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Foreword

There are theoretical experts and experimental experts, and often little overlap between the two. Dr. Juan 
Antonio Fernández Madrigal and Dr. Jose Luis Blanco Claraco are prominent examples of both: they 
have contributed novel concepts and these concepts have been rigorously tested in extensive real world 
experiments. I had the distinct pleasure of meeting Jose at Oxford University in the fall of 2007. We had 
both just joined the Mobile Robotics Group, Jose as a visiting scientist and me as a postdoc. As ever, 
Oxford was packed with world leaders in robotics and vision—and, in particular, the sub-fields of struc-
ture from motion and Simultaneous Localization And Mapping (SLAM). Even among such distinguished 
company, Jose’s contributions are impressive. In his work, one finds efficient, elegant algorithms and 
robust real-time systems that work on live data.

The area of simultaneous localization and mapping is vast—for decades researchers have recognized 
SLAM as a fundamental prerequisite to capable autonomous robotics, and have built many theories 
and systems towards its solution. This present volume represents a monumental undertaking and in 
itself testifies to the breadth of the authors’ experience. It takes the reader through the highlights of the 
field, providing sufficient historical context and theoretical foundation for the uninitiated to engage in 
and master this exciting topic. The authors begin with a taxonomy, dividing the problem along axes 
for spatial knowledge representation, the structure and dynamics of the scene, the availability of prior 
knowledge, and the types of sensors and actuators the robot has. They then go on to introduce a variety 
of robots available on the market, their sensing and actuation capabilities, and discuss the varied tasks 
these platforms are designed to accomplish.

Having introduced the problem and the hardware involved, the authors then dive into tools from 
probability and statistics (to complement this, they also offer a rich appendix, which helps make the 
book stand-alone and broadly accessible). In recent years, these tools have been remarkably helpful in 
building principled autonomous robot systems that actually work in the real world. It has been said that 
computer vision is estimation theory applied to images, and that SLAM is estimation theory applied to 
robot sensor data. Indeed, today we find probabilistic estimation theory at the heart of most perception 
problems. Starting with probability theory, the authors have distilled the core mathematical foundations 
needed to understand the topics of autonomous localization and mapping.

The problem of SLAM is often factored into two halves: first, solve the localization problem, and then 
solve the mapping problem. Due to the inherent uncertainty present in any real system, such a factored 
approach can lead to inconsistencies in a robot internal world-model. However, from a pedagogical 
point of view, it is favorable to approach SLAM by first discussing localization as a separate and distinct 
problem. This book takes that route and uses localization to introduce motion models, sensor models, 
and Bayesian filtering—all core concepts needed to understand the broader picture.
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The third section of this book addresses mapping. There are many kinds of “maps” out there. Some 
scientists will argue that any state saving machine constructs a crude map. Others will argue that the 
internal representation must somehow “look” like the geometry we see. Generally, the kinds of maps 
one builds will depend entirely on the anticipated robot task and the sensors at hand. Vision-based maps 
look nothing like laser-based maps, and geometric maps are different from “appearance”-based maps. 
Having understood the chapters on mapping, the reader will know how to apply the right mapping tool 
and sensor suite to robotic mapping problems they may face in the field.

The book concludes with advanced topics in SLAM and directions for future research. The authors 
note that the problem of long-term autonomy and lifelong learning are attracting increased attention. 
Robots now routinely operate without human intervention for short periods of time, and a few systems 
have demonstrated operation over much longer periods. The state-of-the-art in mapping and localization 
systems has shown convincing results on large-scale environments. Three key lessons learned by the 
community and discussed in this book include: 1) the importance of properly modeling uncertainty; 2) 
using graphical, relative manifold representations; and 3) using scalable place recognition techniques. 
While these lessons are valuable, there are many challenges left to solve. The final chapter crystallizes 
and identifies the key issues and challenges we face as robotic systems are tasked to operate in increas-
ingly large-scale environments and over long periods of time.

The techniques and algorithms presented in this book are at the heart of mobile robot perception. The 
authors are both expert theoreticians and experimentalists—they have much to offer and have worked hard 
to make this text complete and accessible. Having mastered the material in this book, the reader will be 
well positioned to contribute their own experience and knowledge to the growing field of mobile robotic 
localization and mapping, and help usher in the era of useful, long-term autonomy for mobile robots.

Gabe Sibley 
George Washington University, USA
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Preface

Today, robots face a similar challenge to what occurred to many members of human societies of the First 
World in the last century: they are trying to make their way out from a profitable and well-known posi-
tion in the industry—mainly as robotic manipulators—to land into a much more unpredictable and 
undefined place in the service sector where they will have to work side by side with humans; from tak-
ing the role of humans at work to live with humans all the time; from the nuts and bolts of mechanics 
to the more ethereal challenges of understanding their place in our world. Mobile robots have left behind 
their cousins, the manipulator arms, along this way, for our world is much more dynamic, large, and 
complex than anything a fixed arm could handle.

From the first prototypes resembling home appliances in the 1960s to the present commercially-
available humanoids that seem to have jumped out from a manga TV series, mobile robots have strug-
gled to freely move among us efficiently and safely. When we look at them today, it is not difficult to 
imagine how they would interact with people if they had only part of the capabilities claimed by their 
manufacturing companies, in how many applications they might be employed, and in all the ways they 
could help us in our daily lives.

The general public would probably be surprised by the actual limitations of these robots. Amazing as 
they look (and as they truly are, from a scientific perspective), we would do better in remembering that 
it was only during the last two decades that robots were endowed with the first consistent and successful 
theory of localization and mapping, which are the two basic operations that underlie any task we could 
devise for any practical robot: knowing where it is within its environment and figuring out what that 
environment looks like. Today, these two fundamental problems cannot be considered to be completely 
solved for every practical situation yet, in spite of the remarkable scientific corpus developed around 
them. This book aims at introducing that corpus to the reader. More concretely, we focus on mobile robot 
localization and mapping approaches that rely on the theory of probability and statistics.

The theory involved in probabilistic localization and mapping methods can become quite cumbersome, 
in accordance with the importance and quality of the obtained results. Books and papers exploring those 
complexities are easy to find, but they may be difficult to grasp for those who are not active researchers 
in the area and do not have a solid background in mathematics. Furthermore, most of the material is 
quite scattered among journals, books, and conference papers, and in many occasions is addressed from 
the diverse—and often confusing—terminologies of very different disciplines. Since mobile robots have 
begun to get out of research labs and into the hands of the general public, we believe it is now time to 
offer a comprehensive introduction to these subjects that is appropriate for a wider audience than tradi-
tional scientific literature, and that gathers in a single place the fundamental concepts needed for fully 
understanding the problems, whatever area of science they come from.
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From the perspective of two authors with many years of experience researching and teaching in this 
field, we have aimed this goal in the gentlest possible way, while still doing it rigorously. In particular, 
we have focused on three aspects: firstly, on explaining and justifying most deductions that are involved 
in the relevant parts of the theory, including step-by-step demonstrations that are typically obviated in 
specialized literature; secondly, on including the probabilistic, statistical, and robotic bases that other 
texts take for granted—even after saying otherwise; and thirdly, on providing a glimpse of the histori-
cal development of the covered theories and methods, not intending to offer an exhaustive historical 
timeline but a sufficient background. Our purpose is that the interested reader can really understand the 
treated issues in scope and depth, instead of just presenting powerful and sophisticated mathematical 
tools with obscure inner workings.

The book has been designed to be useful for practitioners, graduate and postgraduate students, and 
researchers mostly interested in a reference guide. No previous knowledge on probability and statistics 
is required—although it would speed up the reading, since two entire chapters are devoted to providing 
that background! Also, the prerequisites in physics, calculus, and algebra have been kept to the neces-
sary minimum; alas, self-containment is just an ideal in any finite work these days. Thus, we have had 
to assume that the reader has the most elemental knowledge of those three disciplines—we provide, in 
Appendix E, some reinforcement on concepts that are especially important for the understanding of the 
problems.

This book is structured in three sections. The one that possibly makes this text more distinctive in 
its kind is section 1, which collects for the reader the robotic, probabilistic, and statistical backgrounds 
required for a good comprehension of the rest. Sections 2 and 3 follow the logical development of the 
main problems addressed in the book: localization and mapping, respectively. This organization is 
intended for both a sequential reading and for an easy selection of material for reference or teaching.

The first idea about writing this book came from the class notes by the first author for a postgradu-
ate course on mobile robotics. Their main contents, and therefore a substantial number of concepts and 
explanations currently in the book, have been used for that purpose during several years; they should 
also be amenable for teaching in more introductory courses. In this use, a professor could choose to drop 
the first part if the mathematical background is assumed for the students, something that will depend on 
the academic context of the subject. The book also introduces some advanced issues in Simultaneous 
Localization And Mapping (SLAM) and many recent developments, mainly coming from the experience 
and continuous work of the second author during his PhD thesis and beyond.

Overall, we expect our book to serve as the starting point of a fascinating journey into this field, by 
setting the foundations of further detailed and thorough studies. Working in probabilistic robotics can 
certainly be tough, but we can assure you—this much we know—that it can be highly rewarding too. 
Our ultimate hope is that this text provides you with most of the tools needed to open a well-marked 
track into the jungle of probabilistic localization and mapping.

Juan-Antonio Fernández-Madrigal 
Universidad de Málaga, Spain

José Luis Blanco Claraco 
Universidad de Málaga, Spain  
 
April 2012
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Chapter  8

CHAPTER GUIDELINE

• You will learn:
 ◦ The main kinds of maps a mobile ro-

bot can use.
 ◦ Their main characteristics and advan-

tages/disadvantages in the context of 
recursive Bayesian localization and 
mapping.

 ◦ The connection between purely geo-
metrical approaches and more ab-
stract (cognitive) ones.

 ◦ How to estimate some kinds of maps 
assuming perfectly known robot 
localization.

• Provided tools:
 ◦ A comprehensive discussion on the 

pros and cons of each kind of map, 
which can be used to choose the more 
appropriate for your application.

 ◦ Detailed formulations for building 
occupancy grids and landmark maps. 
For the latter we include the particu-
lar problems of having range-bearing, 
bearing-only, and range-only sensors.

Maps for Mobile Robots:
Types and Construction

ABSTRACT

This is the first chapter of the third section. It describes the kinds of mathematical models usable by 
a mobile robot to represent its spatial reality, and the reasons by which some of them are more useful 
than others, depending on the task to be carried out. The most common metric, topological, and hybrid 
map representations are described from an introductory viewpoint, emphasizing their limitations and 
advantages for the localization and mapping problems. It then addresses the problem of how to update 
or build a map from the robot raw sensory data, assuming known robot positions, a situation that be-
comes an intrinsic feature of some SLAM filters. Since the process greatly depends on the kind of map 
and sensors, the most common combinations of both are shown.

DOI: 10.4018/978-1-4666-2104-6.ch008
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• Relation to other chapters:
 ◦ The extensive discussion on the dif-

ferent kinds of maps in this chapter 
complements some concepts that ap-
peared already in chapters 6 and 7.

 ◦ Solving the mapping-only problem in 
this chapter serves as a base for ad-
dressing the more complex SLAM 
problem in chapters 9 and 10.

1. INTRODUCTION

Some approaches to autonomous robots intend not 
to use any explicit representation of the environ-
ment, even not to use any representation at all, 
aiming at employing the environment itself as its 
own best model and considering the robot as part 
of it (Brooks, 1991). However, having an internal 
model of space—a map—is currently the only 
known practical way of efficient and optimally 
planning actions (taking decisions) to operate in 
the long-term. Furthermore, maintaining such a 
map has not been ruled out as a real possibility by 
the modern embodied cognition paradigm (Ander-
son, 2003), which has extended the seminal work 
based on not employing any model at all. It has 
been shown that humans use a so-called cognitive 
map to plan routes and locate in our environments 
(Tolman, 1948); a different story is whether the 
map is explicitly stored in our brains—up to date 
this possibility seems controversial at least—or 
emerges from a set of complex interactions with 
the environment, if we choose a developmental 
perspective. In state-of-the-art mobile robot map-
ping and localization, the former is the dominant 
approach, and consequently that is the one fol-
lowed in this book.

While discussing robot localization in previ-
ous chapters we already faced the most common 
metrical environment representations, namely 
grid maps and landmark or feature-based maps. 
This revealed the tight coupling existing between 
localization and mapping: the robot cannot lo-

calize well if it does not have a good map, but 
on the other hand, a map cannot be accurately 
reconstructed if the robot is poorly localized. 
In this chapter, we will widen and organize this 
perspective on maps by describing the best-known 
types of explicit spatial representations for robots. 
A few of them are quite common in the robotic 
localization and mapping literature, while others 
have very restricted niches of usability, i.e., they 
respond to very specific sensors, environments 
or tasks. The existing variety makes evident the 
diversity and complexity of the problems arising 
when an automatic mobile device is intended to 
operate autonomously in a given spatial region: no 
single map representation seems to be universally 
valid for all the tasks of a given robot; in fact, the 
choice of the map has important implications in 
these tasks (e.g. navigation, manipulation, etc.) 
that extend well beyond the issues of localization 
and mapping addressed in this book.

After describing the different map types, this 
chapter addresses how to build and update those 
maps from the experiences of a mobile robot, that 
is, from its raw sensory data. Although localiza-
tion and mapping are tightly coupled, within the 
scope of this chapter we will assume a perfectly 
known robot pose in order to clarify the problem 
of map building. In general, metrical mapping-
only can be performed through Bayesian filters 
much like the ones described in the localization 
section of this book, although the much higher 
dimensionality of the problem sometimes forces 
us to adopt approximations to make it tractable. 
Note that approaching only the mapping part 
of the localization+mapping problem could be 
seen as a dual perspective to that already studied 
in chapter 7 while explaining robot localization, 
where a perfect knowledge about the map was 
assumed in order to study how to estimate the 
robot pose alone. However, while we can easily 
think of situations where the robot is endowed 
with a map of its environment by its designers 
or operators and then left on its own to localize 
itself, to know its position without having a map 
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is a rarer situation—though a possible one. The 
utility of artificially decoupling these problems 
also comes from the fact that to update a map as-
suming perfectly known robot poses has become 
part of one family of popular SLAM methods, 
namely those relying on a Rao-Blackwellized 
Particle Filter (RBPF) approach, which will be 
introduced in chapter 9. Thus, the mapping-only 
methods provided in this chapter are not only a 
suitable way of introducing the mapping topic, 
but essential algorithms included at the core of 
many state-of-the-art SLAM implementations.

In summary, the chapter is structured as fol-
lows. Section 2 describes the most commonly 
used types of spatial representations, ranging 
from purely metrical maps to the most abstract 
representations. Then, the next two sections are 
devoted to probabilistic techniques for learning 
grid and landmark maps, respectively, always 
under the perspective of recursive Bayesian 
estimators. Finally, section 5 covers some map 
building algorithms which are quite common and 
thus worth knowing, in spite of not relying heav-
ily (or even at all) on probabilistic foundations.

2. EXPLICIT REPRESENTATIONS 
OF THE SPATIAL ENVIRONMENT 
OF A MOBILE ROBOT

In this section, we describe the most relevant types 
of maps in mobile robotics. Many of them arose 
in the first decades of the discipline, and some 
have survived almost unchanged until today. Oth-
ers were so specific that their use is now rather 
limited or obsolete.

Robotic maps can be classified, at a first glance, 
into two broad classes. Although there exists no 
consensus about how to refer to them, we will 
write here about symbolic maps and sub-symbolic 
maps. Maps within the former category comprise 
discrete elements (typically, real-world objects of 
certain complexity) that can be distinguished from 
the much less informative “background” of the 

environment through some sort of processing of 
the sensory data. This does not necessarily imply 
non-metrical maps: maybe such a map includes 
topological relations between these elements or 
maybe only their metrical location. In general, 
symbolic maps minimize storage needs, but at the 
expense of a higher computational cost for detect-
ing, identifying (the problem of data-association 
introduced in chapter 6 section 4), tracking and 
maintaining the distinctive elements. On the 
contrary, sub-symbolic maps do not deal (much) 
with the problem of distinguishing things: they 
aim at representing perceptions, either containing 
special objects or not. Obviously, this shifts the 
cost from computation to storage, following the 
general principle in computer science that if one 
wishes to reduce the computational cost of any 
program it is likely that he or she will have to pay 
an increase in its storage needs.

A problem with representing the environment 
through a symbolic approach (with elements that 
have some kind of “meaning” or “semantics,” at 
least for the human observer) is the automatic 
creation of the first symbols from sub-symbolic 
information, which at the end is the only one 
available through the robot sensors: this is the 
linguistic and also philosophical symbol grounding 
problem (Harnad, 1990). Few practical solutions 
to this problem have been reported in the robotics 
literature, except for anchoring (Coradeschi & 
Saffiotti, 2003), a general framework that allows 
the robot to link perceptions of external physical 
objects to symbols in its internal map—the symbol 
grounding problem also copes, in addition, with 
non-physical phenomena. A comprehensive and 
coherent implementation of anchoring is still an 
open issue, but some promising research regarding 
the emergence of symbols from the interaction of 
the robot with its environment is being conducted 
in the areas of developmental robotics and others.

To choose the right kind of representation for 
a particular problem is not straightforward, and 
a good knowledge of the pros and cons of each 
one is required. Furthermore, the frontier between 
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symbolic and sub-symbolic representations is far 
from clear, as we will see in the next paragraphs. 
The particular kind of map to use depends on: the 
robot tasks, the scale of the environment, whether 
the scenario is indoor or outdoor, the required 
precision and available computational resources, 
the need of fusing information from different sen-
sors, the nature of these sensors, etc. In addition, 
the kind of map will determine which estimation 
procedures will be applicable. For instance, in the 
case of sub-symbolic, metrical maps, occupancy 
grids are usually linked to non-parametric filters, 
while landmark maps, where the uncertainty is 
typically assumed to be Gaussian, are more akin 
to parametric (EKF-based) estimators; in the case 
of symbolic, topological maps, Bayesian estima-
tion has been applied only recently.

It is worth to notice from the beginning that the 
current most common and practical approaches to 
mapping lie on the sub-symbolic category: they 
represent the environment using just metrical data 
such as landmarks, distances to obstacles, free-
space, etc., that are obtained from sensory data 
with little processing. That is, the most used maps 
are currently pure geometrical representations. 
Therefore, there exists a solid mathematical back-
ground to automatically construct metrical maps, 
as we will see. However, the problem of modeling 
under such approaches large-scale space—physi-
cal space that cannot be entirely perceived from 
a single vantage point (Kuipers, 1977)—does 
not have a well-established solution yet, mostly 
due to the hurdles associated to the problem of 
revisiting already known places, or loop closure 
in a sub-symbolic setting. Metrical simultaneous 
localization and mapping in large-scale spaces 
will be dealt with in chapter 10.

In the next paragraphs, we review the most 
representative kinds of explicit maps that have 
been in use during the history of mobile robots, 
ordered from the “less symbolic” to the most. 
We provide a few bibliographical references for 
each map type, such that the reader could explore 
deeper if interested.

Grid Maps

Possibly the best known, most popular and most 
basic type of map for mobile robots—in the sense 
of the little processing done on sensory data—is a 
regular tessellation of space, or grid, which cells 
represent the probability of the corresponding 
spatial region to be occupied by solid objects 
(see Figure 1). A grid map or occupancy grid is a 
random field (a spatial region where each point 
has an associated r.v.) composed of cells from 
which we are interested just in one property: its 
occupancy. Being this occupancy a discrete-valued 
property with only two possible real values (oc-
cupied or free), each cell can be modeled as a 
Bernoulli distribution. Hence, a grid map consists 
of a collection of such distributions, one for each 
cell, although that does not mean that the r.v.s are 
independent. The most common form of grid map 
is two-dimensional (where cells are square areas), 
although sometimes it has been employed in a 
three-dimensional form (with cells being small 
cubes, also called voxels). The main ideas date 
back to almost thirty year ago, when grid maps 
were proposed for mapping the environment of 
mobile robots by using ultrasound range sensors 
(Moravec & Elfes, 1985), but today they are still 
pervasively used. They are closely related to lo-
calization and mapping methods as remarkable as 
Markov Localization or Particle Filters.

Since the cells of a grid map are used for hold-
ing evidence-of-occupation values, this kind of 
map seamlessly fits into Bayesian recursive esti-
mators. In particular, it naturally fits into certain 
family of non-parametric RBE techniques for 
SLAM, as will be seen in chapter 9 section 3. 
These maps also fit well into possibilistic repre-
sentations of uncertainty, as in the case of fuzzy 
grid maps. In addition, most grid maps assume 
that each cell is conditionally independent on each 
other (as discussed in section 3), thus there is no 
a priori knowledge about the spatial structure of 
the environment. For example, these maps do not 
assume we are in an indoor or outdoor scenario.
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Since the only information of interest for each 
cell is its occupancy, grid maps are a valuable tool 
when merging information coming from differ-
ent sensors, as long as all of them can provide 
evidence of occupancy. When a robot is equipped 
with sensors capable of detecting different kinds of 
obstacles (e.g. ultrasonic sensors detect glass doors 
but cannot perceive some textile fabrics, while a 
laser range scanner behaves exactly oppositely), 
care must be taken with sensor fusion since the 
evidence for occupation yielded by different sen-
sors may be contradictory to each other, so different 
grid maps should be maintained in that case and 
fused together only through functions that mix 

appropriately the uncertainty. Letting this issue 
apart, the general adequacy for sensor fusion is a 
valuable characteristic of grid maps that increases 
the robustness of many operations: localization, 
navigation, exploration, etc. Still another advan-
tage of grid maps is their close correspondence 
to the metrical motion of the robot: both the map 
and the motion refer to the same frame of refer-
ence, thus, for instance, translating motion into 
the map to find out the robot position within the 
grid is straightforward.

The most evident disadvantage of grid maps is 
that they impose important storage requirements, 
especially in their three-dimensional version, 

Figure 1. Real examples of occupancy grid maps built for (a) our Málaga 2006 dataset (Blanco, 
Fernández-Madrigal, & González, 2008), (b) the Intel dataset (Fox, 2003), and (c) the New College 
dataset (Smith, Baldwin, Churchill, Paul, & Newman, 2009). All maps have been created with applica-
tions from the MRPT (2011). In section 3, we present an RBE that is able to estimate occupancy grids 
conditioned on the (known) poses and observations of the robot.
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which can render them unfeasible for large-scale 
scenarios. For coping with that, they can be con-
strained to represent separate, small areas of the 
environment, linking several grids for modeling 
the whole space; this approach, however, is associ-
ated to hybrid metric-topological SLAM, which 
introduces its own challenges (see chapter 10). 
Another solution to the curse of dimensionality 
is adaptive tessellation, i.e., increasing the resolu-
tion of the grid around the most interesting areas, 
those with a higher variability in their occupancy. 
A recent development in this sense is the use of 
the abstract data type called octree to structure 3D 
grids: an octree is a mathematical tree in which 
each node represents the space contained in a cubic 
volume of space, or voxel; this volume is recur-
sively subdivided into eight sub-volumes until a 
given minimum voxel size is reached, typically 
constrained by the sensor noise. Unknown regions 
or regions containing uniform information are not 
subdivided further. Different views of space can 
be obtained by selecting the appropriate amount of 
detail. An octree implemented for robot mapping 
is called an octomap (Wurm, Hornung, Bennewitz, 
Stachniss, & Burgard, 2010).

Another difficulty with grid maps is to integrate 
them with mobile robots that use high-level rea-
soning, which is mostly symbolic. Some methods 
exist to extract “more symbolic” information 
out from grids, for instance distinguishing wide 
open spaces and narrow passages connecting 
them (Fabrizi & Saffiotti, 2000), which leads to 
a topology of the environment very convenient 
for planning routes for navigation. Processing the 
information from a grid map to obtain higher level 
knowledge—i.e., a “more symbolic” map—can be 
done, for example, by means of image processing 
and computer vision techniques, considering the 
grid to be a gray-level image; one could identify 
then discrete entities such as walls by means of the 
Hough transform for lines (Duda & Hart, 1972), 
and employ those objects as landmarks within a 
landmark-based map.

Finally, a few techniques have been proposed 
in the literature for merging different grid maps 
(Konolige, Fox, Limketkai, Ko, & Stewart, 2003; 
Birk & Carpin, 2006). This problem requires iden-
tifying which parts of two grids overlap, provided 
that an arbitrary rotation may exist and that the 
overlap may typically be only partial, and it is 
related to the map matching methods described 
in chapter 6.

Point-Based Maps

An alternative to grid maps which alleviates their 
problems with storage is to use a discrete metrical 
representation that does not include empty space. 
For example, point maps represent solid parts of 
the environment that can be sampled by the robot 
through suitable sensors, usually range or range-
bearing devices (recall chapter 2 sections 6 – 8). 
Due to that sample-based nature, it is common for 
these maps to be informally called point clouds, 
especially when representing three-dimensional 
objects or environments (see Figure 2).

Point maps were first devised in the early 90s 
for working with range scanners. They do not 
include any explicit model of uncertainty, which 
is one of their main drawbacks for our purposes. 
Also, this lack of probabilistic foundations com-
plicates the fusion of point clouds produced by 
different kinds of sensors; unlike with occupancy 
grid maps, there is not a mathematically well-
founded method for fusing several observations, 
even when they are captured by the same scanner 
from different positions in an environment, being 
the most common approach the brute-force ac-
cumulation of all the sensed points.

Point maps can also be processed to obtain 
“more symbolic” items, for example finding seg-
ments that represent walls or corners, a kind of 
processing that was common in mobile robotics 
in the nineties. The result can be considered as a 
sort of feature or landmark map (see further on). 
Nowadays, in part thanks to the recently renewed 
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interest in point clouds especially when coming 
from 3D range cameras, the identification of inter-
est points in point clouds is again an active topic 
in the research community (Johnson & Hebert, 
1999; Rusu, Marton, Blodow, Dolha, & Beetz, 
2008; Tipaldi & Arras, 2010).

Free-Space Maps

A dual alternative to point-based maps is that of 
representing only free space. Historically, this 
representation had an especial interest for motion 
planning in mobile robotics, since the robot can 
only move in the portion of the environment that 
contains no obstacles. Today, however, these maps 
have less interest since free space can be easily 
deduced from its dual information (the presence of 
solid objects, or obstacles), which is provided, for 
example, by point maps or occupancy grid maps.

Maps can represent free-space in different 
ways (see Figure 3): by using geometrical shapes 
such as trapezoids, generalized cones and others 
(Brooks, 1982); by partitioning space (Lozano-

Perez & Wesley, 1979); or by finding regions of 
particular interest for some operation (typically, 
for collision-free navigation). For instance, Gen-
eralized Voronoi Graphs represent a convenient 
tool for modeling those regions of space that are 
equidistant to all obstacles, that is, those places 
where the robot minimizes its risk to collide 
with the environment (Rotwat, 1979; Choset & 
Burdick, 1995). Since in all these approaches free 
space must be deduced from occupied space—the 
only one perceived by sensors—some processing 
of the latter is needed (i.e., computational cost). 
In addition, since they do not explicitly include 
uncertainty, they are not a direct choice for proba-
bilistic frameworks. On the contrary, they were 
suitable in classic motion planning algorithms 
(Latombe, 1991).

As any map resulting from processing raw data 
gathered by sensors, free-space maps are closer 
to symbolic representations than point-based or 
grid maps; for example, it is easy or even straight-
forward to obtain a topology of space from them.

Figure 2. (a) A point map of the same environment already shown in Figure 1a as a grid map. (b) 3D 
point cloud representing a “bunny figure” scanned with a Cyberware 3030MS optical triangulation 
scanner (data set courtesy of the Computer Graphics Laboratory/Stanford University).
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Feature or Landmark Maps

The maps described above reflect either the data 
coming directly from sensors (with no processing) 
or sensory data processed just to obtain informa-
tion about regions of the environment that are 
of general interest. The next logical step is to 
process the data less generically in order to detect 
distinctive physical elements of the environment. 
These elements may have some meaning for us 
humans (walls, corners, doors—in indoor sce-
narios—trees, roads, other vehicles—in outdoor 
scenarios) or not (abrupt changes in perceived 
brightness, regions filled with some color, lines, 
textures, etc.). All of these lead to the category of 
feature or landmark maps, which are, along with 
grid and point maps, one of the most important 
kinds of maps used today in mobile robotics.

In contrast to grid maps, which do not infer 
any spatial structure from the data beyond the 
imposed, fixed tessellation of space, landmark 
maps do contain well-distinguished elements 
along with their (estimated) spatial location. Both 
of them are metric maps—when a topology is 
included in feature maps they fall into a differ-
ent category—and both can include assumptions 
about the uncertainty of their content, therefore 

both can be (and are) used extensively in proba-
bilistic frameworks, as we have already seen in 
the chapters on localization. In particular, it is 
common in feature maps to model uncertainty 
with Gaussians; hence, they are commonly as-
sociated to parametric EKF-like filters (Leonard 
& Durrant-Whyte, 1991).

Landmark maps can be built from any sensor 
from which salient, well-distinguished features 
are extracted by means of a suitable detection 
algorithm. Such detectors have been proposed 
for 3D range cameras (Johnson & Hebert, 1999; 
Rusu, Marton, Blodow, Dolha, & Beetz, 2008), 
for the more conventional 2D range scanners 
(Núñez, Vázquez-Martín, del Toro, Bandera, & 
Sandoval, 2010) and even for sequences of sonar 
readings (Tardós, Neira, Newman, & Leonard, 
2002). However, the most active research field 
for landmark maps in the last years has probably 
been localization and SLAM with imaging sensors. 
Some examples of features detected in different 
sensory data are shown in Figure 4. One reason for 
this favoring of landmarks in the computer vision 
community is that working with a few landmarks 
extracted from each video frame (ranging from 
a dozen up to a few hundreds, depending on the 
approach) means an immense reduction of the 

Figure 3. Two ways of representing free space for the same environment: (a) by means of geometrical 
shapes and (b) with generalized Voronoi graphs
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Figure 4. Examples of features detected in readings from different types of sensors. (a) A picture of the 
Champ de Mars and (b) the visual features detected on it by the FAST detector algorithm. (c) An original 
points sensed by a laser scanner, and (d) the multiresolution features identified by FLIRT. The latter two 
pictures were generated from data and software courtesy of Gian Diego Tipaldi (Tipaldi & Arras, 2010).
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information volume provided by the sensor, that 
would be hard to handle in any other way if one 
pretends to achieve real-time performance. Ad-
ditionally, the process of detecting salient features 
assures that the entities or objects considered in 
the maps are easy to redetect from nearby loca-
tions, thus facilitating the association problem. The 
consequence is that methods to extract features 
from the images provided by vision sensors can 
be easily found in the extensive existing literature 
about computer vision (Lowe, 2004; Mikolajczyk, 
& Schmid, 2005; Trucco & Verri, 1998; Nixon & 
Aguado, 2008).

We must make a warning here. Since perform-
ing vision-based localization and SLAM in static, 
indoor scenarios has become increasingly func-
tional and robust during the last decade with 
state-of-the-art approaches, and that research 
progresses with steady pace, readers without a 
computer vision background could fall in the 
wrong preconception that detecting interesting 
objects or features in images is an uncomplicated 
task, due to the astonishing effortlessly way in 
which we humans can interpret our surroundings 
from a quick look around. We must remark now 
that even with the latest techniques from com-
puter vision, we are still far from automatically 
and robustly detecting in images what we, humans 
fitted with a powerful and not well understood 
sense of sight—which does not include only our 
“sensors,” the eyes—consider natural and distinc-
tive characteristics. Today, computers have 
reached a performance level that makes most 
theoretical methods applicable, but not all mobile 
robots can carry on such a computational power, 
and anyway the cost grows with the complexity 
and number of features to detect, becoming im-
practical in some situations. Not to mention the 
lack of intelligence of computers performing this 
detection task (when a human “sees” a distinctive 
object, many cognitive processes are running to 
make the perception task converge).

An additional issue with landmark maps when 
working with cameras is that the spatial location 

of features is not an observable variable, or at 
least not all its dimensions are observable. This 
simply means that we cannot tell the depth of a 
particular pixel in the image from one single video 
frame. Probabilistic (and some non-probabilistic) 
techniques can however deal with this ambiguity 
by means of collecting observations of features 
from slightly different point of views and then 
fusing all the information (Klein & Murray, 2007; 
Civera, Davison, & Montiel, 2008). All those 
methods, however, must introduce a scale factor 
for the map, since the real size of objects cannot 
be estimated from pure mathematics out of images 
gathered by one single camera. When we see a 
picture or a movie, our brain is able to interpret 
the scale of the objects only because we identify 
them within some particular context, from which 
our experience—cognitive processing!—infers 
the correct scale. In particular, a problem still open 
in mapping with a single camera is to avoid the 
drift of this world scale factor over time, which 
in practice leads to important inconsistencies in 
the reconstructed maps (Strasdat, Montiel, & 
Davison, 2010). The non-observability of depth 
is a trouble not found when employing more than 
one camera (e.g. stereo camera pairs) or 3D range 
cameras (refer to chapter 2 section 8).

Returning to the more generic discussion on 
landmark maps, they have a unique facet not 
shared by any other map type: as long as we at-
tempt to detect individual features from within the 
environment, we could wrongly detect a feature 
(false positive) or could miss it (false negative). 
Even more importantly: features must be associ-
ated to previously detected features in order to 
decide whether they refer to the same physical 
element, since they should not be introduced 
in the map twice as different landmarks. This 
is what leads to the Data Association problem 
(DA), already discussed in chapter 6, which is 
computationally intractable in its exact form and 
must be approximated.

On the other hand, a clear advantage of the 
extraction of features from sensory information 
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is that they do not contain all the details of the 
underlying physical elements, that is, they are 
more abstract, and consequently, more robust: they 
vary less over time. A feature does not include all 
the noise conveyed by the sensor, either because 
we have corrected it or because we have ignored 
it. In contrast, a grid map, for example, is more 
subjected to reflect small variations in the data 
due to the stochastic sensor behavior, which is 
directly reflected in the map.

Another advantage, as we have already men-
tioned in the case of cameras, is that, in general, 
feature maps can highly reduce the storage needs 
with respect to grid maps, which leads to impor-
tant improvements in efficiency in mobile robot 
operations, if we disregard the cost of feature 
extraction and data association.

Finally, feature maps are sub-symbolic maps 
but very close to be symbolic. As we have ex-
plained before, there does not exist a crisp fron-
tier between both broad map categories. We can 
highlight here the fact that most types of features 
in the literature do not represent objects to which 
a human would assign any meaning, and logic 
relationships between them are not included in the 
map, but feature-based maps can be a logical and 
very natural basis for constructing higher-level, 
purely symbolic representations of the environ-
ment; therefore, they play an important role when 
the robot is to be enhanced with artificial reason-
ing capabilities.

Relational Maps and 
Topological Maps

A map from any of the kinds discussed above 
contains an intrinsic relationship between its 
constituents (cells, points, free-space regions, 
features) and the underlying space where the cor-
responding physical elements exist: the location 
of the formers onto the latter. This spatial rela-
tionship is the one that provides those maps with 
their metrical nature, but it is not the only one that 
can be included and exploited in a metrical map.

The simplest types of explicit relationship 
that can be added to a metrical map, apart from 
location, are still metrical, although they are not 
defined between the elements of the map and 
the underlying space, but among the elements 
themselves. For example, we can include metrical 
constraints that should be satisfied by the spatial 
locations of elements or groups of elements of 
the map. These so-called constraint maps are 
particularly suited for minimizing the number of 
hypotheses arising in a probabilistic framework 
and for correcting errors that are inconsistent with 
the imposed constraints. When the elements in 
the map are not world objects but robot poses, we 
have the popular pose constraint map representa-
tion (Konolige, 2005; Arras, Castellanos, Schilt, 
& Siegwart, 2003; Grisetti, Grzonka, Stachniss, 
Pfaff, & Burgard, 2007), which lies at the core 
of graph-SLAM approaches, described in chapter 
10. To provide these maps with information, indi-
vidual robot observations are stored at each pose 
node, leading to the so-called view-based maps 
(Konolige, Bowman, Chen, Mihelich, Calonder, 
Lepetit, & Fua, 2010), where an explicit repre-
sentation of the environment itself does not exist. 
Those maps can be used to aid in splitting the 
environment into different areas or sub-maps, an 
approach that facilitates dealing with large-scale 
environments (Blanco, González, & Fernández-
Madrigal, 2009).

Whenever some method is available to split 
the spatial environment into regions, these regions 
can be connected by topological relations, which 
are spatial properties unaffected by continuous 
changes of shape or size of the regions; examples 
of use of such relations are “element A is to the 
left of element B” or “region A can be reached 
from region B through navigation.” A map that 
explicitly includes this type of relations is called 
in mobile robotics a topological map (Kuipers, 
1978). A topological relation can also be con-
structed from non-metrical data, although that is 
rather uncommon. Topological relations and, in 
general, any non-metrical relation, are “elastic”: 
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you can project a topological map onto a plane, 
placing its elements at arbitrary positions of the 
metrical space, and the map will always be valid. 
They have a direct use in mobile robot operations 
at levels higher than motion control, such as route 
planning (navigation) or manipulation, and can 
also serve for spatial reasoning. Finally, metrical 
and topological maps can be combined in the so-
called hybrid metrical-topological maps or multi-
resolution metrical maps, which are a promising 
approach to represent large-scale space efficiently 
(Blanco, Fernández-Madrigal, & González, 2008).

Most maps including explicit relationships 
existing among their elements can be implemented 
through the abstract data type and corresponding 
mathematical entity called mathematical graph 
(Trudeau, 1994). A graph is a set of nodes (ele-
ments) and arcs (relations). It can be directed 
(if arcs represent a one-way relation) or not, 
can contain loops (relations affecting only one 
element), can have some information attached 
to arcs (annotated graphs, also called networks 
in the mathematical literature) and can provide 
support to different types of relations in the same 
map (multigraphs). A huge body of literature on 
graphs and their uses is available, and thus we do 
not include here any formalization or computa-
tional specification of graphs. Basic computational 
operations on graphs include path searching or 
routing, that is, finding a sequence of adjacent arcs 
with certain properties, which is at the core of the 
route planning operation for mobile robots. Since 
mathematical trees are a special kind of graphs, 
graph theory is useful more generally in mobile 
robotics, and applied on diverse problems: data 
association, octomaps, etc. However, care must be 
taken when using graphs since many operations 
on them are computationally intractable.

An issue with maps that include explicit 
relationships is their fitting into probabilistic 
frameworks, especially when those relations are 
not metrical, as is the case of topological maps. 
In hybrid metrical-topological maps, the metrical 
part does not suffer from this, and thus a com-

mon solution is to handle the uncertainty of the 
topology separately from the metrical uncertainty, 
using especial approaches for that (of course, 
you have to take into account the fact that both 
uncertainties are interdependent). Recently, this 
has been addressed by dealing probabilistically 
with the space of topological maps: a probability is 
assigned to each possible topology (Ranganathan 
& Dellaert, 2011; Blanco, Fernández-Madrigal, 
& González, 2008). The obvious problem with 
that is the combinatorial size of this space, which 
makes intractable its exhaustive exploration and 
forces us to deal with approximations.

Explicit spatial relationships are, in general, 
well suited for representing information from 
the environment that does not change much over 
time, i.e., that is robust, as we have mentioned 
about feature maps. Some examples of these maps 
are shown in Figure 5. They are the second step 
towards symbolic maps.

Symbolic Maps and Semantic Maps

We must insist once more in the fact that the 
frontier between sub-symbolic and symbolic 
representations of space is quite vague. To begin 
with, symbols belong to the scientific area that 
studies human cognition. Although they are obvi-
ously also used in other areas, such as linguistics, 
it is necessary to always start from the concept 
of what a symbol is in our brains. It seems very 
likely that the human mind uses symbols in some 
form (and probably some other animal species), 
but it has not been demonstrated yet which entity 
within the processes of a brain could possibly be 
associated with symbols: neural connection pat-
terns? neural activation patterns? the dynamics 
of other cells different from neurons? The hypo-
thetical cognitive processes that produce symbols 
from sub-symbolic information are also unknown. 
There is, in fact, a philosophical problem con-
cerning symbols, the already mentioned symbol 
grounding problem: since symbols, by definition, 
must convey some meaning, how that meaning is 
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Figure 5. (a) A pose-constraint map, where robot poses (or “frames”) and constraints are represented 
as corners and edges among them, respectively. The representation has been built with applications from 
our software library MRPT (2011), using a two-dimensional dataset published by (Grisetti, Stachniss, 
Grzonka, & Burgard, 2007). (b) Example of how an environment can be assigned a set of “distinctive” 
places. (c) An example of a topology for a map.
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associated to them from within, not from the per-
spective of an external observer, if the robot—or 
the human—only has non-symbolic information 
coming in from sensors? (Harnad, 1990). Actu-
ally, the problem is more general, including not 
only the emergence, but the maintenance of the 
“links” between symbols and the non-symbolic 
reality on which they must be grounded. A way 
of reducing this complexity is to consider only 
symbols that refer to physical elements of the 
world, obtaining the so-called anchoring problem, 
mentioned before too, but anchoring is currently 
far from being figured out.

In spite of this, we have to provide some con-
crete definition for symbol and for symbolic map 
in order to give form to maps of higher levels of 
abstraction than the ones introduced before, as-
suming that other definitions, even contradictory 
with ours, may also exist. In this chapter—and in 
most robotics literature—we will call symbol an 
explicit computational representation, (i.e., one 
with storage needs in a computer and associated 
algorithms that use it), of some physical, distinc-
tive and stable element of the robot environment 
that can be used explicitly in high level, usually 
called cognitive, processes.

We should explain with some more detail 
the adjectives used in this definition to bind its 
vagueness a little. With “physical,” we refer to 
representations of parts of the environment that 
can be perceived by the robot sensors. All the maps 
previously described contain information about 
physical elements of the environment, but we need 
to explicitly include that word in our definition in 
order to reduce the intractable (up to date) symbol 
grounding problem to the intuitively more practical 
anchoring problem. With “distinctive,” we stress 
the fact that if a part of the environment is to be 
represented by a symbol, it must be distinguished 
from the background. This rules out both points 
and grid cells: they are clearly not considered 
symbolic maps. Finally, with “stable” we do not 
mean static or unchanging, but the quality of a 
physical element to exist during a certain period 

of time that is enough to perceive its distinctive 
constituents and also to process them.

We also mentioned in our definition that a 
symbol “can be used explicitly in high level pro-
cesses.” By “high level processes,” we refer to 
those that resemble human cognition: planning, 
reasoning, decision making, communicating with 
other cognitive agents, etc. Without this con-
straint in our definition, free-space, and feature 
maps could enter the symbolic class of maps: 
the highest level operation that can be carried 
out by a mobile robot with a free-space map is 
to control its motion to navigate (and not collide 
with obstacles); the one with a feature map is to 
locate itself in the environment. It is for certain 
that both kinds of maps can be used for more 
sophisticated operations… if they are enriched 
with explicit relationships or semantic knowledge, 
or their elements are further processed to obtain 
more complex ones. That is the reason why we 
do not consider them as symbolic.

Thus, we reach to relational maps. For a map 
to contain explicit relationships, it must certainly 
contain elements to relate (features, free-space 
regions, etc.), and these elements could be inter-
preted as symbols: they correspond to physical, 
distinctive and stable parts of the environment—in 
the sense explained before—and they can be used 
by high level processes. The emphasis in “can” 
is the reason why we have left relational maps as 
a separate class of maps and not consider them 
as symbolic: because they can be thought of as 
symbolic maps or not, depending on the situa-
tion. It is true that any symbolic map should be 
relational: cognitive processes require the exis-
tence of a diversity of relationships between the 
elements of discourse. But the reverse may not 
always hold: one can have relationships in a map 
and use them for finding routes in the environ-
ment, an operation (typical for topological maps) 
that is just in the edge of what can be considered 
a cognitive process, much more when taking into 
account that finding a path in a graph is a quite 
simple computational operation.
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Therefore, our proposed rule is, if the map 
contains more than one type of explicit relation, 
and its elements have enough complexity in their 
defining characteristics, true high-level processes 
are possible and thus we can confidently classify 
the map as symbolic. We insist in that this is our 
way of classifying maps in this book, and others, 
perfectly valid, may exist.

The first kind of symbolic map that we can 
implement in a mobile robot comes from the 
inclusion of explicit hierarchical relations on a 
topological map: groups of distinctive places in the 
environment can be abstracted to a single symbol 
that represents, for instance, the room that they 
define from the perspective of the sensorimotor 
apparatus of the robot. This abstraction process 
can go on recursively, building up a hierarchy of 
abstraction that ends with a single symbol that 
represents the whole environment. Furthermore, 
the abstraction operation can be defined in different 
ways for the same base data, leading to multiple 
hierarchies of abstraction on a single map. These 
kinds of maps have demonstrated to improve ef-
ficiency of some mobile robot operations, to be 
able to optimize these operations in the long term 
(adapting to the particular environment where 

they are used) and also to make easier the com-
munication with humans (Fernández-Madrigal & 
González, 2002; Galindo, Fernández-Madrigal, 
& González, 2007). You can see an example in 
Figure 6a.

Another kind of symbolic map comes from 
the enrichment of the attributes of symbols such 
that they can be classified into “semantic catego-
ries.” If explicit relationships are added to these 
categories, especially the “is-a” relation, you 
obtain the so-called semantic maps (Galindo, 
Fernández-Madrigal, González, & Saffiotti, 2008). 
A semantic map is a symbolic map that allows 
the robot to deduce new knowledge from the 
general properties (semantics) of the categories 
of objects in the world. This can be exploited by 
the robot to perform better in some particular task. 
For example, while planning complex tasks in-
volving moving, manipulating, communicating 
results, etc., semantic inference can extend the 
scope of the planner by providing the robot with 
the possibility of reasoning about elements of the 
environment that it has not perceived yet; the 
semantic structure of the map can also be used to 
plan at a more abstract level than with a topo-
logical representation, thus reducing computa-

Figure 6. (a) Example of a multi-hierarchy in a topological map and (b) a semantic map used by our 
robots (Images courtesy of Cipriano Galindo-Andrades, University of Málaga)Prom
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tional cost. An example of a semantic map is 
shown in Figure 5b.

Still a different approach to symbolic maps 
is to create relations and symbols from non-
metrical data. The work of the psychologist Jean 
Piaget (1948) showed that children acquire first 
relational information from the environment and 
then metrical one. This idea led to Benjamin J. 
Kuipers and his colleagues to propose a compu-
tational implementation of the human cognitive 
map with several ontological levels, the Spatial 
Semantic Hierarchy (Kuipers, 2000), in which 
firstly symbols represent stable operation points 
of basic motion behaviors (e.g., distinctive junc-
tions or spots in free-space), then causal relations 
are added representing the fact of getting at that 
distinctive place if executing that operation from 
that origin place, then a topology is deduced from 
the causal map, and finally metrical information is 
added to the topological relations. A hierarchy of 
abstraction similar to the one described in previous 
paragraphs can also fit at the highest ontologies 
of this model (Remolina, Fernández-Madrigal, 
Kuipers, & González-Jiménez, 1999).

In general, symbolic maps are out of the scope 
of the problems of this book, thus they are entirely 
confined in this section. Their use for localization 
and mapping is an interesting way to explore in 
the future, though. The inclusion of uncertainty 
in this kind of maps is in general an open issue.

3. BAYESIAN ESTIMATION 
OF GRID MAPS

Now that we have a general and broad vision on 
the kinds of explicit representations of space that 
a robot can have, and assuming that we know the 
pose of the robot, we can consider the problem 
of estimating a map. As we have seen along this 
book, a rigorous mathematical way of taking into 
account the uncertainty in measurements and 
motion is probability theory and statistics and, in 
particular, Bayesian recursive estimation (in the 
sense of sequential with time) is especially well 
suited for on-line estimation of the dynamics of 
continuous systems that do not exhibit abrupt 
changes. When estimating maps, they are usually 

Figure 7. The DBN for the problem of grid map building. Shaded nodes stand for the hidden variables 
that will be estimated. Notice how the map variable m  can be considered as a vector of scalar variables 
m
i
, one for each cell in the grid map. The indices of map variables have been numbered as for a grid 

map with c  columns and r −1  rows.Prom
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considered static, thus the reason to use a sequen-
tial approach is not for coping with changes in 
the map, but rather for allowing us to learn them 
incrementally, as new observations are gathered 
while the robot explores its environment.

One of most common types of map that can 
be estimated under a probabilistic framework is 
the occupancy grid map. The Dynamic Bayesian 
Network (DBN) for the case of estimating a grid 
map from robot observations, considering the map 
a static random variable, is shown in Figure 7. We 
can pose the problem mathematically as finding 
out the following pmf:

P
t t

( , )
: :

m z x
1 1

 (1)

A problematic aspect of this representation is 
the extremely high dimensionality of that pmf. 
Notice that in a grid map, the probability distribu-
tion should include the interdependences (covari-
ances) between any pair of map cells. If we know 
that a cell shows evidence of containing an ob-
stacle, the probability of nearby cells containing 
an obstacle too would not be the same as if we 
learned that the first one was free. Estimating the 
full probability distributions in such a way soon 
becomes intractable even for small maps. There-
fore, the first simplification we will make is to 
consider the individual elements of the map con-
ditionally independent on each other, with which 
our estimation problem becomes:

P P m
t t i i

N

t t
( , ) ( , )

: : : :
m z x z x

1 1 1 1 1
= { } ≈

=
 

(assuming m m
i j t t
⊥ z x

1 1: :
,  for any i j≠ )

≈
=
∏P mi t t
i

N

( , )
: :
z x

1 1
1

 (2)

that is, the factoring of the full joint distribution 
into the product of the individual pmf for each 

one of the N  map cells m
i
. Hence, in the fol-

lowing we will focus on estimating those indi-
vidual distributions P m

i t t
( , )

: :
z x

1 1
 instead of the 

joint. Notice that this simplification is not realis-
tic at all, since each observation z

i
 (e.g. a laser 

range scan or a sonar range) is actually affected 
by several grid cells, thus, statistically speaking, 
estimating all those cells from the observation 
should introduce a strong correlation between 
them. However, the assumption of conditional 
independence is almost universal in the literature 
because it leads to efficient and convenient update 
equations whose results are, in practice, quite 
satisfactory.

Recall that each variable m
i
 can yield only 

two values: occupied or free, representing the 
state of that portion of space. That is, all m

i
 are 

binary random variables. Actually, we could also 
write down the problem in this alternative form:

P m
i t t

( , )
: :

¬ z x
1 1

 (3)

being ¬m
i
 the r.v. that represents the i th−  cell 

being free (and not occupied). Of course, 
P m P m

i t t i t t
( , ) ( , )

: : : :
¬ = −z x z x

1 1 1 1
1 .

In order to find out the RBE for this setting, 
we can apply the Bayes’ rule to the distribution 
of the i th−  cell at the last line of Equation 2:

P m P m
i t t i t t t

( , ) ( , ,
: : : :
z x z z x

1 1 1 1 1
= −

this conditions 
the entiree 
expression

� ���� ���� )

( , , ) ( ,
: : : :

=

= − −p m P m
t i t t i t
z z x z x

1 1 1 1 1 1 tt

t t t
p

)

( , )
: :

z z x
1 1 1−

=

 

(by the conditional independence z z x
t t t i

m⊥ −1 1:
,  

that can be seen in the DBN)
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= =−

−
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(using again the Bayes’ rule in the first term of 
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 (4)

This is the farthest we can reach by pursuing 
terms with known expressions. However, there 
still appear probabilities that are difficult to cal-
culate, such as p

t t
( )

:
z x

1
 or p

t t t
( , )

: :
z z x

1 1 1− . Since 
these terms do not depend on the r.v. we are esti-
mating (m

i
), we can get rid of them by firstly 

using the fact that the same deduction shown in 
Equation 4 applies to the dual problem of estimat-
ing the “freeness” of the cell (Equation 3):

P m

P m p P m

P

i t t

i t t t t i t t

( , )

( , ) ( ) ( , )

(

: :

: : :

¬ =

=
¬ ¬ − −

z x

z x z x z x
1 1

1 1 1 1 1

¬¬ −m p
i t t t
) ( , )

: :
z z x

1 1 1

 

(5)

Then, as long as P m
i t t

( , )
: :

¬ >z x
1 1

0 , we can 
divide Equation 4 by Equation 5, obtaining what 
is called the odds of m

i
:

P m

P m

P m P m

i t t

i t t

i t t i t t

( , )

( , )

( , ) ( ,

: :
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: :

z x
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¬
=

= − − )) ( )

( , ) ( , ) ( )
: :

P m

P m P m P m
i

i t t i t t i

¬

¬ ¬ − −z x z x
1 1 1 1

 

and applying logarithms to both sides in order 
to simplify calculations, we get the so-called 
log-odds:
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This expression involves terms that either can 
be calculated or are recursive functions of other 
terms. We name each term for convenience:
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(7)

This is the final log-odds recursive formulation 
for the on-line estimation of a binary r.v. m

i
. It 

is not equivalent to estimating the posterior oc-
cupancy probability of m

i
, but the latter can be 

deduced from it, since:
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(8)

Therefore, we could store the log-odds values 
(in the range 

t i
m( ) ,∈ −∞ +∞( ) ) for the grid 

cells at each time step, and then retrieve their 
posterior occupancy estimation (in the range 
P m

i t t
( , ) ,

: :
z x

1 1
0 1∈ ( ) ) just when needed by us-

ing Equation 8.
The log-odds representation stands as the most 

convenient implementation form for Bayesian grid 
maps in mobile robotics. In practice, updating 
a cell amounts to adding a positive or negative 
value to its current log-odds, according to the 
sensor readings (Equation 7). Furthermore, it 
is advisable for the sake of efficiency to always 
store log-odds as integer values to avoid the more 
costly operation of floating point addition, as long 
as saturation arithmetic is observed while adding 
the integers (i.e., taking care of avoiding overflow 
and underflow conditions). As demonstrated in 
grid map implementations such as the one of the 

second author within the MRPT (2011), represent-
ing the log-odds value of each cell as one 8-bit 
signed integer provides an excellent computational 
performance and negligible rounding errors for 
virtually any practical mapping application.

Returning to the log-odds formulation of Equa-
tion 7, we need to provide values for τ

t i
m( )  and 



0
( )m
i

 at each step (the latter is a constant), which 
requires to provide values for P m

i t t
( , )z x  and 

P m
i

( ) . The former is called the inverse sensor 
model, while the latter is the a priori information 
that we have about the map occupancy. If we do 
not know anything in particular about the occu-
pancy of each cell at the first step, we could set 
P m P m

i undefined i
( ) ( ) .= = 0 5  as a matter of con-

venience, since then 



0
0 5 0 5 0( ) ln( ( ) / ( )) ln( . / . )m P m P m

i i i
= ¬ = =

and we would save one sum in the update of 
each cell.

Obtaining an expression for the inverse sensor 
model is more complicated, and different ap-
proaches exist. We already studied the forward 
sensor model in chapter 6, used there as the like-
lihood of the sensor, which in the case of the 
complete map would be p

t t
( , )z m x . If this is 

known, using Bayes’ rule we can deduce the in-
verse model:

P
p P

pt t

t t t

t t

( , )
( , ) ( )

( )
m z x

z m x m x

z x
= =  

(since m x⊥
t
)

= ∝

∝

p P

p

p P

t t

t t

t t

( , ) ( )

( )

( , ) ( )

z m x m

z x

z m x m
 (9)
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In the case of grid maps, we are interested in 
P m a

i t t
( , )= z x  for every cell m

i
, which can 

be retrieved from Equation 9 by considering all 
the possible maps that have the value a  at that 
cell:

P m a P

p P

p

i t t t t
m a

t t

t tm a

i

i

=( ) =

=

∝

=

=

∑

∑

z x m z x

z m x m

z x

m

m

, ( , )

( , ) ( )

( )

:

:

pp P
t t

m ai

( , ) ( )
:

z m x m
m =
∑

 

(10)

Obviously, this sum is intractable: the number 
of potential maps that have a certain value in a 
cell is overwhelming. See Figure 8. It could be ap-
proximated though through advanced techniques 
such as neural networks that fall out of the scope 
of this book.

A more practical, albeit not rigorous, ap-
proximation to the inverse sensor model is as 
follows (Thrun, Burgard, & Fox, 2005). Con-

sider a general beam model for the sensor consist-
ing of a cone defined by an angle of aperture β
—see Figure 7a. We have to provide a value 
P m

i t t
( , )z x  of the inverse sensor model for 

every cell in the grid after acquiring observation 
z
t
 from location x

t
, in order to update the log-

odds of the map. The focus of the cone, therefore, 
will be placed at x

t
, and its bisector line will point 

along the orientation of the line of sight of the 
sensor. In such a situation we can distinguish three 
zones in the grid—commonly, the region a cell 
of the grid lie in is decided by considering its 
center of mass or geometrical center.

Firstly, it is reasonable to assume that all the 
cells that fall outside the cone do not obtain any 
new evidence about their occupancy after that 
observation, thus they can keep the old log-odds 
previously stored in the grid. The same is valid 
for those that lie within the area of the cone but 
beyond the observed distance z

t
, since the ob-

servation of z
t
 indicates the presence of something 

solid at that distance (with which the beam has 
hit) that is occluding the sight beyond. In order 

Figure 8. (a) Grid mapping beam model. (b) An example of a grid map built from an ultrasonic sensor 
for the same navigation experiment we have conducted for the EKF and the PF localization methods 
in chapter 7, with the previously introduced educational robot Lego Mindstorms NXT. The robot had to 
move within a small square box of 92 cm x 92 cm.Prom
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to include a margin of error in this measurement, 
we can take z

t
d+  instead, with some small 

d > 0 . Thus, all the cells outside the cone remain 
unchanged. We will denote this first region of the 
heuristic inverse model as R

u
.

Secondly, those cells lying within the cone of 
the beam and closer than the observation z

t
 have 

evidence of being free—otherwise the beam would 
have not reached as far as z

t
. For including a 

security margin in this area, we can take z
t
d−  

instead. This region will be denoted as R
f

.
Finally, all the cells lying in a region R

o
 defined 

within the distances [ , ]z z
t t
d d− +  from the 

location of the sensor and within angles 
[ / , / ]−β β2 2  from the bisector of the beam have 
evidence of being occupied since we do not know 
at which point (or points) in that region did the 
beam bounce exactly.

In summary, we only need to update, accord-
ing to Equation 7, the log-odds of the cells belong-
ing to areas R

f
 and R

o
. The value that we need 

for that is P m
i t t

( , )z x . We can use any value 
for this inverse sensor model distribution, for 
example 

P m m R P m
i t t i f i t t

( , , ) ( , ) .z x z x∈ = ¬ = 0 25  

and 

P m m R

P m P m
i t t i o

i t t i t t

( , , )

( , ) ( , ) . ,

z x

z x z x

∈ =

= = − ¬ =1 0 75

as long as 

P m P m P m
i t t undefined i i t t

( , ) ( ) ( , )¬ < <z x z x , 

which is satisfied with the proposed values: 
0 25 0 5 0 75. . .< < . In practice, the values of 

P m
i t t

( , )¬ z x  and P m
i t t

( , )z x  may be chosen 
heuristically or from trial and error: values too 
close to 0.5 will require many repeated observa-
tions of the same cells for their probability to 
noticeably change from their default initial value, 
while, on the other hand, too extreme values (close 
to 0 and 1, respectively) may give too much weight 
to spurious or noisy readings. In any case, the 
exact values of zero and one should never be 
employed as the probabilities of the sensor 
model update, since they lead to inconsistencies, 
which reflect as infinities in the log-odds formu-
lation.

Finally, you can see in Figure 7b the result 
of the application of this inverse sensor model 
to the mapping of an environment by a simple 
mobile robot endowed with an ultrasound sensor; 
the figure displays the occupancy probabilities, 
recovered from the log-odds through Equation 8. 
Notice the near-circular area inside the map that 
shows an undefined occupancy: it is bounded by 
the circumference along which the sensor has 
rotated.

4. BAYESIAN ESTIMATION 
OF LANDMARK MAPS: 
GENERAL APPROACH

We now address the estimation of a map of land-
marks (or features) assuming a perfect knowledge 
of the robot poses from which the landmark 
observations took place. As it will be shown, 
the approach may vary depending on the kind of 
information provided by the observations: range 
and bearing, bearing only or range only. The kind 
of available information is all we need to know in 
order to build the map, thus it will be irrelevant 
for us if the landmarks are directly detected by 
some sensor or if they come from some sort of 
post-processing over the raw sensory data. An 
example of range-bearing observations are the 
results of applying salient feature detectors to 
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2D laser range scans, such as the detection of 
tree trunks in an outdoor environment (Guivant 
& Nebot, 2001) or the detection of corners in 
indoors (Tipaldi & Arras, 2010). The most com-
mon case of bearing-only observations is, by far, 
image features detected in video frames from a 
camera: given a feature in an image, all we can 
say about the three-dimensional spatial location 
of the corresponding landmark is that it falls 
somewhere along a semi-infinite line emerging 
from the camera focus along a direction specified 
by the pixel coordinates (Davison, Reid, Molton, 
& Stasse, 2007). Finally, sensors providing range-
only observations are more uncommon but include 
interesting families of devices such as radio or 
ultrasonic beacons—recall chapter 2 section 9.

In all cases, however, our aim is the same: 
obtaining the spatial location of each observed 
landmark within an arbitrary global frame of refer-
ence along with an estimation of the uncertainty 
of its position. We could state the problem math-
ematically as the estimation of the following pdf:

p p
t t i i

N

t t
m z x m z x

1 1 1 1 1: : : :
, ,( ) = { }






=
 (11)

where the map m  comprises in this case a set of 
N  variables m

i
, each one representing the spa-

tial location of the i th−  landmark in the map. 
Notice that since these quantities are continuous 
values, the distribution of interest is a pdf instead 
of a pmf as it was the case with grid mapping—
compare Equation 11 to Equation 1.

The DBN for this estimation problem, shown 
in Figure 9, is also independent of the actual kind 
of observations (range-bearing, bearing-only, or 
range-only). Observe how we have expanded in 
the DBN the map variable m  into the correspond-
ing sequence of individual map elements: the 
spatial location of each landmark. Unlike in grid 
mapping, where a single observation was af-
fected by several grid cells, observations in land-
mark mapping always consist of a sequence of 
individual landmark measurements. For instance, 
a range-bearing observation z

k
 taken at some 

time step i  may contain the range and bearing of 
the first and the second landmarks stored in the 
map; we would denote such observation as 
z z z
k k k
= { }, ,

,
1 2

, with the second subscript index 
denoting the index in the map of the observed 

Figure 9. The DBN for landmark map estimation from a sequence of known robot poses. The map and 
observation variables have been split into its elemental constituents. As usual, shaded nodes represent 
the hidden variables to be estimated.Prom
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landmark. Obviously, finding out those indices 
may be not straightforward since it implies solv-
ing the data association problem, already explained 
in chapter 6 section 4.

Observing this graphical model, we arrive at 
two important realizations: (1) conditioned on the 
whole robot path and all observations, map land-
marks are conditionally independent of each 
other; and (2) each landmark is conditionally 
independent of all the robot poses and observa-
tions that do not directly observe it, given all the 
poses and observations that do really observe it 
directly. Such conclusions easily emerge by ap-
plying the concept of d-separation to the graph, 
as we discussed in chapter 3 section 10. Then, 
denoting the set of time steps from which the 
i th−  landmark was observed as Ω

i
, we can 

factor and simplify the target pdf in Equation 11 
as follows:

p
i i

N

t t
m z x{ }





 ==1 1 1: :

,  

(factoring due to m m z x
i j t t
⊥

1 1: :
, )

= ( ) =
=
∏p i t t
i

N

m z x
1 1

1
: :
,  

(and since 

m z x z x
i k j k

j i
k k k i k k ki

i i i

⊥ { } { } { } { }∉
≠ ∉ ∈ ∈, ,
, ,Ω Ω Ω Ω

)

= { } { }





∈ ∈

=
∏p i k i k k k
i

N

i i

m z x
,

,
Ω Ω

1
 (12)

It is important not to get lost into the formula-
tion details but keep clear the real significance of 
the expression at which we have arrived. The r.v. 
of each landmark position in the world can be es-
timated independently, just from the observations 
directly associated with it. There exists no cross-
covariance terms linking different landmarks, but 

not due to any approximation or simplification, 
only because we assumed a perfect knowledge 
of the robot pose at each time step (that cross-
covariances do arise in the SLAM problem). In this 
mapping-only scenario, the only possible source 
of cross-covariance between landmarks would be 
in the sensor noise, which in virtually all sensors 
would never be a real possibility.

To realize why this independence between 
landmarks is so important, assume we are estimat-
ing a map with N  three-dimensional landmarks. 
According to Equation 12, all we need is to esti-
mate N  separate pdfs of dimensionality 3. In 
turn, directly estimating the joint pdf p

t t
m z x

1 1: :
,( )  

implies estimating a pdf of dimensionality 3N . 
Since it is common to implement the RBE with 
Kalman-like filters, which typically exhibit a 
cubic computational complexity with the problem 
dimensionality (recall chapter 7 section 3), the 
factoring of the pdf means to pass from a com-

plexity O N O N3
3 3( )






 ≡ ( )  down to a much 

simpler O N O N33( ) ≡ ( ) . More on performance 

will be discussed in chapter 9 section 3 when 
dealing with RBPF-based SLAM.

An additional advantage of this pdf factor-
ing, not always exploited in the literature, is the 
possibility of modeling each landmark with a 
different pdf parameterization (Blanco, González, 
& Fernández-Madrigal, 2008b), an issue touched 
later on.

So far our aim is to address the Bayesian es-

timation of the p
i k i k k k

i i

m z x
,

,{ } { }





∈ ∈Ω Ω
 distri-

butions in Equation 12, which for the sake of 
clarity we will refer to simply as p

i t t
m z x

1 1: :
,( )  

in the following, advising the reader to keep in 
mind that the robot poses and the observations 
appearing in this expression are only those di-
rectly related to the i th−  landmark. The first 
step is to apply Bayes’ rule conditioned on the 
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latest observation and some conditional indepen-
dences that follow from the DBN:

p p
i t t

t

i t t
m z x m z z

1 1 1: : , :
,( ) = −

Posterior pdf for 
� ������ ������ 11 1

,
:
x
t( ) =  

(Bayes’ rule applied on z
t
)

=
( ) ( )

( )
− −

−

p p

p

i t t t i t t

t i t t

m z x z m z x

z m z x

1 1 1 1 1 1

1 1 1

: : : :

: :

, , ,

, ,

Thiss term is a constant w.r.t. the posterior
� �������� ���������

∝  

∝ ( ) ( ) =− −p p
i t t t i t t
m z x z m z x

1 1 1 1 1 1: : : :
, , ,  

(and since m x z x
i t t t
⊥ − −1 1 1 1: :

, )

= ( ) ( )− − −p p
i t t t i t t
m z x z m z x

1 1 1 1 1 1 1: : : :
, , ,  (13)

Looking at the second term in the last product, 
one can see that the landmark location m

i
 appears 

as a conditioning variable, while in fact we do 
not know its real value (that is exactly the problem 
we are trying to solve!). The solution is to sum 
all the contributions to this density conditioned 
on the likelihood of each possible value of the 
landmark location; since m

i
 belongs to a con-

tinuous domain, the sum becomes an integration. 
Doing so and using further simplifications leads 
to:

p p
i t t t i t t
m z x z m z x

1 1 1 1 1 1 1: : : :
, , ,− − −( ) ( ) =  

(integrating over all the possible values of m
i
)

= ( )
( )

− −

−

p

p

i t t

t i t t

m z x

z m z x

1 1 1 1

1 1 1

: :

: :

,

, ,�
�

can be simplified 
��������� ��������

� �p d
i t t i
m z x m

1 1 1: :
,−−∞

∞

( ) =∫  

(from the DBN we have z z x m x
t t t i t
⊥ − −1 1 1 1: :

, , )

= ( )
( ) ( )

− −

−

p

p p

i t t

t i t i t t

m z x

z m x m z x

1 1 1 1

1 1 1

: :

: :

,

, ,� �

can be simpllified
� ������� �������

�dm
−∞

∞

∫ =  

(and applying again that m x z x
i t t t
⊥ − −1 1 1 1: :

, )

= ( )− −

−

p

p

i t t

t

m z x

z

1 1 1 1

1

: :
,

Posterior pdf at 
� �������� ��������

tt i t i t t t

t

p� �
� ��������

m x m z x, ,
: :( ) ( )− −

−

1 1 1

1Posterior pdf at 
���������
�d
i
m

−∞

∞

∫
 (14)

Since we aim at estimating the individual pdf 
for the i th−  landmark, we must assume that the 
correspondence between observations and the 
i th−  map landmarks has been already done 
following any of the methods explained in chap-
ter 6 section 4 for data association. As an outcome 
of such methods we could get two possible results: 
either the observed landmark (1) corresponds to 
any of the existing ones or (2) it is a new one not 
mapped yet (and the index i  simply stands for 
any unoccupied landmark index). The former 
means that we need to fuse the new information 
with the latest filtered posterior, which must be 
done in a way that depends on the kind of avail-
able observations (this will be addressed below). 
In the latter case, if we interpret what occurs to 
Equations 13 and 14, we obtain:
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p p
i t t i t
m z x m z x

1 1 1 1 1: : : :
, ,( ) ∝ −

New posterior pdf
� ������ ������ tt

t i t
p p

−( )

( )

1

Previous posterior pdf
� �������� ��������

� �z m x, mm z x
i t t t

d
1 1 1: :

,− −( )
Previous posterior pdf
� �������� ��������

��m
i−∞

∞

∫  

(instantiating for the first observation of a land-
mark, that is, t = 1)

p p p p
i i t i t i
m z x m z m x m

1 1
, ,( ) ∝ ( ) ( ) ( )

A priori pdf A prio
� ��� ���

� �
rri pdf

� ��� ���
�d
i
m

−∞

∞

∫  

(15)

where it can be seen that, as could be expected, 
the first time a landmark is observed some sort of 
a priori distribution will be needed for its spatial 
location. The most generic attitude we could take 
here is to assume that no information is available 
apart from the observations themselves, thus the 
a priori distributions become uniform pdfs:

p p p p
i i t i t i
m z x m z m x m

1 1
, ,( ) ∝ ( ) ( ) ( )

Constant Constant
� ��� ���

� �
� ���� ���

�d

p

i

t i t

m

z m x

−∞

∞

∫

∝ ( ),

 

(16)

that is, the pdf of the landmark after its first ob-
servation coincides with the inverse sensor 
model, which is the name of the distribution 
p

t i t
z m x,( )  when all the terms are known values 

except the map. Recall that the same distribution 
was named sensor observation model in chapter 
6 when the unknown term was the observation 
itself.

To sum up, we have learned that updating a 
landmark map requires an inverse sensor model for 
the first time a landmark is detected, and a generic 
Bayesian filtering algorithm for solving Equation 
14 in subsequent observations. The next sections 
expose some solutions for those two situations for 
the three different kinds of observations that we 
can obtain from robotic sensors.

5. BAYESIAN ESTIMATION OF 
LANDMARK MAPS: RANGE-
BEARING SENSORS

For simplicity in the exposition, we will assume 
a robot moving on a planar surface, and all land-
marks contained in a single plane. In this set  
up, we can model each map landmark as a  
r.v. comprising its two coordinates, that is, 

m
i x y

T

m m
i i

= ( ) . As already discussed in 

chapter 6 section 3, a range-bearing sensor pro-

vides us with observations z
k k k k

T

r b= ( )ϕ , 

having one range r
k

 and one bearing angle b
k

 
that describe the landmark position as detected 
from the instantaneous pose of the sensor 

s
k x y

T

s s s
k k k

= ( )θ . The value ϕ
k

 represents 

the identification of the sensed landmark, and will 
be present only if the sensor is able to uniquely 
identify it in the environment. Since it was as-
sumed above that data association was already 
solved at this point, we will go on with 

z
k k k

T

r b= ( ) . Regarding the sensor pose, it is 

straightforwardly computed given the robot pose 

x
k k k k

T

x y= ( )θ  but for clarity we will assume 

that both coincide, i.e., the sensor is exactly at the 
origin of the robocentric coordinate reference.

The Inverse Sensor Model

Once we stated the parameterization of the problem 
variables, we aim at providing the inverse sensor 
model, for which we have to start from the sensor 
observation model (or direct model):

z h x m n
k

i

i
i k i k

r

b
=















= ( )+,  (17)
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Here, n 0 R
k
N ,( )  is an additive zero-mean 

Gaussian noise and the observation function is 
the one already presented in chapter 6’s Equation 
6, repeated here for convenience:

h x m
i t i

x t y t

y t x t t

m x m y

m y m x
i i

i i

,
,

( ) = −( ) + −( )
− −( )−







2 2

atan2 φ







 

(18)

Obtaining an inverse sensor model implies 
having a probabilistic relationship such that, 
given a sensor reading from a known robot pose, 
yields a pdf for the location of a landmark m

i
 

that explains the known data. By finding the 
value of m

i
 in Equation 17 we have:

z h x m n

z n h x m

m h x z n

k i k i k

k k i k i

i i k k t

= ( )+ →

− = ( ) →

= −( )−

,

,

,1

 (19)

where the inverse observation function1 takes one 
robot pose x

k
 and an observation z

k
 and returns 

the projected location of the landmark. In this 
case, it can be shown that this function is:

m

m

x r b

y r
x

y
i i k k

k i k i

k i

i

i












= = ( ) =

+ +( )
+

−m h x z1 ,
cos

si

φ

nn φ
k i
b+( )












 

(20)

Up to this point, all the derivation was based 
on statistical bases and was totally generic, but 
now we need to decide what specific distribution 
will be used to model the uncertainty in the map 
landmarks. For range-bearing sensors, it turns out 
that approximating that uncertainty as Gaussian 
is quite reasonable. Thus, the inverse sensor 
model p

k i k
( , )z m x  in this case equals the distri-

bution N
i i i

m m m; ,Σ( ) , the parameters of which 

are derived next.

Notice from Equation 19 that the noise n
k

 is 
the unique input to the inverse function h

i
− ⋅( )1  

that is not perfectly known, but a pdf: it is the 
sensor noise uncertainty, the only one that leads 
to uncertainty in the landmark position. As usual 
when faced with uncertainty transformations, an 
appealing solution is to apply linearization, arriv-
ing at an expected value of:

m h x z n
i i k k k
= 



 −


( ) →−1 E E,  

(since x
k
 and n

k
 are known values and the mean 

of n
k

 is zero)

m h x z
i i k k
= ( )−1 ,  (21)

and a covariance of:

Σm
h

z
R
h

zi

i

k

i

k

T

=
∂ ⋅( )
∂

∂ ⋅( )
∂

− −1 1

 

With the Jacobian, evaluated at the mean of 
n
k

, given by:

∂ ⋅( )
∂

=
+( ) − +( )
+( ) +( )

−h

z
i

k

k i i k i

k i i k i

b r b

b r b

1 cos sin

sin cos

φ φ

φ φ








 

(22)

Notice that all of this is possible only because 
landmarks are completely observable with range-
bearing sensors, as was already mentioned in 
chapter 2 section 3. That means that there exists 
a well-defined inverse sensor function h

i
− ⋅( )1 , 

something that not always occur with other sen-
sors.
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Recursive Bayesian Estimation

We now address the update of a map with suc-
cessive observations of a landmark, which was 
already mapped upon its first detection. This 
implies providing a concrete implementation for 
Equation 15. Recall that we already decided to 
represent uncertainty in landmarks as Gaussian 
distributions and that the perfect knowledge of 
the robot path allows us to update the pdf of each 
landmark independently. The Gaussianity assump-
tion and the non-linearity of the observation 
function h

i
⋅( )  defined in Equation 18 makes the 

Extended Kalman Filter (EKF) a good choice as 
the algorithm to estimate the pdf for each indi-
vidual landmark. In this particular problem the 
EKF equations are simpler since there is no pre-
diction stage (the transition or motion model)  
due to the assumption of a static map. Recall  
that each landmark pdf is parameterized as 
m m mi i

N
i

 ,Σ( ) , thus the EKF equations must 

provide the updated mean and covariance matrix 
from the previous ones and the new robot pose 
and observation. From chapter 7’s Equation 44, 
the equations turn out to be:

m m K z h
i i k i k i
← + −( ),

 

Σ Σm mI K H
i ik i k i
← −( ), ,  

with the Kalman gain matrix being:

K H R H Hm mk i k i
T

k i k i
T

i i, , , ,
= +( )

−

Σ Σ
1

 (23)

H
k i,

 is the Jacobian of h
i
⋅( )  with respect to 

the landmark coordinates, which easily follows 
from Equation 18 to be:

H
h x m

mk i

i k i

i

x k

i

y k

i

y k

i

x k

i

m x

r

m y

r
m y

r

m x

r

i i

i i

,

,
=
∂ ( )
∂

=

− −

−
− −







2 2







  
(24)

In the case that the uncertainties for a particular 
experimental set up are so large that the lineariza-
tion in EKF represents a poor approximation to 
the actual pdfs, the UKF algorithm could be used 
instead. The reader can review all the properties 
and equations of both filters in chapter 7 section 3.

6. BAYESIAN ESTIMATION 
OF LANDMARK MAPS: 
BEARING-ONLY SENSORS

This kind of landmark observations is of the great-
est interest since they are the ones obtained from 
image features while performing vision-based 
mapping or SLAM. It is possible to address two-
dimensional mapping with these observations, for 
example, by detecting vertical features in images 
of the environment (like doorframes or corridor 
corners). Although ideas like this were proposed 
during the last two decades, the truth is that they 
never became really popular, probably because of 
the much richer information that one can obtain 
by considering the full 3D information embedded 
in the images instead.

Therefore, we will focus here on a full 3D ap-
proach, which complicates the formulation and 
introduces new challenges with respect to previ-
ously seen methods. When working on a planar 
environment, a robot pose simply consists of a 
pair of coordinates that define the translation and 
a third parameter for the rotation angle; it will be 
always like that and there is no room for further 
complications. In contrast, the first hurdle when 
dealing with three-dimensional localization, map-
ping or SLAM is to choose a parameterization for 
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the spatial pose of the camera—quite often visual 
mapping is performed with hand-held cameras, 
thus we will refer to the camera pose instead of 
the robot pose all along this section. Employing 
unit quaternions to represent 3D rotations is the 
preferred approach when those rotations are to be 
directly estimated within a Bayesian filter, as is 
our case—an alternative using more mathemati-
cally advanced techniques is briefly discussed 
in chapter 10. This approach, common in the 
literature (Civera, Davison, & Montiel, 2008; 
Davison, Reid, Molton, & Stasse, 2007), consists 
in describing the camera pose by means of its 
three spatial coordinates (the translational part) 
plus other four coordinates interpreted as a unit 
quaternion (rotational part), that is:

x
k k k k k r k x k y k z

T

x y z q q q q= ( ), , , ,
 
(25)

In order to grasp the geometrical meaning of 
the four quaternion coordinates, one can visualize 
them as a rotation of a magnitude proportional to 
q
k r,

 around the spatial direction defined by the 

vector q q q
k x k y k z

T

, , ,( ) —refer to Appendix A.

The next important complication that arises 
with visual-based mapping or SLAM is the need 
to perform data association from visual and geo-
metrical information. Typically, feature points 

are selected with salient keypoint detectors, and 
then are assigned some sort of feature descriptor, 
which can be as simple as a patch of the surround-
ing image or quite involved high-dimensional 
descriptors (Lowe, 2004). The challenge is to 
achieve a combination of detectors, descriptors 
and matching algorithms for pairing features be-
tween different frames such that it is fast enough 
to be executed in real-time (at the camera frame 
rate) and while keeping low the ratio of false posi-
tives and false negatives. In any case, all those 
operations are far beyond the scope of this text, 
thus we will assume next that data association is 
already solved, just like in the previous case for 
range-bearing observations.

Thus, we will define a bearing-only observa-

tion as z
k i k i k i

T

, , ,
= ( )α β , comprising an azimuth 

(yaw) and elevation (pitch) angles, respectively. 
The relationship of these angles with the location 
of the landmark can be easily established from 
geometry to be:

α

β

k i i z i x

i z

i x

k

l l
l

l, . ,

,

,

,= ( )











atan2   , or tan  -1

,,

,

, , ,

sin
i

i y

i x i y i z

l

l l l
=

+ +





















−1

2 2 2



 

(26)

Box 1. 
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k i i k i k
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Figure 10. The real uncertainty of an inverse sensor model for bearing-only observations are cone-shaped, 
as shown in the four individual observations shown in (a) and (c). In each situation, the estimation of 
the potential landmark location from two observations can be obtained by fusing both cone-like shapes, 
leading to the pdfs of (b) and (d). A larger parallax, as in (a) – (b), leads to a pdf closer to a Gauss-
ian, while a reduced parallax, as in (c)—(d), makes the Gaussian a poorer approximation and favors 
the inverse depth parameterization. (e) Confidence intervals for an inverse-depth parameterization, 
compared to the actual cone-like pdf which is being approximated. (f) The convention used in the text 
regarding the axes of local coordinates with respect to the camera.
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when given in relative (local) coordinates 

M '
, , , ,k i i x i y i z

T

l l l= ( )  with respect to the cam-

era location x
k
—please refer to Figure 10f for 

the axes convention. These local coordinates can 
be computed from the landmark global coordinates 

M
i i x i y i z

T

g g g= ( ), , ,
 and the quaternion-based 

representation of the camera pose as shown in 
Box 1.

The Inverse Sensor Model

Let us clearly define first the sensor observation 
model for this kind of observations. It consists of 
an observation function h ⋅( )  which takes as input 

the relative position of the landmark (M
k i,

' ) and, 
via Equation 26 gives us the pair of observed 
angles:

z h M n
k i

k i

k i
k i k i,

,

,
, ,
'=












= ( )+α

β
 (28)

As usual, we assume an additive zero-mean 
Gaussian noise n 0 R

k i
N

,
, ( )  on this observa-

tion, which in this case models the uncertainty in 
the image feature detectors due to the discrete 
nature of pixels, possibly blurred images, etc. As 
a matter of fact, given the wide-spread application 
of bearing-only observations in computer vision, 
the observation model can be (and usually is) 
directly formulated in terms of pixel coordinates, 
which are much closer to the vision-based front-
end algorithms than the pair of angles in the 
equations above (Nüchter, 2009). In this form, 
the two components of the observation are the 

pixel coordinates u v
k i k i

T

, ,( ) , computed as:

z h M n
k i

k i

k i
k i k i

u

v,
,

,
, ,

'=











= ( )+  

with:

h M '
,

,

,

,

,

k i

x x

i x

i z

y y

i y

i z

c f
l

l

c f
l

l

( ) =
+

+













 (29)

where c
x

 and c
y

 and the pixel coordinates of the 
camera optical center and f

x
 and f

y
 are both the 

focal distance, measured in units of horizontal 
and vertical pixels, respectively. This equation 
above is called the camera pinhole projective 
model, and can be further improved to reflect real 
cameras by the inclusion of distortion parameters. 
For the introductory nature of this book, no more 
details will be given here on camera projective 
geometry, thus we recommend the interested 
reader to consult the rich existing literature 
(Mikhail, Bethel, & McGlone, 2001; Hartley & 
Zisserman, 2003).

What is really significant for the present dis-
cussion is the realization that bearing-only obser-
vations reduce the dimensionality of the observed 
landmarks from three (i.e. its spatial location with 
respect to the observer) to only two (i.e. the two 
pixel coordinates). Therefore, there is one degree 
of freedom, which is irremediably lost: the depth 
of the landmark. This has one practical conse-
quence of paramount importance: if we were to 
try finding out the inverse sensor model just as 
with range-bearing sensors, we would not find 
any such function h− ⋅( )1  that maps pairs of 
pixel coordinates into three dimensional coordi-
nates, simply because such a bijective relationship 
does not exist.

Still, under a probabilistic viewpoint this is 
not a limitation. A probabilistic inverse sensor 
model can assign a uniform distribution to the 
unknown depth, starting at the camera location and 
extending up to some arbitrarily large maximum 
distance. Combining that depth uncertainty with 
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the uncertainty of the two angles (or equivalently, 
of the pixel coordinates) we end up with a pdf 
for the potential location of a landmark upon its 
first observation which is cone-like shaped, as 
illustrated in Figure 10.

The fundamental problem with initializing a 
landmark from a bearing-only observation relies 
on that uncommon, cone-like shape of the uncer-
tainty, which should be modeled. A Gaussian in 
three-dimensional space whose variables are the 
three Cartesian coordinates x y z

i i i
, ,( )  makes quite 

a poor job in approximating the real shape of the 
inverse sensor model. As a workaround, tricks 
have been proposed in the literature such as delay-
ing the insertion of landmarks in the Bayesian 
filter until their location uncertainty has been 
reduced, with other auxiliary Bayesian filters, and 
can be appropriately modeled as Gaussian (Da-
vison, 2003). That approach discards valuable 
information until each landmark converges, which 
could help localizing the camera when these maps 
are used within a SLAM framework; also, it 
discards distant landmarks (“features at the infin-
ity”) which are known to help estimating the 
orientation of the camera.

In order to avoid all those disadvantages, a 
different and smart solution was proposed in the 
literature (Civera, Davison, & Montiel, 2008): 
instead of parameterizing landmarks with their 

three Cartesian coordinates Mi i x i y i z

T

g g g= ( ), , ,
, 

one can explicitly store the first pose from which 
they were first observed o o o

x y zi i i
, ,( ), the associ-

ated observation direction (two angles θ
i
 and

 φ
i
) and the inverse of the depth (ρ

i
) from the 

observing point. These parameters are related to 
the Cartesian coordinates by means of:

M m
i i

x

y

z
i

i i
o

o

o

i

i

i

( ) =












+ −
1
ρ

φ θ
φ

cos sin

sin
ii

i i
cos cosφ θ













 (30)

At the cost of a clear over-parameterization, 
it has been demonstrated that a Gaussian distri-
bution over these six parameters resembles the 
cone-like shape of the actual uncertainty—refer 
to the examples in Figure 10. Historically, this 
was the first parameterization that succeeded in 
unifying the representation of close and distant 
features in such a way that both kinds could be 
used simultaneously for localization, mapping, 
and SLAM.

Therefore, we can summarize the probabilistic 
inverse sensor model based on the inverse-depth 
parameterization as follows. Each landmark will 
be represented as a vector:

m
i x y z i i i

T

o o o
i i i

= ( )θ φ ρ  (31)

over which we define a Gaussian distribution such 
that m m mi i

N
i

 ,Σ( ) , with:

p N
k i k i i

i

i
( , ) ; ,z m x m m

m

m

Inverse sensor model
� ����� �����

= ( )

→

=

Σ

oo o o
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i i i

i

θ φ ρ

σ

σ

σ

θ

φ

ρ

( )

=






Σ

Σ

m

x 3×3

3×3

0

0
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2
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(32)

The first five values in the mean vector m
i
 

directly correspond to the camera position 

o o o
x y z

T

i i i
( )  and to the direction in which the 

landmark was observed, with respect to the 
global frame of reference. Within the covariance 
matrix, the first 3 3×  diagonal block represents 
the uncertainty in the camera location. Since in 
this chapter we are assuming it is perfectly known, 
all the matrix entries become zeros. However, 
when we will revisit bearing-only observations 
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in the context of SLAM in chapter 9, this matrix 
shall be set to the actual uncertainty of the camera 
pose. Notice how the covariance of the camera 
location and the three other parameters (the pair 
of 3 3×  off-diagonal symmetric blocks) is ex-
actly zero. This follows from the realistic assump-
tion of statistical independence of the sensor 
noises (θ

i
,φ

i
) and the depth (ρ

i
) with respect to 

the uncertainty of the camera pose.
The sixth value in the mean vector (i.e., the 

inverse depth ρ
i
) and the three standard deviations 

σθ , σφ  and σρ  are free parameters to be settled 

heuristically. Firstly, σθ  and σφ  can be adjusted 
to account for the inaccuracies in the bearing 
angles, typically, due to errors in the interest 
keypoint detector on the images. And secondly, 
ρ
i
 and its associated standard deviation σρ  can 

be determined by defining some arbitrary mini-
mum and maximum depths (d

0
 and d

1
, respec-

tively) as the desired limits of the (for example) 
99.7% confidence interval of the modeled uncer-
tainty. Then, ρ

i
 and σρ  can be found from:(using 

the equivalence of ±3 sigmas for a 99.7% confi-
dence interval of a one-dimensional Gaussian 
distribution)

d

d

i

i

0

1

1
3

1
3

=
+

=
−











ρ σ

ρ σ

ρ

ρ

 

(and solving for the desired parameters)

→

= +










= −















ρ

σρ

1
2

1 1

1
6

1 1
0 1

0 1

d d

d d



 (33)

Recursive Bayesian Estimation

Once the three-dimensional landmark has been 
initialized in the map with an inverse-depth 
parameterization, information from subsequent 
observations must be fused to reduce its uncer-
tainty. For this kind of observations, as soon as 
the landmark is observed from a slightly different 
direction, which in computer vision is called the 
observation parallax, the uncertainty in its depth 
will be drastically reduced.

Since we employ one Gaussian distribution 
for each landmark, the particular implementation 
of Equation 15 of choice for this case is also an 
Extended Kalman filter. Due to the assumption of 
a static map (i.e., landmarks do not move on their 
own), the recursive form of the EKF in chapter 
7’s Equation 44 simplifies in our case to:

m m K z h
i i k i k k i
← + −( ), ,

 

Σ Σm mI K H
i ik i k i
← −( ), ,  

with the Kalman gain matrix being

K H R H Hm mk i k i
T

k i k i
T

i i, , , ,
= +( )

−

Σ Σ
1

 (34)

The Jacobian matrix H
k i,

 contains the de-
rivatives of the function h ⋅( )  defined in Equations 
27 and 28 respect to the six parameters of the 
landmark. Due to the complexity of the transfor-
mation involved, here is more convenient to apply 
the chain rule in order to evaluate this Jacobian. 
Recalling that we denote the parameterization of 
a landmark as m

i
, its Cartesian coordinates in 

the global frame of reference as M
i
 and its local 

coordinates with respect to the camera as M '
,k i

, 
we can write:
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H
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i
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,

'

'
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=
∂ ( )
∂
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∂

∂ ( )
∂

 (35)

where we approached the complex projection of 
a landmark into an observation as a sequence of 
three, more handy steps: (1) M

i
⋅( )  converts the 

set of inverse-depth parameters into their corre-
sponding global coordinates, as shown in Equation 
30; (2) M '

,k i
⋅( )  is in charge of transforming them 

into local coordinates in the camera frame of 
reference as specified in Equation 27; and (3) the 
observation model h ⋅( )  finally projects the land-
mark into pixel coordinates according to Equation 
29. Recall that all these partial Jacobians, which 
are straightforward to obtain, must be evaluated 
at the latest estimated value of each of the involved 
variables.

It is worth mentioning that the advantages of 
the inverse-depth parameterization come only at 
the cost of employing six components for each 
landmark instead of the minimum of three as 
would correspond to a simple point in the space. 
Assuming an EKF implementation with a com-
putational complexity cubic with the dimension-
ality, those extra parameters imply multiplying 
the execution time by eight. Therefore, it comes 
as no surprise the existence of proposals in the 
literature that recover the simpler x y z, ,( )  param-
eterization as long as the reduction in the depth 
uncertainty makes it an acceptable approximation 
(Civera, Davison, & Montiel, 2008).

7. BAYESIAN ESTIMATION 
OF LANDMARK MAPS: 
RANGE-ONLY SENSORS

We finally arrive at the third type of landmark 
observations: those that only measure a range or 

distance from the sensor to one or a set of fixed 
points in the environments. As discussed in chapter 
2 section 9, Range-Only (RO) sensors are com-
monly employed in submarine robotics but some 
practical applications have also appeared during 
the last decade for ground robots. In contrast to 
the passive nature of landmarks studied in previ-
ous sections, we deal here with observations that 
measure purposely-placed active devices in most 
cases, emitting radio or ultrasonic signals, thus, for 
differentiation we will refer to them as beacons. 
Beacons, landmarks, and features are all names 
of interchangeable entities in our present context 
of object-based mapping.

Disregarding the specific device utilized to 
obtain RO measurements, we will approach the 
problem in an abstract way focusing on the prop-
erties that all these sensors share. Firstly, they are 
typically able to detect several beacons simultane-
ously and to identify each one unequivocally by 
means of some sort of identification code, which 
is transmitted wirelessly: with RO sensors, we 
can avoid the hard problem of data association. 
Consequently, a RO observation for one beacon 
simply contains a range value, that is, z

k k
r= ( ).

Secondly, another fundamental characteristic 
of RO sensors is that they naturally lead to mul-
tiple hypotheses about the location of the beacons. 
To illustrate this point, refer to the example in 
Figure 11, where a robot moving in a straight line 
makes three range measurements for a beacon 
with location m

i
. In a two-dimensional approach, 

each range observation tells us that the beacon 
must lie around a circle centered at the robot 
position x

k
 with a radius of r

k
. Under our 

probabilistic viewpoint, observations actually are 
assumed to be corrupted with an additive zero-
mean Gaussian noise n N

k n
 0 2,σ( ) , that is:

r n
k i k k
= − +m x  (36)
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which suggests us to consider instead a “thick 
ring”-shaped pdf instead of a unidimensional 
circumference. One of such rings is depicted in 
the figure, centered at the robot pose where an 
observation was made. Intuitively speaking (the 
exact Bayesian approach is discussed below), the 
most likely locations at which the beacon may be 
actually located are those where the different rings 
intersect with each other.

Unlike range-bearing and bearing-only obser-
vations, in this case it is not only possible but quite 
common that the explained rings end up marking 
several separate locations as the likely location 
of the beacon. Therefore, probabilistic mapping 
with RO observations should be addressed with 
multimodal distributions, a requisite somewhat 
unique in mapping and SLAM.

The Inverse Sensor Model

Provided the sensor model of Equation 36 we 
find that just like with bearing-only observations, 
these ones also reduce the dimensionality of the 
observed beacon location from two (if we assume 
a planar map) to only one, the range measurement.

Therefore, we face again the non-existence of 
an inverse sensor function. A probabilistic inverse 
sensor model is easy to devise instead, since all 
we need is a pdf that assigns each potential beacon 
location m

i
 a likelihood according to Equation 

36 and the known distribution of the additive n
t
 

noise:

Figure 11. An example we have simulated of map building from range-only observations. (a) The first 
time the robot detects a landmark, it is introduced in the map via the inverse sensor model. In this case we 
employ a sum of Gaussians approximation to the actual, ring-shaped pdf (see text). (b) – (d) Subsequent 
observations further reduce the uncertainty in the landmark location. Notice how two potential locations 
for the landmark remain until the robot turns in (d) breaking the symmetry that existed up to that instant.
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p
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(37)
Notice that the thick ring displayed in figure 

11a closely corresponds to this pdf, where the 
thickness is associated to the noise variance σ

n
2 . 

The problem of this distribution is that it cannot 
be written as a Gaussian in terms of the x y,( )  
coordinates of the beacon m

i
.

Among others, two workarounds have been 
proposed in the literature for approximating the 
ring-shape distribution in Equation 37 while still 
being able to perform Bayesian filtering. The 
first one resembles the change of landmark pa-
rameterization explained above for bearing-only 
sensors. In this method, over-parameterization 
of the beacon position with the location where 

the robot made its first observation plus a pair of 
polar coordinates that identify a global direction 
and a distance from that robot pose to the beacon 
is used (Djugash, Singh, & Grocholsky, 2008). As 
illustrated in Figure 12, this idea allows represent-
ing each beacon with just one Gaussian over the 
five abovementioned parameters. However, in 
order to deal with multi-modality one would need 
to introduce additional heuristics to determine 
when and how to split the Gaussian into two or 
more pdf modes.

The second approach, introduced in (Blanco, 
González, & Fernández-Madrigal, 2008b) and 
already employed in the example of Figure 11, 
consists of approximating Equation 37 with a Sum 
Of Gaussians (SOG) over the ordinary Cartesian 
coordinates, such that:

Figure 12. An approximation of the inverse sensor model of RO observations by means of a single Gauss-
ian, in the parameter space of range-bearing with respect a robot pose. In this example, three confidence 
intervals are shown, corresponding to 1σ, 2σ, and 3σ. The observation has a mean orientation of 45º and 
a mean distance of 9m, while the associated standard deviations is 50º and 0.2m, respectively. Notice 
how a large enough uncertainty in the orientation could approximate well a complete ring-like pdf.
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p N
k i k j i i

j j

j

j
j

i
z m x m m m, ; , ,( ) = ( )

=

∑
∑

ω

ω

Σ

with 1  

(38)
where ω

j
 are the weights of each Gaussian mode. 

Upon its first observation, all the SOG modes 
have equal weights and are distributed in such a 
way that they approximate the thick ring-shape 
of the actual inverse sensor pdf. At the cost of 
maintaining several Gaussians for each beacon, 
the clear advantage of this method is its natural 
capability of representing an arbitrary number of 
modes just by readjusting the parameters of each 
SOG mode and their weights, which can be 
achieved by Bayesian filtering.

Recursive Bayesian Estimation

If beacons were modeled according to the first 
approach above, namely the over-parameterization 
that includes polar coordinates, we would have a 
single Gaussian for each beacon, which should be 
updated with subsequent observations. A natural 
implementation here is to employ the EKF as 
already explained above for the other types of 
landmarks. However, the strong non-linearities 
present in this parameterization would render the 
UKF, explained in chapter 7 section 3, a better 
candidate.

In the case that beacons are modeled as a 
weighted SOG, we would face a new problem not 
dealt with yet in this book. Nonetheless, it can be 
easily shown that updating a SOG with a new 
observation z

k k
r= ( )  can be easily realized 

through the following three steps:

1. The weights ω
j
 must be updated to reflect 

how well each Gaussian mode explains the 
observation. Quantitatively, this implies 
evaluating the likelihood of the observation 
against the prediction of the j th−  mode:

ω ω σ
j j k i

j
i
jN h← ( )z ; , 2  

with the mean obtained through the sensor 
model in Equation 36

h m x
i
j

i
j

k
= −  

and the covariance got through first-order 
Taylorseries linearization (see chapter 3 
section 8):

σ σ2 2
i
j

i
j j

i
jT

ni
= +H HmΣ  (39)

2.  Weights are then renormalized such that 
they sum the unity, in order to assure that 
the SOG is kept as a pdf.

3.  The parameters of each Gaussian mode 
N

i i
j j

i
m m m; ,Σ( )  are updated following the 

standard EKF equations—refer for example 
to Equation 34. Unlike with the polar-coor-
dinate parameterization, the more complex 
UKF is not required here since the uncer-
tainty of each SOG mode is quite small in 
comparison to the entire ring-like pdf, and 
assuming linearity in the observation of one 
mode is perfectly acceptable.

Notice that this technique exploits the freedom, 
assumed in this chapter, in modeling of pdfs for 
each map element independently: each beacon 
may be represented by a different number of SOG 
modes. In practice, the weights of many modes 
will soon become negligible after a few obser-
vations. Thus, it becomes convenient to discard 
those SOG nodes that have weights below some 
certain threshold. After the robot moves around, 
the number of modes will reduce, dynamically 
adapting itself to the actual uncertainty in the 
beacon location, as shown with the example of 
Figure 11c.
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8. OTHER MAP BUILDING 
ALGORITHMS

Previous sections have addressed the problem 
of initializing and updating the most common 
probabilistic representations of metric maps from 
sequences of sensor readings: grid maps and 
feature or landmark maps. In the following, we 
study other mapping algorithms, which either do 
not rely on a probabilistic foundation or are not 
so widely spread.

Point Maps

There exist two main families of sensors which are 
used to generate point maps: laser range scanners 
and 3D cameras—reviewed in chapter 2 sections 7 
and 8, respectively. As already mentioned above, 
point maps are among the most “sub-symbolic” 
representations, in the sense that very little (or 
none) post-processing is required for the raw 
sensor readings to be merged within the maps.

In its most basic approach, maintaining a point 
map could be as simple as keeping a list of 2D 
or 3D point coordinates and appending new ones 
with each sensor reading, taking into account the 
corresponding geometrical transformation for the 
pose of the sensor within the global frame of refer-
ence. However, given that state-of-the-art range 
scanners provide dozens of completed scans per 
second, if we were to insert all of them in a point 
map, it would grow as rapidly as to render any 
localization or SLAM algorithm useless after a 
few seconds of operation. This is why all practi-
cal implementations discard most of the 2D or 
3D range scans provided by the sensors. This 
may seem a waste of information, but, in fact, 
consecutive scans are highly redundant and hence 
provide very little new relevant information. One 
alternative for not dropping scans is to fuse points 
which are established to correspond to previously 
observed points, which can drastically reduce the 

number of points in a map at the expense of in-
troducing the complexities and potential mistakes 
of data association.

Typical heuristics to determine which scans to 
keep are: (1) the usage of a fixed subsample rate 
(e.g., keeping only one scan out of ten) and (2) dis-
carding all the captured scans until the robot moves 
or turns more than a certain threshold distance or 
angle, respectively. Selecting the parameters of 
any of these two heuristics is a critical step since 
they heavily condition the performance of any 
posterior localization or SLAM method, which 
has to work on the point map. Unfortunately, and 
to the best of our knowledge, this topic has not 
been properly addressed in the scientific literature, 
thus it requires the experience of the operator and 
some doses of manual tuning with trials and errors.

Continuous Markov Random Fields

Recall that we loosely defined a random field in 
section 2 as “a spatial domain where each point 
is associated a random variable.” An example of 
a discrete random field has already been provided 
with occupancy grid maps. The property of interest 
at each location of the space was there the occu-
pancy (or freeness), a discrete random variable 
with only two possible outcomes.

There exists, however, a variety of other prop-
erties we might be interested in while building a 
map with a mobile robot, and most of them are 
continuous magnitudes. For instance, we could 
map the height at each x y,( )  position for an 
outdoor environment; or the temperature along 
the inside of an office building; or the different 
concentration of certain gases within a factory 
facility.

All these are examples of physical properties 
that vary from one point to the other—we will 
leave the dynamics aside and assume static en-
vironments, as usual. However, it is typical that 
the spatial variations of the magnitude of interest 
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are somewhat limited, with no abrupt changes 
between two nearby points, or, in more technical 
terms, a probability distribution could exist that, 
conditioned on any point of the environment, 
satisfactorily models the properties of its sur-
roundings. In general, although the magnitude of 
interest for mapping may tend to remain constant 
around any given point, the variance of this pre-
diction grows as we get farther from any central 
point. It is in those cases where the magnitude of 
interest satisfies these generic requirements when 
a map of the environment could be modeled as 
a Markov Random Field (MRF) (Winkler, 1995) 
(see Figure 13).

As already discussed in previous chapters, a 
MRF is a random field in which random variables 
can be organized on a discrete lattice and where 
the Markov condition holds between adjacent 
variables. This is in contrast to the common ap-
plication of the Markov condition to sequences 
of r.v. that are consecutive in time. If we denote 
the r.v. for the property of interest at some arbitrary 

map coordinates i j,( )  as m
i j,

, and define the 
finite set of all adjacent coordinates as N , the 
spatial Markov property reads:

p m m m p m m
i j p p N p p N i j p p N, ,

,{ } { }( ) = { }( )∈ ∉ ∈
 

(40)

that is: a map element, conditioned on all its 
neighbors, is conditionally independent of the rest 
of the map. Moreover, if that conditional distribu-
tion can be properly modeled as a Gaussian, the 
MRF becomes a Gaussian Markov Process. Due 
to their general applicability, Gaussian Processes 
(GP) have received an immense attention in the 
research community (Rasmussen & Williams, 
2006).

There exist different map building methods 
relying on the assumption of a MRF or GP-like 
map. We find classical references in the branch of 
geology and mining literature called geostatistics. 
In particular, dating back to the 1950s, we find 

Figure 13. Example of Kernel-based mapping with gas-concentration sensors mounted in a mobile robot 
of our lab. (a) The actual gas concentration in a simulation environment, from which a sequence of gas 
sensor observations have been simulated in order to build the gas map shown in (b). Notice that typical 
hurdles found in real sensors, such as a high response time, were taken into account in this simulation, 
hence the poor resolution attainable in the reconstruction, a common problem found in most kinds of 
gas maps (Images courtesy of Javier González Monroy, University of Málaga).
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the Kriging technique (Matheron, 1963) which 
applies what later on were to be called GP to 
interpolate geological measurements and there-
fore reconstruct non-measured areas. Closer to 
modern mobile robotics, we can find algorithms 
for mapping the concentration of gases relying 
on a simplified estimation method known as the 
Kernel method (Lilienthal & Duckett, 2004). A 
more direct application of GP to mapping was 
reported in Stachniss, Plagemann, Lilienthal, and 
Burgard (2008).

Pose Constraint Maps

As introduced in section 2, relational maps are 
all those representations that model some kind of 
relationship existing between the mapped elements 
instead of, for example, their global coordinates in 
some fixed frame of reference. Among this fam-
ily of models, Pose Constraint Maps (PCMs) are 
probably the most representative nowadays due 
to their popularity.

Building a PCM implies creating and populat-
ing a directed graph, a computational abstract data 
type that has already been explained, instantiated 
such that its nodes represent robot poses (in an 
abstract sense, since the numeric values of those 
poses are unknowns) and its arcs represent the 
relative coordinates of poses with respect to each 
other. Typically, a PCM is built incrementally as 
the robot moves and explores its environment. 
New nodes (also called keyframes) are created 
wherever some heuristic is fulfilled, such as when 
it is reached a minimum distance from the last 
node. It is convenient to store (or annotate) the 
most recent robot observations (e.g. laser range 
scans, images from its cameras, etc.) within each 
node in order to provide it with some metrical in-
formation suitable to the determination of potential 
arcs. Indeed, for each newly created node, arcs 
should also be defined between nodes for which 
their relative spatial pose could be deduced from 
the annotated sensory data. The specific approach 

for obtaining such relative poses strongly depends 
on the employed sensors. As an example, the ICP 
matching algorithm, explained in chapter 6, could 
be used for the common case of working with laser 
range scanners. In order to cope with uncertainty, 
arcs often hold probability distributions of those 
relative poses, typically in the form of a Gaussian 
distribution.

Although the apparent simplicity of such a 
graph representation is appealing, its practical 
realization reveals two important hurdles, which 
are still an active area of research. Firstly, notice 
how global coordinates do not appear anywhere 
in the discussion above: all the map building 
process relies entirely on node-to-node relative 
coordinates. If for some reason the map is needed 
in a common frame of reference, computing the 
global coordinates for each node may become 
not an easy task at all. To illustrate the challenge, 
consider the map in Figure 5a which contains 
many closed loops in the graph topology. The 
global coordinates for that figure were obtained 
by arbitrarily fixing one of the nodes as the ori-
gin of coordinates, then creating a spanning tree 
from that node to all the others, e.g. using the 
Dijkstra’s algorithm (Dijkstra, 1959). In a PCM 
with a tree structure, the global pose of each 
node is the simple accumulation of all the edges 
from the root node at the origin. However, there 
exist obvious mismatches or inconsistencies in 
the coordinates so obtained—which correspond 
to the arcs crossing wide gaps in the figure. The 
bunch of techniques generically dubbed as Graph 
SLAM (and reviewed in chapter 10 section 3) 
precisely address the problem of estimating a 
set of consistent global coordinates from PCMs 
with arbitrarily topologies that may include any 
number of loops.

The second problem of these relational maps 
is related to the creation of arcs when the robot 
closes a loop. This is the well-known loop-closure 
problem and consists in reliably detecting such 
a situation in order to define the correspond-

Prom
oti

on
al 

Cop
y 

Not 
for

 R
ed

ist
rib

uti
on



293

Maps for Mobile Robots

ing arc with a relative pose obtained from the 
metrical registration of the observations in each 
node. Some approaches to efficiently detect loop 
closures include geometrical information, that is, 
firstly solving the graph for its global coordinates, 
then considering all the potential matches of the 
latest node with all its neighbors. When working 
with images, other authors propose purely topo-
logical methods where node-to-node pairings are 
established uniquely from the detection of similar 
visual features (Cummins & Newman, 2008). We 
will further explore the process of building maps 
of this kind in chapter 10.
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ENDNOTES

1  Notice that denoting the “inverse observation 
function” as h− ⋅( )1  may be seen as an abuse 
of notation. Strictly speaking, if the observa-
tion function (disregarding the additive 
noise) is represented as the function 

z h x m
k i k i
= ( ), , its mathematical inverse 

function should be x m h z
k i i k
,( ) = ( )−1  in-

stead of the commonly employed 
m h x z
i i k k
= ( )−1 , , which is the function of 

our interest for map building and SLAM.
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