

v
ω
ω
ω

ω
1

2

3

0
33 2

3 1

2 1

1

2

3

0

0

ω
ω ω
ω ω

ω
ω
ω

−
−













=



Parameters: v











= () ≡ =

=

+()R exp v

I v

I
v

v
vso 3

3

3

0

eΩ
, if

sin



 +

−














× ×

1
2

2cos v

v
v , otherwise

	 (12)

In SE 2() , the Lie algebra has three coordinates: θ which represents the rotation in radians, and

t ' ' '= ()x y
T which is related to the spatial translation. Note that x y T

' '() is not the spatial translation
of the corresponding pose in SE 2() , which turns out to be t V t= ()se 2 ' . The exponential map here be-
comes:

exp SE

v P

t

se
se

2

3 3 3 3

2 2

0 0 0

()

× ×

×

() → ()
() →


















:

'

Ψ

θ


→












=

R t

P

0 0 1

eΨ
	

430

Ψ =
−











=






0

0

0 0 0

θ
θ

θ

x

y

'

'
'

Parameters: v
t








=













= () ≡ =()



x

y

e
e

'

'

θ

θ

P exp v
se 2

Ψ




() (
×










=

−
V t V
se se2 2

0 0 1

'
cos sin

sin cos

θ θ
θ θ))













t '

0 0 1

	

with:

V

I

se 2

2 0

1

1
() =

=

−

−













, if θ

θ
θ

θ
θ

θ
θ

θ
θ

sin cos

cos sin












, otherwise
	 (13)

Finally, the Lie algebra of SE 3() has six coordinates: ω = ()ω ω ω
1 2 3

T

 which parameterize the 3D

rotation exactly like described above for SO 3() , and t ' ' ' '= ()x y z
T which is related to the spatial

translation. Again, we must stress that this translation vector is not directly equal to the translation t of
the pose. The corresponding exponential map is:

exp SE

v P

t

se
se

3

4 4 4 4

3 3

0 0 0 0

()

× ×

×

() → ()
() →


















:

'

Ψ

É

→












=

R t

P

0 0 0 1

eΨ 	

Ψ =

−
−

−













0

0

0

0 0 0 0

3 2

3 1

2 1

ω ω
ω ω
ω ω

x

y

z

'

'

'


=











=





Parameters: v
t '

'

'

'

ω

x

y

z

ω
ω
ω

1

2

3









= () ≡ =()






P exp v
se 3

e
eΨ

ω
()

×











V t
se 3

0 0 0 1

'

	

with:

 431

V

I

Ise 3

3

3 2 3

2

0

1
()

× ×

=

=

+
−




 +

−





, if

, ot

ω
ω

ω
ω

ω ω

ω
ω

cos sin
hherwise











	 (14)

Once we defined the exponential maps for all the manifolds of our interest, we turn now to the cor-
responding logarithm maps. The goal of this function is to provide a mapping between matrices in the
manifold M and in its Lie algebra m , that is:

log
P

log Pm
m: M →

→
= ()ω
ω 	 (15)

This is clearly the inverse function of the exponential map defined in equation (9), thus it comes
at no surprise that this operation also corresponds to a standard function called matrix logarithm, the
inverse of equation (10).

Iterative algorithms exist for numerically determining matrix logarithms of arbitrary matrices (Davies
& Higham, 2010). Fortunately, efficient closed-form solutions are also available for the matrices of our
interest. Notice that the logarithm of a matrix (in the manifold) is another matrix of the same size (in
the Lie algebra), but in subsequent equations we will put the stress on recovering the coordinates (the
vector v) of the latter matrix in the Lie algebra bases.

For SO 2() , the coordinate v only comprises one coordinate (the rotation θ). The corresponding
logarithm map reads:

log SO

R

v

so
so

2

2 2 2 2

11 12

21 22

2 2()

× ×

() →

→











→ 

():

Ω
R R

R R 



= ()

×

Ω log R 	

with:

v log R log R= () = ()




= ()



 = ()() ∇ ∇

θ
so 2 21 11atan 2 ,R R 	 (16)

In the logarithm of a SO 3() matrix our aim is to find out the three parameters v = ()ω ω ω1 2 3

T that
determine the 3D rotation. In this case:

log SO

R log R

v

so
so

3

3 3 3 3

3 3()

× ×






() →
→ = ()

()

×

:

Ω Ω


	

432

Ω Ω= 

 ⇔ = 


 → = 


× ∇ ∇

v v v Rlog 	

with:

log R R R() = −()θ
θ2 sin

T 	

(where the rotation angle θ is computed as):

θ =
()−









−cos 1 1

2

tr R
	 (17)

As happened with the exponential map, the logarithm map of SE 2() forces us to tell between the

translation parameters t ' ' '= ()x y
T in the Lie algebra, and the actual translation t = ()x y T . In this

case, the logarithm map can be shown to be:

log SE

P

R t t

se
se

2

3 3 3 3

2

0 0 1

2()

× ×

×

() →

→











→






():

Ψ

θ ''

0 0 1













= ()Ψ log P 	

with parameters:

v
t

=








=













'
'

'
θ

θ

x

y 	

→
= ()





=








()

()

∇
−

θ log R

t V t

so

se

2

2
1'

	

(where log
so 2() ⋅() and V

se 2() are given in equation (16) and equation (13), respectively, and)

V

I

se 2
1

2

2
1

1

1
1

()
− = −

−
−













, if =0θ

θ
θ
θ

θ
θ

sin
cos

sin
cos













, otherwise
	 (18)

 433

And finally, the logarithm for SE 3() takes this form:

log SE

P

R t

se
se

3

4 4 4 4

3

0 0 0 1

3()

× ×

×

() →

→











→






():

Ψ

ω tt

log P

'

0 0 0 1













= ()Ψ 	

with parameters:

v
t

=











=













'

'

'

'

ω

x

y

z

ω
ω
ω

1

2

3



	

→
= ()





=









()

()

∇
−

ω log R

t V t
so

se

3

3

1'

	

(where log
so 3() ⋅() and V

se 3() are given in equation [17] and equation [14], respectively)	 (19)

4. PSEUDO-EXPONENTIAL AND PSEUDO-LOGARITHM MAPS

If the reader has carefully studied recent literature about on-manifold optimization, he or she may have
noticed that the equations employed there for the different manifold maps are almost exactly those in-
troduced in the previous section. In particular, the unique difference between the commonly used for-
mulas and those above are related to the treatment of the translation vectors in SE n() groups, where
the distinction between the vectors of translations in the pose (t) and in the Lie-algebra (t ') is ignored.

We must highlight that the mathematically correct exponential and logarithm maps for SE n() groups
are, indeed, those reported in the previous section. As can be seen in equations (13)–(14) and equations
(18)–(19), in these maps the two translation vectors are not equivalent since they are related to each
other by t V t= ()se n ' . However, it can be shown that we can safely replace the manifold maps with al-
ternative versions where the translations in the manifold are identified with those of the real pose (i.e.,
t t' =) and still perform optimizations as described in chapter 10 section 2 without varying the final
results, i.e. the same minimum of the cost function will be reached. For the sake of rigorousness, we
will name those alternative maps the pseudo-exponential (pexpm) and the pseudo-logarithm (plogm).

434

Their practical usefulness is the obvious simplification of dropping the V
se n() terms in all the transforma-

tions and, consequently, in all the Jacobian matrices involved in the optimization problem.
Regarding the pseudo-exponential functions, for SE 2() we have:

pexp SE

v P

t

se
se

2

3 3 3 3

2 2

0 0 0

()

× ×

×

() → ()
() →


















:

Ψ

θ


→












≠()

= ()R t

P

v

0 0 1

Note:

Parameters:

eΨ

θ

	

R = =
−









[]×e θ
θ θ
θ θ

cos sin

sin cos
	 (20)

while for SE 3() :

pexp SE

v P

t

se
se

3

4 4 4 4

3 3

0 0 0 0

()

× ×

×

() → ()
() →


















:

Ψ

ω

→












≠()

=






R t

P

v
t

0 0 0 1

Note:

Parameters:

eΨ

ω







	

R exp

v
t

= = ()

=

















()
×e
ω ω

ω

so 3

Parameters:
	 (21)

with exp
so 3() ⋅() defined in equation (12).

The pseudo-logarithm for SE 2() becomes:

plog SE

P v

R t

se
se

2

3 3 3 3

2

0 0 1

2()

× ×

() →

→ ()











→





():

Ψ

θ












≠ ()()

= ()
×
t

log P

v

0 0 1

Note:

Parameters:

Ψ

θ

	

with

θ = ()



() ∇

log R
so 2 	 (22)

 435

and for the SE 3() group we have:

plog SE

P v

R t

se
se

3

4 4 4 4

3

0 0 0 1

3()

× ×

() →

→ ()











→




():

Ψ

ω












≠ ()()

=




×
t

log P

v
t

0 0 0 1

Note:

Parameters:

Ψ

ω








	

with

ω = ()



() ∇

log R
so 3

	 (23)

with the definition of log
so 3() ⋅() already provided in equation (17).

5. ABOUT DERIVATIVES OF POSE MATRICES

One of the goals of this appendix is providing the expressions for a set of useful Jacobians, which are
reported in the next section. The most useful Jacobians in robotics applications (e.g. graph SLAM, bundle
adjustment) can be split by means of the chain rule in a series of smaller Jacobians, of which many of
them will be often related to geometry transformations. In particular, some of them may involve taking
derivatives with respect to matrices. This topic has not been addressed anywhere else in this book, thus
we devote the present section to introduce the related notation.

Let us focus now exclusively on SE 3() poses. We know that any pose P SE∈ ()3 has the structure:

P
R

=













×3 3

0 0 0 1

x

y

z
	 (24)

and that it belongs to a manifold which is embedded in 42

 and is diffeomorphic to SO 3 3()× (see
section 1). Thus, the manifold has a dimensionality of 12: nine coordinates for the 3 3× rotation matrix
plus other three for the translation vector.

Since we will be interested here in expressions involving derivatives of functions of poses, we need
to define a clear notation for what a derivative of a matrix actually means. As an example, consider an
arbitrary function, e.g. the map of pairs of poses P1 and P2 to their composition P P1 2⊕ , that is,
f SE SE SE⊕ × →: () () ()3 3 3 . Then, what does the expression:

∂
∂
⊕f P P
P

(,)1 2

1

	 (25)

436

means? If Pi were vectors the expression above would be interpreted as a Jacobian matrix without
further complications. But since they are poses, in the first place we must make explicit in which pa-
rameterization we are describing them. One possibility is to interpret that poses are given as the vectors
of their parameters, in which case equation (25) would be a Jacobian. Indeed, that was the assumption
followed in Appendix A and we were able to provide the corresponding Jacobian of all the relevant
geometric operations treated there.

However, one must observe that, interpreted in this way, the geometry functions: (1) are typically
non-linear, which entails inaccuracies when using their Jacobians for optimization, and (2) may become
somewhat complicated—see for example, Appendix A equation (30). Therefore, it makes sense to em-
ploy an alternative: to parameterize poses directly with coordinates in their diffeomorphic spaces. Put
simple, this means that a SE 3() pose will be represented with 12 scalars, i.e. the three first rows in its
corresponding 4 4× matrix. Although this implies a clear over-parameterization of an entity with 6
DOFs, it turns out that many important operations become linear under this representation, enabling us
to obtain exact derivatives in an efficient way. Observe how we are over-parameterizing poses only
while evaluating Jacobians with respect to them, which does not have the adverse effects of employing
over-parameterized pose representations within state spaces—as discussed in chapter 10 section 2.

Recovering the example in equation (25), we can now say that the derivative will be a 12 12× ma-
trix. It is illustrative to further work on this example: using the standard notation for denoting matrix
elements, that is:

M =







m m m m

m m m m

m m m m

m m m m

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44









	 (26)

and denoting the resulting matrix from f P P⊕(,)1 2 as F , we can unroll the derivative in equation (25) as
follows:

∂
∂

=
∂
∂

=
∂
∂

=
∂

⊕
=f p q

P
F
P

F
P

F PQ(,)

()
()

[...

vec
vec

f f f f f f11 21 31 12 22 33ff f f

p p p p p p p p p

f

p

f

14 24 34

11 21 31 12 22 33 14 24 34

11

11

11

]

[...]∂
=

∂
∂

∂
∂pp

f

p

f

p

f

p

f

p

21

11

34

34

11

34

21

34

34

...

...

...

∂
∂

∂
∂

∂
∂

∂
∂












×12 12

	 (27)

where we have employed the vec ⋅() operator (see section 1) to reshape the top 3 4× portion of its
arguments as 12 1× vectors.

 437

While reading the following section the reader should keep in mind that each derivative taken with
respect to a pose matrix should be interpreted as we have just described, i.e., they become n×12 Ja-
cobian matrices.

6. SOME USEFUL JACOBIANS

We provide in the following a set of closed-form expressions which may be useful while designing
optimization algorithms that involve 3D poses. Some of the Jacobians below already were employed
while discussing graph SLAM and Bundle Adjustment methods in chapter 10.

Notice that Jacobians for purely geometric operations are also provided here since they are interme-
diary results required while applying the chain rule within more complex (and more useful) functions.
Those geometry functions differ from those already studied in Appendix A in the adoption of a direct
matrix parameterization of poses, for reasons explained in section 5.

Jacobian of the SE(3) Pseudo-Exponential Map eε

This is the most basic Jacobian that will be found in all on-manifold optimization problems, since the
term eε will always appear—see chapter 10 section 2. Notice that we focus on the pseudo-exponential
version instead of the actual exponential map for its simplicity. Therefore, we must assume the follow-
ing replacement (which is not explicitly stated in graph SLAM literature):

eε ε⇒ ()pexp 	 (28)

Furthermore, we will take derivatives at the Lie algebra coordinates ε = 0 since our derivation is
aimed at being used within the context of chapter 10’s equation (5). Proceeding so, and given the defini-
tion of the pseudo-exponential in equation (21), we obtain:

d

d

pexp
0 e
0 e
0 e
I 0

0

1

2

3

ε

ε
ε

()
=

−
−
−






=

× ×

× ×

× ×

×

3 3

3 3

3 3

3 3 3

[]

[]

[]







×()A12 6 Jacobian 	 (29)

with e1 1 0 0= []T , e2 0 1 0= []T and e3 0 0 1= []T . Notice that the resulting Jacobian is for the ordering
convention of se()3 coordinates in equation (21), which are denoted there as v instead of ε .

Jacobian of a b⊕

Let f SE SE SE⊕ × →: () () ()3 3 3 denote the pose composition operation, such that f a b a b⊕ = ⊕(,) .
Then we can take derivatives of f a b⊕(,) with respect to the two poses involved. If the 4 4× transfor-
mation matrix associated to a pose x is denoted as:

438

X
R tX X=









0 0 0 1

	 (30)

then the matrix of the resulting pose becomes the product AB which, if we expand element by element
and rearrange the resulting terms, leads us to:

∂
∂

=
∂
∂

= ⊗ ×⊕f a b
a

AB
A

B I3
(,)

()T A 12 12 Jacobian 	 (31)

∂
∂

=
∂
∂

= ⊗ ×⊕f a b
b

AB
B

I R4 A

(,)
()A 12 12 Jacobian 	 (32)

Jacobian of a p⊕

Let g SE⊕ × →: ()3 3 3
  denote the pose-point composition operation such that g a p a p⊕ () = ⊕, .

Then we can take derivatives of g a p⊕ (), with respect to either the pose matrix A or the point p . Us-
ing the same notation that in equation (30), we obtain in this case:

∂
∂

=
∂
∂
=
∂ +()

∂
= ×⊕g a p

p
Ap
p

R p t

p
RA A
A

(,)
)(A 3 3 Jacobian 	 (33)

∂
∂

=
∂
∂
= ()⊗ ×⊕g a p

A
Ap
A

p I3
(,)

)(T 1 A 3 12Jacobian 	 (34)

Jacobian of eε ⊕ d

Let d be a SE()3 pose with an associated 4 4× matrix:

D
d d d dc1 c2 c3 t=








0 0 0 1

	 (35)

Following the convention of left-composition for the incremental pose pexp ε() described in chap-
ter 10 section 2 (see chapter 10’s equation [6]), we are interested in the derivative of pexp Dε()⊕
with respect to the increment ε in the manifold linearization. Applying the chain rule:

 439

∂

∂
=
∂

∂

=
∂
∂

()⊕ ()

()
= =

= = ()

pexp pexp D

pexp

d

AD
A

A I pexp 04

ε

ε

ε

ε

ε

ε

ε ε0 0

d

d
εε=0

	

(using equation [31])

= ⊗





()

=

T D I
pexp

0

()
3

d

d

ε

ε
ε

	

(replacing equation [29] and rearranging)

=

−
−
−
−











× ×

× ×

× ×

×

0 d
0 d
0 d
I d

c1

c2

c3

t

3 3

3 3

3 3

3

[]

[]

[]

[]



×()A 12 6 Jacobian 	 (36)

Jacobian of d⊕ eε

Let d be a SE()3 pose with an associated 4 4× matrix:

D
d d d t R tc1 c2 c3 D D D=









=








0 0 0 1 0 0 0 1

	 (37)

The derivative of d ⊕ eε with respect to the increment ε can be obtained as follows:

∂

∂
=
∂

∂

=
∂
∂

⊕ () ()

= =

= = = ()

d

AB
A

pexp Dpexp

pexp

A D B I pexp 04

ε

ε

ε

ε

ε
ε ε0 0

,

d (()

=
d ε

ε 0

	

(using equation [32] and equation [29])

440

= ⊗[]

−
−
−








× ×

× ×

× ×

×

I R

0 e
0 e
0 e
I 0

D

1

2

3
4

3 3

3 3

3 3

3 3 3

[]

[]

[]





	

(doing the math and rearranging)

=

−
−

−







×

× ×

×

×

�

�

�

0 d d
0 d 0 d

d d 0
R 0

c3 c2

c3 c1

c2 c1

D

3 1

9 3 3 1

3 1

3 3








×()a 12 6 Jacobian 	 (38)

Jacobian of eε ⊕ ⊕d p

Let p be a point in 3 and d a SE()3 pose with an associated matrix:

D =











d d d d

d d d d

d d d d

tx

ty

tz

11 12 13

21 22 23

31 32 33

0 0 0 1



=









=








d d d d R dc1 c2 c3 t D t

0 0 0 1 0 0 0 1

	 (39)

The derivative of pexp d pε()⊕ ⊕ with respect to the increment ε is an operation needed, for
example, in Bundle Adjustment (see chapter 10) while optimizing the camera poses—when using the
common convention of d representing the inverse of a camera pose, such as d p⊕ represents the
relative location of a landmark p with respect to that camera. We can do:

∂

∂
∂ ⊕
∂

∂

∂

()⊕ ⊕
=

()

= = = =()

pexp exp Dd p A p
A

A D Dpexp 0

ε

ε

ε

ε
ε ε0 0

	

(using equation [34] and equation [29])

= ()⊗()
−
−
−
−





 × ×

× ×

× ×

×

p I

0 d
0 d
0 d
I d

3

c1

c2

c3

t

T � �

[]

[]

[]

[]

1

3 3

3 3

3 3

3









	

(developing and rearranging)

 441

= − ⊕[]() ×
×

I D p3 ()a 3 6 Jacobian 	 (40)

Jacobian of a d p⊕ ⊕ ⊕eε

This expression appears in problems such as relative Bundle Adjustment (Sibley, Mei, Reid, & Newman,
2010). Let p ∈ 3 be a 3D point (a landmark in relative coordinates) and a d SE, ()∈ 3 be two poses,
so that RA is the 3 3× rotation matrix associated to a . We will denote the rows and columns of the
matrix associated to d as:

D
d d d d

d
d
d

c1 c2 c3 t

r1

r2

r3

=









=







0 0 0 1

0 0 0 1

T

T

T

tx

ty

tz

d

d

d









	 (41)

Then, the Jacobian of the chained poses-point composition with respect to the increment in the lin-
earized manifold can be shown to be:

∂

∂
=
∂

∂

⊕ ()⊕ ⊕ ⊕ ()⊕ ⊕

= =

a pexp d p A pexp D pε

ε

ε

ε
ε ε0 0

	

(using equation [31], equation [34] and equation [29], and rearranging)

=
+ − +

− + +
+

R
p d p d

p d p d
p d

IA

r3 r2

r3 r1

r2

3

0

0

· (·)

(·) ·

·

d d

d d

d

tz ty

tz tx

ty −− +












×

(·)p dr1 dtx 0

(A 3 6 Jacobian) 	 (42)

where a b⋅ stands for the scalar product of two vectors.
Analyzing the expression above we can observe that an approximation can be used when both a and

d represent small pose increments. In that case:

∂

∂
≈ − +


() ×

⊕ ()⊕ ⊕

=

×

a pexp d p
I p dt

ε

ε
ε 0

3
()A3 6Jacobian 	 (43)

442

REFERENCES

Davies, P. I., & Higham, N. J. (2010). A Schur-Parlett algorithm for computing matrix functions. SIAM
Journal on Matrix Analysis and Applications, 25(2), 464–485. doi:10.1137/S0895479802410815

Gallier, J. H. (2001). Geometric methods and applications: For computer science and engineering.
Berlin, Germany: Springer Verlag.

Sibley, G., Mei, C., Reid, I., & Newman, P. (2010). Vast scale outdoor navigation using adap-
tive relative bundle adjustment. The International Journal of Robotics Research, 29(8), 958–980.
doi:10.1177/0278364910369268

443

Appendix E: Basic Calculus and Algebra Concepts

One of the aims of this text is provide the reader with as much self-contained expositions as possible,
even of the most involved concepts. Since absolute self-containment cannot be achieved in practice, this
appendix provides a brief review of some theoretical concepts and tools of calculus and matrix algebra
that have wide-spread applicability throughout this book. If the reader wishes to delve into these issues
more thoroughly, we recommend consulting Meyer (2001) or Apostol (1967). An extensive repository
of matrix formulas and identities, without demonstrations, can be found in Petersen and Pedersen (2008).

1. BASIC MATRIX ALGEBRA

A matrix is said to be an n m× matrix if it has n rows and m columns. Two matrices A and B can
be added or subtracted only if they have exactly the same size:

R A B
n m n m p q

n p m q
× × ×

= ± = =
  

is defined iff , 	 (1)

Matrix addition and subtraction are commutative:

A B B A+ = + 	 (2)

and associative:

A B C A B C A B C+ + = +()+ = + +() 	 (3)

Two matrices A and B can be multiplied only if they are conformant matrices, which means that
the number of columns in the former matches the number of rows in the latter:

R A B
n m n p p m× × ×

=
 

	 (4)

Matrix multiplication is not commutative, thus left-multiplying and right-multiplying by a matrix
M , assuming that in both cases the matrices are conformant, give us different results:

444

MA AM≠ (in general) 	 (5)

In turn, multiplication is distributive:

A B C AB AC

A B C AC BC

+() = +

+() = +
	 (6)

and associative:

ABC AB C A BC= () = () 	 (7)

The transpose of an n m× matrix A is an m n× matrix denoted as AT whose columns are the
rows of the original matrix A . Transposing twice gives us the original matrix:

A AT T() = 	 (8)

and for any symmetric matrix S , we have:

S ST = 	 (9)

Only for n n× square matrices A we can define its inverse matrix A−1 as that one fulfilling:

AA I− =1
n 	 (10)

with In the identity matrix of size n n× , with all entries zeros but its diagonal which only has ones.
Not all matrices have an inverse, thus those that have one are called invertible matrices or non-singular
matrices.

A square n n× matrix A is said to be an orthogonal matrix (or sometimes orthonormal), if:

AA IT
n= 	 (11)

which implies, from equation (10), that the inverse of any orthogonal matrix is always its transpose:

A A AT = −1 (for orthogonal) 	 (12)

which can be exploited while working with rotation matrices, always orthogonal.
In general, the order of matrix transposition and inversion can be always exchanged:

 445

A AT T() = ()− −1 1 	 (13)

Transposing a sum of matrices becomes the sum of their transposed versions:

A A A A

A A A A A A

1 2 1 2

1 2 1 2

+() = +

+ + +() = + + +

T T T

n

T T T
n
T

�

… …

	 (14)

while transposing a product of matrices becomes the product, in reverse order, of the transposed versions:

A A A A

A A A A A A

1 2 2 1

1 2 2 1

() =

() =

T T T

n

T

n
T T T

�

� �

	 (15)

The inverse of a sum of matrices cannot be further simplified, in general. Do not assume that it
equals the sum of the inverse of each matrix. In turn, inverting a product of conformant matrices can be
converted into the product, in reverse order, of the inverted matrices:

A A A A

A A A A A A

1 2

1

2
1

1
1

1 2

1 1
2

1
1

1

() =

() =

− − −

− − − −

�

� �n n

	 (16)

Given a square, real and symmetric n n× matrix A , it will always have n eigenvectors vi and n
real eigenvalues λi , which are defined as the solutions to the system of linear equations:

Av vi i i i n= =λ , , , ,for 1 2  	 (17)

Since for each eigenvalue λi there exist infinite possible eigenvectors fulfilling equation (17), it is
convention to impose the additional restriction that all eigenvectors must have a unit norm, i.e., vi = 1

. If a certain eigenvalue appears more than once, we say it is a degenerate eigenvalue and it implies the
lost of additional degrees of freedom while determining the corresponding eigenvectors.

Then, we define the eigen decomposition of the real symmetric matrix A as its factorization as the
product of these three matrices:

A VDV= −1 	

(and, since when A is real we have V V− =1 T)

446

= VDVT 	 (18)

with:

V v v v D=












=






1 2

1

2

0 0

0 0

0 0

�

�

� � �
�

n

n

λ
λ

λ







	 (19)

Matrix factorizations find numerous applications in simplifying the solution of numerical problems.
For instance, the inverse of a real symmetric matrix can be computed as:

A VDV

V D V

VD V

− −

− − −

− −

= ()
= ()
=

1 1

1 1 1

1 1

T

T 	 (20)

which only involves the trivial inversion of a diagonal matrix (i.e. inverting one by one its diagonal
entries). Another useful factorization is the Cholesky decomposition, which is addressed in section 3.

An n n× matrix A is said to be a positive-semidefinite matrix if it fulfills:

x Ax x xT n≥ ∀ ∈ =0 0, () excepting 	 (21)

or a positive-definite matrix if it fulfills instead the more restrictive condition:

x Ax x xT n> ∀ ∈ =0 0, () excepting 	 (22)

where the terms x AxT are called quadratic forms.
Two completely equivalent definitions are saying that positive-definite matrices only have positive

eigenvalues while positive-semidefinite matrices have nonnegative eigenvalues, a weaker condition
since one or more null eigenvalues are permitted. Any positive-semidefinite matrix has a determinant
of zero and is, therefore, noninvertible.

Covariance matrices, introduced in chapter 3, are especial matrices because they are always real
symmetric matrices and usually positive-definite—although, occasionally, can be positive-semidefinite.
If a covariance matrix Σ is positive-definite, its inverse will always exist and will be also positive-
definite and symmetric:

Σ Σ Σ ΣT
T() = () =−

− −
1

1 1 (with definite-positive) 	 (23)

 447

Dense matrices are defined in opposition to sparse matrices. A sparse matrix is one whose ratio of
nonzero entries is somewhat reduced, typically a 10% or less of the entire matrix. Efficient storage of
sparse matrices can be achieved by only keeping the nonzero entries, i.e. we assume that all non-stored
elements are zeros. A popular storage format for sparse matrices is the Column-Compressed Sparse (CCS)
matrix form, available in C/C++ via the set of ubiquitous libraries SuiteSparse, by Timoty Davis (2006),
and in MATLAB via the sparse() function—which internally relies on SuiteSparse. Sparse matrices re-
quire especial algorithms for replacing the most common operations such as addition or multiplication
but, in turn, they can dramatically increase the efficiency of solving certain mathematical problems, as
we explored in chapter 10.

2. THE MATRIX INVERSION LEMMA

A useful result which we need for the derivation of the Kalman filter in chapter 7 is the equality called
the matrix inversion lemma:

E FGH E E F G HE F HE+() = − +()− − − − − −1 1 1 1 1 1 	 (24)

That this equality holds can be demonstrated by using only the basic concepts described above:(post-
multiplying by E FGH+() both sides of the equality, which can be done since it is not zero—otherwise
it would not appear inverted in the original expression)

E FGH E FGH E E F G HE
I

+() +() = − +
− − − − −1 1 1 1

� ������������ ������������
11 1 1F HE E FGH()() +()

− − 	

I E E F G HE F HE E FGH= − +()() +()− − − − − −1 1 1 1 1 1 	

(by associativity with the second factor of the right-hand side)

I E E E FGH E F G HE F HE E FGH
I

= + − +() +()− − − − − − −1 1 1 1 1 1 1


	

I I E FGH E F G HE F HE E FGH= + − +() +()− − − − − −1 1 1 1 1 1 	

(canceling the two identity matrices and by associativity in the underlined term)

0 E FGH E F G HE F HE E E F G HE F HE FGH
I

= − +() − +()− − − − − − − − − − −1 1 1 1 1 1 1 1 1 1 1


448

0 E FGH E F G HE F H E F G HE F HE FGH= − +() − +()− − − − − − − − − −1 1 1 1 1 1 1 1 1 1 	

(using associativity with the underlined factor)

0 E F GH G HE F H G HE F HE FGH= − +() − +()()− − − − − − − −1 1 1 1 1 1 1 1 	

(inserting the factor G G−1 the result is not altered, since G G I− =1 and we know that G−1 exists for
it appears in the initial expression)

0 E F GH G HE F G GH G HE F HE FGH= − +() − +()()− − − − − − − − −1 1 1 1 1 1 1 1 1 	

(taking out the common factor GH)

0 E F GH G HE F G G HE F HE F GH= − +() + +()()









− − − − − − − − −1 1 1 1 1 1 1 1 1

 	

(by associativity in the underlined term)

0 E F GH G HE F G HE F
I

= − +() +()− − − − − −1 1 1 1 1 1

� ��������������� ����������������
GH












	

0 E F GH GH
0

= −()−1

� ����� ����� 	

0 0= 	 (25)

3. CHOLESKY DECOMPOSITION

Some of the algorithms presented in this text require decomposing a positive-definite matrix A (e.g. a
covariance or an information matrix) into the product of two triangular matrices such that:

A LL= T 	 (26)

with L being a lower triangular matrix (i.e., all the entries above the main diagonal are zero) with
strictly positive diagonal entries. This is the Cholesky decomposition of a matrix, sometimes simply
called a LLT decomposition. Let us denote the k th− column of a d d× matrix A as A[]

*,k
, and the

 449

entry at the j th− row and k th− column as A[]
j k,

. Then, we can refer to the elements of this lower
triangular matrix as follows:

L

L

L L

L L L

=

[]
[] []

[] [] []







1 1

2 1 2 2

1 2

0 0

0
,

, ,

, , ,

�

�

� � � �
�

d d d d









=, , , ...,i d1 2 	 (27)

There are several ways of computing the matrix L . One that is specially concise and clear is the
Cholesky–Banachiewicz algorithm, which finds the elements of L going from top to bottom and from
left to right:

L A L

L
L

A L L

[] = [] − []

[] =
[]

[] − [] []

=

−

∑i i i i i k
k

i

i j
j j

i j i k

, , ,

,
,

, ,

2

1

1

1
jj k

k

j

i j
,

,
=

−

∑










>
1

1

for

	 (28)

This algorithm is appropriate when dealing with dense covariance matrices, as those found in chapters
7 and 9. In case of handling sparse real symmetric matrices, we should turn to specialized algorithms
which efficiently exploit the sparse structure of such matrices. One such specialized Cholesky decom-
position methods is CHOLMOD, available as a C library and as a function within MATLAB (Chen,
Davis, Hager, & Rajamanickam, 2008). This algorithm finds its applicability in the advanced SLAM
methods discussed in chapter 10.

Positive-semidefinite matrices (either dense or sparse) cannot be decomposed by means of the Cho-
lesky factorization LLT , but require an LDLT factorization instead, which includes an extra diagonal
matrix D and, usually, a permutation matrix to reorder the terms such that only the latest elements in
the diagonal are zeros. Refer to Eigen (Guennebaud & Jacob, 2010), a popular C++ library, for an ef-
ficient implementation of LDLT algorithms.

Finally, let us derive an auxiliary result regarding the Cholesky factorization A LL= T , which reveals
useful in chapter 7. We start by evaluating the entry at the j th− row and k th− column of A :

A LL= T 	

(by the definition of matrix multiplication)

A LL L L[] =  
 = []   =

=
∑j k

T

j k j i

T

i k
i

d

, , , ,
1

	

450

(since X Y X Y[] [] = [] []



j i i k i i j k, , *, ,* ,

)

= []  





=

=
∑ L L

, , ,
i

T

i j ki

d

1

	

(changing the scope of the transpose)

= [] []




=

=
∑ L L

*, *, ,i i

T

j ki

d

1

	

(since the sum does not alter the position of elements in the resulting matrix)

= [] []












=
∑ L L

*, *,
,

i i

T

i

d

j k1

	 (29)

And therefore, by generalization over all the entries of the A matrix:

A L L= [] []
=
∑ *, *,i i

T

i

d

1

	 (30)

4. THE GAUSSIAN CANONICAL FORM

In chapter 3, we introduced the standard form of a Gaussian pdf—not to be confused with the standard
normal distribution, which is a normal distribution with zero mean and unit variance. There exists,
however, another way to parameterize a multivariate Gaussian pdf: the canonical form. Among other
applications, this formulation becomes useful during our derivation of the Kalman filter in chapter 7. We
have included it in the present appendix since its definition consists almost entirely on the application
of elementary algebra transformations to the standard form.

We start repeating here for convenience the standard form of a multivariate Gaussian pdf:

p
d

T
x x x; ,

det()
µ Σ

Σ
µ Σ µ() =

()
− −() −()










−1

2
exp

1
2

1

π
	 (31)

where both the column vector x (i.e. the point at which we evaluate the pdf) and the mean vector µ
have d elements, while Σ is a d d× covariance matrix.

The canonical form of a Gaussian pdf assumes instead the following alternative parameterization of
the same pdf (Wu, 2005):

 451

p T Tx x x x; ,µ Σ Λ η δ() ∝ − + +










exp
1
2

	 (32)

Here, Λ is called the information matrix or precision matrix and η is the information vector. Both
the standard and the canonical representations of a Gaussian density distribution function are equivalent,
and thus they can be derived from each other.

Actually, such derivation can be carried out in a more general form than the standard form. Con-
sider the following function, which we will call the generalized standard form of a Gaussian pdf,
slightly more general than the exponential of a standard form Gaussian, where E is any d d× matrix
(we have dropped the constant factor of the pdf):

exp expα() = − −() −()










−1
2

1Ex Exµ Σ µ
T 	 (33)

We can also derive a canonical form for this exponential by expanding this exponent, using just the
basic algebra concepts mentioned above:

α =− − −

=− − −

=− −

−

−

−

1
2
1
2
1
2

1

1

1

() ()

() ()

(

Ex Ex

x E Ex

x E

µ Σ µ

µ Σ µ

Σ µ

T

T T T

T T TΣΣ µ

Σ µ Σ Σ µ

−

− − −

−

= − − −

1

1 1 11
2

)()

(

Ex

x E Ex Ex x ET T T T T

one is the transppose of the other
 and both are scalars

� ������������ �����������

� ���� ���� � ��

+

=− −

−

− −

µ Σ µ

Σ µ Σ
Λ η

T

T T T

T

1

1 11
2

2

)

(x E Ex E��� ���� � ��� ���x

x x x

+

=− + +

−

−

µ Σ µ

Λ η δ

δ

T

T T

1

2

1
2

)

	 (34)

where we have established these identities:

Λ Σ
η Σ µ

δ µ Σ µ

=

=

=−

−

−

−

E E

E

T

T

T

1

1

11
2

	 (35)

Therefore, we have demonstrated a how to pass from generalized standard exponents to canonical
form exponents. Now, by setting E I= d , with Id the d d× identity matrix, we obtain the formulas for
passing from standard form exponents to canonical exponents:

452

Λ Σ
η Σ µ

δ µ Σ µ

=

=

=−

−

−

−

1

1

11
2

T

	 (36)

Additionally, we can easily find from the equation above the reverse transformation, that is, passing
from a canonical form exponent to a standard form exponent:

Σ Λ
µ Ση Λ η
=

= =

−

−

1

1
	 (37)

where the inverse of Λ exists iff Σ is positive-definite and, therefore, non-singular. Anyway, if Σ was
positive-semidefinite (i.e., it has at least one null eigenvalue), we would not have any valid finite rep-
resentation of Λ .

Note that when doing this transformation for going back from a canonical to a standard form exponent
one only needs the two mentioned equations for calculating Σ and µ , but a few words are in order
about the parameter δ , which must also be determined. It is common to find a canonical form that
presents this structure:

p T Tx x x x; , expµ Σ Λ η δ ε() = − + + +










1
2

	 (38)

with ε being an additional nonzero term independent of the variable x . That exponent can be considered
as actually comprising two exponents:

•	 One corresponding to an exact canonical form, − + +
1
2
x x xT TΛ η δ ,

•	 and another one corresponding to the additional term ε .

Once the former is transformed into the exponent of a Gaussian in standard form by computing the
Σ and µ parameters as indicated above, we must account for the extra term in the canonical exponent:
it will represent a term that multiplies the standard Gaussian form outside the exponential. The complete
transformation in this case will produce the scaled standard form:

p
T

x x x; , exp expµ Σ ε µ Σ µ() = () − −() −()










−1
2

1 	 (39)

Since both, this density, and the standard form in equation (31) must integrate up to one to be valid
pdfs it becomes clear that this extra constant exp ε() must coincide with the constant term in equation
(31), thus it must hold that:

 453

exp
det()

ε
Σ

() =
()

1

2π
d

	 (40)

5. JACOBIAN AND HESSIAN OF A FUNCTION

The Jacobian is a natural extension to the concept of derivative of a function for the case of multivariate
functions. Let f x() →:  n m denote an arbitrary vector function, with n ≥ 1 and m ≥ 1 . Since it
generates vectors of m real numbers we can consider it instead comprising m individual scalar func-
tions fi

n:  → , such that:

f x

x
x

x

x()

()
()

()

























∈



= =

f

f

f

x

x

xm

m

n

1

2

1

2

 

 , with





















∈ n 	 (41)

Then, we denote the Jacobian matrix (or simply, the Jacobian) of f x() as either Jf x x, () or ∇ ()xf x
, and define it to be the following m n× matrix:

Jf x xx f x

x x

x x

,

...

...

() ()

() ()

() ()

= ∇

∂
∂

∂
∂

∂
∂

∂
∂

� � ��

f
x

f
x

f
x

f

1

1

1

n

m

1

m

xxn













	 (42)

Sometimes we may be interested in the Jacobian of a function with respect to a given subset of its
parameters z x⊂ . In those cases, the Jacobian is defined exactly the same but replacing the parameter
x above by z and considering the other parameters as constants with regard to derivatives. Naturally,
the resulting Jacobian will have less columns that the full Jacobian with respect to all the parameters.
As an example, consider the following division of a Jacobin into two parts when we split its parameters
x into two disjoint sets of variables y z x, ⊆ (such that x y z= ∪):

∇ = ∇ ∇() ()y z y zf y z f f, , 	

with:

454

∇

∂
∂

∂
∂

∂
∂

∂

()

() ()

() (
yf y z

y z y z

y z y z

,

, ,

, ,

...

...

� � ��

f
y

f
y

f
y

f

1

1

1

p

m

1

m))













()

∂

∇

∂

y

f

p

1

zf y z

y

, �

,, ,

, ,

...

...

z y z

y z y z

() ()

() ()






∂

∂
∂

∂
∂

∂
∂

z
f
z

f
z

f
z

1

1

q

m

1

m

q

� ��








	

and:

y z= =

























∈

























∈

y

y

y

z

z

zp

p

q

1

2

1

2

 

 q 	 (43)

For scalar functions, f nx() →:   , the Jacobian becomes a row vector, which is the transposed
gradient of the scalar field defined by that function:

g xx

Gradient
 vector



= ∇ ()f
T 	 (44)

Therefore, the Jacobian reflects all the first-order derivatives for a vector function. The next higher-
order derivative equivalent for multivariate functions is the Hessian matrix. In this case we only address
the case of scalar functions, which are the simplest to formulate and the most useful for mobile robotics.
Thus, given a scalar function, f nx() →:   , its Hessian will be always a square n n× matrix con-
taining all the second-order derivatives with respect to the parameters x :

∇ ()

() ()

() ()

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂

x x

x x

x x

2

2

1
2

2

1

2 2

f

f
x

f
x x

f
x x

f

n

n 1

� � ��

...

...
xxn2













	 (45)

In the context of localization and SLAM, the Hessian will mostly appear while working with least-
squares optimization (refer to chapter 10). In that case, if the evaluation point x is close to a minimum
of the function f x() it can be shown (Triggs, McLauchlan, Hartley, & Fitzgibbon, 2000) that the Hes-
sian can be accurately approximated without evaluating second-order derivatives as:

∇ () ∇ ()



 ∇ ()≈x x xx x x2 f f f
T

	 (46)

 455

which only requires computing the simpler Jacobian ∇ ()x xf . This is called the Gauss-Newton ap-
proximation to the Hessian and is at the core of the most relevant optimization algorithms.

6. TAYLOR SERIES EXPANSIONS

The Taylor series expansion of a function f x() is a tool developed by the English mathematician Brooks
Taylor in the 18th century and consists of another function f̂ x() , which approximates the original one
in the vicinity of a given point x a= (called the linearization point when using a linearized, first-order
Taylor series expansion).

The Taylor series is based on the infinite derivatives of the function f x() at the linearization point—
obviously, assuming that the function is infinitely differentiable at that point. More concretely, the
Taylor series expansion for a scalar function is defined as:

f x f a x

f a x

i

d f x

dx
x

f a

i

i

x ai

n
i

i

() ()

(̂)

!

= +

≈ +

=
()

()

= () +

==

=

∑

∆

∆

∆
1

1

0

0
� 11

1
2

1

2

2
2

2

! !

df x

dx
x

d f x

dx
x

x a

i

x a

i

()
+

()

=

=

=

=

∆ ∆

� �������� �������� � ���������� ���������
…+

	 (47)

If the original function can be expressed as a convergent sum of infinite power terms, that is, making
n →∞ in the equation above, it is then called an analytic function. The maximum index n included
in the series is called the order of the series expansion, and as one could expect, the larger the order, the
better will be the approximation of the function at points far from x a= . Taylor expansions are prom-
inently used throughout this book for linearization of non-linear functions, mostly corresponding to first
order (n = 1) expansions, although second order (n = 2) approximations are also touched while dis-
cussing least-squares methods in chapter 10.

In the case of multivariate functions, the same principle applies by replacing derivatives with Jaco-
bian matrices. For example, a second-order Taylor series expansion of both, a univariate f ()x and a
multivariate function F x() , read:

f x f a x f a
df x

dx
x

d f x

dx
x

x a x a

() = +() ≈ ()+
()

+
()

= =

∆ ∆ ∆
1
2

2

2
2 	

456

F F F
F F

F

x a x a
x

x
x x

x

x x
x

a

x a x a

() = +() ≈ ()+ ()
+

()

= ()+
= =

∆ ∆ ∆ ∆
d

d

d

d d
T

T

1
2

2

∇∇ + ∇
= =x x a x x a
x x xF F∆ ∆ ∆1

2
2T

	 (48)

In order to illustrate how a scalar function can be approximated by Taylor series of increasingly
higher orders, please refer to the example in Figure 1.

Figure 1. Example of Taylor expansion of the function corresponding to the pdf of an exponentially
distributed r.v. (i.e., f x e x()= −λ λ with mean 1). The more terms considered in the Taylor series expan-
sion of that function, the better the approximation in the neighborhood of the point x=1.

 457

REFERENCES

Apostol, T. M. (1967). Calculus (Vol. 1). New York, NY: Wiley.

Chen, Y., Davis, T. A., Hager, W. W., & Rajamanickam, S. (2008). Algorithm 887: CHOLMOD, su-
pernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathematical
Software, 35(3).

Davis, T. A. (2006). Direct methods for sparse linear systems. New York, NY: Society for Industrial
Mathematics. doi:10.1137/1.9780898718881

Guennebaud, G., & Jacob, B. (2010). Eigen v3. Retrieved Mar 1, 2012, from http://eigen.tuxfamily.org

Meyer, C. D. (2001). Matrix analysis and applied linear algebra. Retrieved Mar 1, 2012, from http://
www.matrixanalysis.com/

Petersen, K. B., & Pedersen, M. S. (2008). The matrix cookbook. Retrieved Mar 1, 2012, from http://
citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.6244

Triggs, B., McLauchlan, P., Hartley, R., & Fitzgibbon, A. (2000). Bundle adjustment—A modern syn-
thesis. Vision Algorithms: Theory and Practice, 1883, 153–177.

