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Abstract. Traditional terrestrial forest inventory methods are being replaced by 10 
forest monitoring strategies closely associated with the rise of remote sensors 11 
such as Portable Terrestrial LiDAR (PTL). Off-the-shelf PTL devices produce 12 
high-quality point clouds by applying SLAM (simultaneous location and map-13 
ping) algorithms supported by both global navigation satellite system (GNSS) 14 
and inertial navigation system (INS) data. However, they are still excessively 15 
expensive to allow widespread use by many users. This work aims to develop 16 
and validate a low-cost backpack PTL system based on an Ouster OS0-32™ Li-17 
DAR. A new algorithm based on the iterative closest point (ICP) method was 18 
applied to obtain the final point cloud. Neither GNSS data nor INS data were 19 
used to generate the reconstructed point cloud. The suitability of the point cloud 20 
produced to extract significant dendrometric attributes from the forest inventory 21 
was evaluated in five square plots 25 m side of reforested Aleppo pine located in 22 
“Sierra de María-Los Vélez” (Almería, Spain). These plots were previously 23 
scanned with a Faro Focus3D X-330™ static terrestrial laser scanner (TLS). The 24 
software UALtree was used to automatically extract tree location, tree height and 25 
normal diameter from the PTL-derived point cloud, yielding, as expected, less 26 
accurate results than those provided by TLS, mainly due to the high presence of 27 
remaining noise in the PTL point cloud. These results are promising enough to 28 
continue with this line of research towards obtaining a low-cost LiDAR mobile 29 
forest mapping system based exclusively on ICP-SLAM approaches. 30 

Keywords: Forest Inventory, Portable Terrestrial LiDAR, SLAM, ICP, Individ-31 
ual Tree Detection, Dendrometric Features. 32 

1 Introduction 33 

The continuous development of ground-based LiDAR systems has managed to digitize 34 
forests at the centimeter level, also significantly increasing the precision, efficiency, 35 
and quantity of products potentially achievable compared to traditional forest invento-36 
ries based on “manual” sampling procedures [1]. These ground-based systems are clas-37 
sified into two categories: terrestrial laser scanners (TLS) and the more-recently-devel-38 
oped portable terrestrial LiDAR (PTL).  39 
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TLS are stationary systems fixed on a tripod that present an invariant global coordi-40 
nate system that allows averaging the laser range of different pulses at the same target 41 
point. This technique produces very accurate and well-reconstructed point clouds (PCs) 42 
from which dendrometric features can be conveniently extracted in the context of a 43 
tree-centric approach [2].  However, the occlusion effect due to trees/shrubs continues 44 
to limit the extraction of forest attributes at the plot level, forcing a less efficient multi-45 
scan approach subject to registration errors [3]. 46 

PTL devices operate mounted on mobile platforms that move through the forest, 47 
which helps reduce the occlusion problems presented by single scan TLS systems [4]. 48 
They use some form of a Simultaneous Localization and Mapping (SLAM) algorithm 49 
to reference laser distance measurements in 3D space while the device is moving and 50 
without the need for a global navigation satellite system (GNSS). By integrating SLAM 51 
algorithms into PTL systems, usually supported by GNSS and inertial navigation sys-52 
tems (INS) data to increase their accuracy and robustness, foresters can obtain PCs as 53 
they walk, enabling real-time mapping in complex and changing forest landscapes. Off-54 
the-shelf PTL devices produce high-quality point clouds, although they are still exces-55 
sively expensive to allow widespread use by many users. Note that SLAM algorithms 56 
perform better when applied indoors, working poorly when applied outdoors and not 57 
counting on GNSS/INS data due to the complex and irregular features detected by the 58 
laser scanner [5].  59 

This work aims to test a new low-cost backpack PTL system based on an Ouster 60 
OS0-32™ LiDAR to segment trees and extract some of their key dendrometric features. 61 
The final PC was reconstructed using an innovative SLAM algorithm based on the it-62 
erative closest point (ICP) method without the support of GNSS/INS data. 63 

2 Materials and Methods 64 

2.1 Study site and field data collection 65 

The test was carried out in five forest plots located in the “Sierra de María-Los Vélez” 66 
Natural Park, north of the province of Almería (Spain). The plots had a square shape of 67 
25 m side and contained reforested stands of Aleppo pine (Pinus halepensis Mill.) with 68 
variable density, tree height and presence of shrubs and low vegetation (Table 1). This 69 
forest typology is very representative of Mediterranean forests. 70 

Table 1. Dasometric characteristics of the five reference plots. Number of trees (N), tree density 71 
(D), vegetation cover (VC), plot-level uniformity index (PH350) (from 0.37 to 0.50 for homoge-72 
neous plots), basal area (G), Lorey´s height (Lh), and mean slope (Mslope). (*) Homogeneous plot.  73 

Reference plot N D (trees/ha) VC (%) PH350 G (m2/ha) Lh (m) Mslope (°) 

18A1P 34 544 55.17  0.30 26.31  7.45  12.77  

16A2P 28 448 45.4  0.30 15.33  6.65  15.92  

13A3P 21 336 37.32  0.27 10.55  6.68  12.63  

13A1P 23 368 40.57  0.24 8.28  5.55  16.55  

10B1P 18 288 51.69 0.38 (*) 24.32  10.57  9.61  
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The traditional inventory fieldwork was carried out in June 2021. It consisted of 74 
locating the position and measuring the DBH (trunk diameter at 1.3 m from the ground) 75 
of each tree. A pair of Emlid Reach RS2 GNSS RTK multiband receivers allowed the 76 
precise location of each tree in the field to measure its DBH using a tape measuring 77 
Tree height was measured on a high-resolution canopy height model derived from ac-78 
curate UAV image-based PCs. 79 

The TLS fieldwork campaign using a Faro™ Focus3D X-330 device was conducted 80 
in July 2021, applying a workflow fully described in [6]. The TLS PCs obtained in this 81 
campaign were taken as reference to test the performance of the tested low-cost PTL. 82 

The PTL fieldwork was accomplished on November 29, 2023. The low-cost back-83 
pack PTL system was based on an Ouster OS0-32™ LiDAR with 32 channels, ultra-84 
wide 90º vertical FOV and range of up to 75 m at 80% Lambertian reflectivity. The 85 
backpack also consisted of a harness to secure the device to the user's back, an industrial 86 
computer with a 2 TB hard drive to store data, and a 12V/26Ah rechargeable gel battery. 87 
The system can be managed remotely using a simple Android smartphone connected to 88 
the computer's WLAN and using the free "Mobile SSH" Android app to enter command 89 
lines. The PTL trajectories followed a single parallel-line pattern, also trying to produce 90 
a closed loop to reduce SLAM drift. The time taken to complete each plot ranged from 91 
four to eight minutes. Five white target spheres (15cm diameter) located on 1m long 92 
metal rods were distributed in each plot and used to georeferencing the final PC in the 93 
Spanish geodetic datum.   94 

The PTL PC reconstruction from raw data was faced by using the MOdular Locali-95 
zation and mApping (MOLA) framework, initially presented in [7] and recently up-96 
dated with the novel ICP-SLAM module whose structure is briefly described next. 97 

Range data from the LiDAR is processed by the vendor’s ROS driver, which takes 98 
individual points and packs them into “scans” covering a complete 360 degrees hori-99 
zontal field of view. Scans are then processed one by one, applying to them a configu-100 
rable pipeline defined with the open-source MP2P-ICP library. The main steps of this 101 
pipeline include: (1) undistort the incoming scan by using the per-point timestamps to 102 
extrapolate the latest estimated sensor pose and velocity (both linear and angular); (2) 103 
selectively remove points that are too close or too far in order to avoid ICP artifacts 104 
trying to match moving objects as the person who is carrying the sensor; (3) downsam-105 
ple the point cloud (one point per 1x1x1m voxel) to alleviate the strongly uneven sam-106 
pling of the scene by rotatory LiDARs; (4) optimization of the current sensor pose via 107 
a custom ICP point-to-point algorithm implementation using robust loss functions 108 
against a local point cloud map; (5) update of the local PC with a different (less deci-109 
mated) version of the incoming scan.  110 

We save the estimated SE(3) trajectory of the carried sensor along with a selected 111 
subset of all original LiDAR scans (before entering the pipeline), which we call 112 
keyframes. After the mapping session ends, those keyframes can be used to reconstruct 113 
a denser PC (decimation with 10x10x10cm voxels) with a different MP2P-ICP pipe-114 
line, leading to the results shown in the next sections.   115 

 116 
2.2 Point cloud processing and dendrometric features extraction 117 

The following workflow was applied to the TLS and PTL PCs: 118 
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1) The TLS and low-cost PTL PCs were georeferenced using the ETRS89 coordi-119 
nates of the target spheres measured by GPS-RTK during fieldwork.  120 

2) PC was subsampled using the “Spatial” method implemented in CloudCompare 121 
v2.12.0 (minimum space between points of 2 cm). Next, each PC was automatically 122 
classified into ground and non-ground points applying the algorithm TIN iterative ap-123 
proach implemented into Agisoft Metashape using the following setting parameters: 124 
cell size = 10 m, distance = 0.3 m, and angle = 30°. 125 

3) UALtree, a Matlab® software developed by our research group, was used to au-126 
tomatically obtain a prior tree segmentation from which to extract tree location, tree 127 
height and DBH. A full description of this software can be found in [6]. 128 

4) Tree detection accuracy was addressed by matching the trees recorded in the field 129 
to the trees extracted from each plot. The closest field tree within a 3 m search radius 130 
was matched to each UALtree detected tree. Based on the matching results, recall (r), 131 
precision (p), and F1-score (F1 = (2*r*p)/(r+p)) were computed. Tree height and DBH 132 
estimates accuracy were evaluated by applying some error statistics (Tables 3 and 4) to 133 
each pair of observed values (field data) and estimates (automatically extracted by 134 
UALtree) for each matched tree. Residuals were obtained by subtracting the observed 135 
H or DBH from the estimated H or DBH. 136 

3 Results 137 

Table 2. Tree detection assessment for Faro Focus3D X-330™ and low-cost PTL PCs.  138 

 Faro Focus3D Low-cost PTL 

Reference plot Precision Recall F1-score Precision Recall F1-score 

18A1P 100% 100% 100% 96.55% 82.35% 88.89% 

16A2P 92.31% 85.71% 88.89% 96.15% 89.28% 92.59% 

13A3P 90% 85.71% 87.80% 100% 85.71% 92.31% 

13A1P 90% 78.26% 83.72% 85% 73.91% 79.07% 

10B1P 90% 100% 94.74% 80% 88.89% 84.21% 

Average 93.59% 94.41% 93.78% 91.54% 84.03% 87.41% 

Table 3. Accuracy of the estimate of tree height (H) according to Mean error, Median error, 139 
RMSE, relative RMSE (RMSE/mean observed H), and Pearson correlation coefficient (r).   140 

 Faro Focus3D Low-cost PTL 

Reference 
plot 

Mean 
(m) 

Median 
(m) 

RMSE 
(m) 

Relative 
RMSE 

r Mean 
(m) 

Median 
(m) 

RMSE 
(m) 

Relative 
RMSE 

r 

18A1P 0.10 0.22 0.57 8.26% 0.8817 -0.12 0.10 0.84 11.97% 0.6153 

16A2P 0.37 0.37 0.49 7.69% 0.9532 0.44 0.52 0.67 10.29% 0.8853 

13A3P 0.32 0.39 0.43 6.89% 0.9750 0.25 0.46 0.79 13.04% 0.7655 

13A1P 0.38 0.30 0.47 9.05% 0.9701 0.56 0.43 0.65 12.24% 0.9592 

10B1P 0.21 0.27 0.55 5.25% 0.8731 -1.76 -1.84 2.12 20.31% -0.0557 
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Table 4. Accuracy of the estimate of DBH (cm) according to Mean error, Median error, RMSE, 141 
relative RMSE (RMSE/mean observed DBH), and Pearson correlation coefficient (r).  142 

 Faro Focus3D Low-cost PTL 

Reference 
plot 

Mean 
(cm) 

Median 
(cm) 

RMSE 
(cm) 

Relative 
RMSE 

r Mean 
(cm) 

Median 
(cm) 

RMSE 
(cm) 

Relative 
RMSE 

r 

18A1P -0.05 -0.41 2.03 10.44% 0.9030 -2.80 -3.26 4.29 21.85% 0.6409 

16A2P 0.23 0.02 2.37 14.09% 0.7562 0.86 0.04 2.76 16.44% 0.5161 

13A3P 0.84 1.00 2.51 14.34% 0.8975 2.97 3.06 4.46 26.02% 0.8137 

13A1P 1.71 0.75 5.81 39.36% 0.5871 4.16 3.82 6.52 41.70% 0.4703 

10B1P -0.14 -0.24 1.55 5.40% 0.9692 -0.54 0.62 4.10 14.12% 0.6714 

4 Discussion   143 

As can be seen in Table 2, PTL PCs provided better precision than recall, i.e. 91.54% 144 
and 84.03% on average, respectively, pointing to a scenario of low over-segmentation 145 
(commission error) and slightly high under-segmentation (omission error). In any case, 146 
the results obtained with the PTL PCs were quite good compared to those provided by 147 
TLS, although the less noisy TLS PCs allowed the omission error to be significantly 148 
reduced to average values below 6%. In addition, the F1-score average results for the 149 
two types of PCs were only about six percentage points apart, while the plot 13A1P, 150 
which presented the greatest slope and was most heterogeneous (Table 1), showed the 151 
lowest recall ratio for both kind of PCs. 152 

Table 3 shows the results of tree height estimates accuracy. In this case, the results 153 
extracted from the TLS and PTL PCs were significantly different, with an average rel-154 
ative RMSE of 7.43% and 13.57%, respectively. Note that a significant part of the error 155 
was centered on plot 10B1P (up to 20.21% of the relative RMSE), which was a fairly 156 
homogeneous plot with trees very similar in height (Table 1). These homogeneous trees 157 
caused clear occlusion problems among themselves along the PTL trajectory, causing 158 
an average error of up to -1.76 m (the apex of the tree was not visible) and a Pearson 159 
correlation coefficient of -0.05. A solution to this problem would be to resort to a tra-160 
jectory that follows a double parallel line-pattern. This would increase to approximately 161 
double the time needed to collect data from a plot, but the area of the plot would be 162 
systematically covered and all trees in the plot would be covered on all sides. 163 

It is widely known that PTL devices, even the most sophisticated ones such as ZEB 164 
Horizon, exhibit biases in DBH extraction. Table 4 depicts that the DBH values auto-165 
matically extracted from the TLS and PTL PCs presented average relative RMSE of 166 
16.73% and 24.03%, respectively, usually overestimating the actual values. Generally, 167 
this was due to the presence of low branches and understory vegetation that was not 168 
adequately filtered out by the UALtree software. This situation was very evident in plot 169 
13A1P. Furthermore, a significant component of the error in the case of PTL PCs could 170 
be attributed to the presence of very strong spatial noise that converted a ring of points 171 
(visible in the TLS data) into a disk of points that it did not even define a clear circle.  172 
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5 Conclusions 173 

The results presented in this preliminary work have shown that it is feasible to use the 174 
proposed ICP-SLAM algorithm and the low-cost PTL hardware system to construct 175 
spatially coherent point clouds from which to extract relevant forest information at the 176 
tree level. The performance in tree segmentation and location can be considered quite 177 
good and almost comparable to that provided by high-cost TLS systems. However, the 178 
noisy nature of the SLAM-reconstructed PTL point cloud, due to the difficulties in gen-179 
erating the composite cloud of individual scans co-registered through the SLAM algo-180 
rithm, made it more difficult to accurately extract dendrometric features such as tree 181 
height and DBH. While tree height estimates could be improved by simply using a 182 
denser trajectory pattern to avoid occlusions in very homogeneous forest plots (e.g., a 183 
double parallel-lines pattern), improving DBH estimates would require working in at 184 
least two directions. First, improving the extraction algorithm by trying other ap-185 
proaches. Second, significantly reduce the noise of the point cloud reconstructed from 186 
the ICP-SLAM algorithm by exploring other local map structures, e.g. surfels (“surface 187 
elements”), which implicitly average out the noise from LiDAR points.  188 
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