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Abstract. Traditional terrestrial forest inventory methods are being replaced by 10 
forest monitoring strategies closely associated with the rise of remote sensors 11 
such as Portable Terrestrial LiDAR (PTL). Off-the-shelf PTL devices produce 12 
high-quality point clouds by applying SLAM (simultaneous location and map-13 
ping) algorithms supported by both global navigation satellite system (GNSS) 14 
and inertial navigation system (INS) data. However, they are still excessively 15 
expensive to allow widespread use by many users. This work aims to develop 16 
and validate a low-cost backpack PTL system based on an Ouster OS0-32™ Li-17 
DAR. A new algorithm based on the iterative closest point (ICP) method was 18 
applied to obtain the final point cloud. Neither GNSS data nor INS data were 19 
used to generate the reconstructed point cloud. The suitability of the point cloud 20 
produced to extract significant dendrometric attributes from the forest inventory 21 
was evaluated in five square plots 25 m side of reforested Aleppo pine located in 22 
“Sierra de María-Los Vélez” (Almería, Spain). These plots were previously 23 
scanned with a Faro Focus3D X-330™ static terrestrial laser scanner (TLS). The 24 
software UALtree was used to automatically extract tree location, tree height and 25 
normal diameter from the PTL-derived point cloud, yielding, as expected, less 26 
accurate results than those provided by TLS, mainly due to the high presence of 27 
remaining noise in the PTL point cloud. These results are promising enough to 28 
continue with this line of research towards obtaining a low-cost LiDAR mobile 29 
forest mapping system based exclusively on ICP-SLAM approaches. 30 

Keywords: Forest Inventory, Portable Terrestrial LiDAR, SLAM, ICP, Individ-31 
ual Tree Detection, Dendrometric Features. 32 

1 Introduction 33 

The continuous development of ground-based LiDAR systems has managed to digitize 34 
forests at the centimeter level, also significantly increasing the precision, efficiency, 35 
and quantity of products potentially achievable compared to traditional forest invento-36 
ries based on “manual” sampling procedures [1]. These ground-based systems are clas-37 
sified into two categories: terrestrial laser scanners (TLS) and the more-recently-devel-38 
oped portable terrestrial LiDAR (PTL).  39 
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TLS are stationary systems fixed on a tripod that present an invariant global coordi-40 
nate system that allows averaging the laser range of different pulses at the same target 41 
point. This technique produces very accurate and well-reconstructed point clouds (PCs) 42 
from which dendrometric features can be conveniently extracted in the context of a 43 
tree-centric approach [2].  However, the occlusion effect due to trees/shrubs continues 44 
to limit the extraction of forest attributes at the plot level, forcing a less efficient multi-45 
scan approach subject to registration errors [3]. 46 

PTL devices operate mounted on mobile platforms that move through the forest, 47 
which helps reduce the occlusion problems presented by single scan TLS systems [4]. 48 
They use some form of a Simultaneous Localization and Mapping (SLAM) algorithm 49 
to reference laser distance measurements in 3D space while the device is moving and 50 
without the need for a global navigation satellite system (GNSS). By integrating SLAM 51 
algorithms into PTL systems, usually supported by GNSS and inertial navigation sys-52 
tems (INS) data to increase their accuracy and robustness, foresters can obtain PCs as 53 
they walk, enabling real-time mapping in complex and changing forest landscapes. Off-54 
the-shelf PTL devices produce high-quality point clouds, although they are still exces-55 
sively expensive to allow widespread use by many users. Note that SLAM algorithms 56 
perform better when applied indoors, working poorly when applied outdoors and not 57 
counting on GNSS/INS data due to the complex and irregular features detected by the 58 
laser scanner [5].  59 

This work aims to test a new low-cost backpack PTL system based on an Ouster 60 
OS0-32™ LiDAR to segment trees and extract some of their key dendrometric features, 61 
avoiding resorting to the PTL systems currently in the market whose cost would be four 62 
to six times higher. The final PC was reconstructed using an innovative and pure SLAM 63 
algorithm method without the support of often very expensive GNSS/INS data. 64 

2 Materials and Methods 65 

2.1 Study site and field data collection 66 

The test was carried out in five forest plots located in the “Sierra de María-Los Vélez” 67 
Natural Park, north of the province of Almería (Spain). The plots had a square shape of 68 
25 m side and contained reforested stands of Aleppo pine (Pinus halepensis Mill.) with 69 
variable density, tree height and presence of shrubs and low vegetation (Table 1). This 70 
forest typology is very representative of Mediterranean forests. 71 

Table 1. Dasometric characteristics of the five reference plots. Number of trees (N), tree density 72 
(D), vegetation cover (VC), plot-level uniformity index (PH350) (from 0.37 to 0.50 for homoge-73 
neous plots), basal area (G), Lorey´s height (Lh), and mean slope (Mslope). (*) Homogeneous plot.  74 

Reference plot N D (trees/ha) VC (%) PH350 G (m2/ha) Lh (m) Mslope (°) 

18A1P 34 544 55.17  0.30 26.31  7.45  12.77  

16A2P 28 448 45.4  0.30 15.33  6.65  15.92  

13A3P 21 336 37.32  0.27 10.55  6.68  12.63  

13A1P 23 368 40.57  0.24 8.28  5.55  16.55  

10B1P 18 288 51.69 0.38 (*) 24.32  10.57  9.61  
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The traditional inventory fieldwork was carried out in June 2021. It consisted of 75 
locating the position and measuring the DBH (trunk diameter at 1.3 m from the ground) 76 
of each tree. A pair of Emlid Reach RS2 GNSS RTK multiband receivers allowed the 77 
precise location of each tree in the field to measure its DBH using a tape measuring 78 
Tree height was measured on a high-resolution canopy height model derived from ac-79 
curate UAV image-based PCs. 80 

The TLS fieldwork campaign using a Faro™ Focus3D X-330 device was conducted 81 
in July 2021, applying a workflow fully described in [6]. The TLS PCs obtained in this 82 
campaign were taken as reference to test the performance of the tested low-cost PTL. 83 

The PTL fieldwork was accomplished on November 29, 2023. The low-cost back-84 
pack PTL system was based on an Ouster OS0-32™ LiDAR with 32 channels, ultra-85 
wide 90º vertical FOV and range of up to 75 m at 80% Lambertian reflectivity. The 86 
backpack also consisted of a harness to secure the device to the user's back, an industrial 87 
computer with a 2 TB hard drive to store data, and a 12V/26Ah rechargeable gel battery. 88 
The system can be managed remotely using a simple Android smartphone connected to 89 
the computer's WLAN and using the free "Mobile SSH" Android app to enter command 90 
lines. The PTL trajectories followed a single parallel-line pattern, also trying to produce 91 
a closed loop to reduce SLAM drift. The time taken to complete each plot ranged from 92 
four to eight minutes. Five white target spheres (15cm diameter) located on 1m long 93 
metal rods were distributed in each plot and used to georeferencing the final PC in the 94 
Spanish geodetic datum.   95 

The PTL PC reconstruction from raw data was faced by using the MOdular Locali-96 
zation and mApping (MOLA) framework, initially presented in [7] and recently up-97 
dated with the novel ICP-SLAM module whose structure is briefly described next. 98 

Range data from the LiDAR is processed by the vendor’s ROS driver, which takes 99 
individual points and packs them into “scans” covering a complete 360 degrees hori-100 
zontal field of view. Scans are then processed one by one, applying to them a configu-101 
rable pipeline defined with the open-source MP2P-ICP (multiprimitive to primitive) 102 
C++ library. The main steps of this pipeline include: (1) undistort the incoming scan by 103 
using the per-point timestamps to extrapolate the latest estimated sensor pose and ve-104 
locity (both linear and angular); (2) selectively remove points that are too close or too 105 
far in order to avoid ICP artifacts trying to match moving objects as the person who is 106 
carrying the sensor; (3) downsample the point cloud (one point per 1x1x1m voxel) to 107 
alleviate the strongly uneven sampling of the scene by rotatory LiDARs; (4) optimiza-108 
tion of the current sensor pose via a custom ICP point-to-point algorithm implementa-109 
tion using robust loss functions against a local point cloud map; (5) update of the local 110 
PC with a different (less decimated) version of the incoming scan.  111 

We save the estimated SE(3) trajectory of the carried sensor along with a selected 112 
subset of all original LiDAR scans (before entering the pipeline), which we call 113 
keyframes. After the mapping session ends, those keyframes can be used to reconstruct 114 
a denser PC (decimation with 5x5x5cm voxels) with a different MP2P-ICP pipeline, 115 
leading to the results shown in the next sections.   116 

 117 
2.2 Point cloud processing and dendrometric features extraction 118 

The following workflow was applied to the TLS and PTL PCs: 119 
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1) The TLS and low-cost PTL PCs were georeferenced using the ETRS89 coordi-120 
nates of the target spheres measured by GPS-RTK during fieldwork.  121 

2) PC was subsampled using the “Spatial” method implemented in CloudCompare 122 
v2.12.0 (minimum space between points of 2 cm). Next, each PC was automatically 123 
classified into ground and non-ground points applying the algorithm TIN iterative ap-124 
proach implemented into Agisoft Metashape using the following setting parameters: 125 
cell size = 10 m, distance = 0.3 m, and angle = 30°. 126 

3) UALtree, a Matlab® software developed by our research group, was used to au-127 
tomatically obtain a prior tree segmentation from which to extract tree location, tree 128 
height and DBH. A full description of this software can be found in [6]. 129 

4) Tree detection accuracy was addressed by matching the trees recorded in the field 130 
to the trees extracted from each plot. The closest field tree within a 3 m search radius 131 
was matched to each UALtree detected tree. Based on the matching results, recall (r), 132 
precision (p), and F1-score (F1 = (2*r*p)/(r+p)) were computed. Tree height and DBH 133 
estimates accuracy were evaluated by applying some error statistics (Tables 3 and 4) to 134 
each pair of observed values (field data) and estimates (automatically extracted by 135 
UALtree) for each matched tree. Residuals were obtained by subtracting the observed 136 
H or DBH from the estimated H or DBH. 137 

3 Results 138 

Table 2. Tree detection assessment for Faro Focus3D X-330™ and low-cost PTL PCs.  139 

 Faro Focus3D Low-cost PTL 

Reference plot Precision Recall F1-score Precision Recall F1-score 

18A1P 100% 100% 100% 96.55% 82.35% 88.89% 

16A2P 92.31% 85.71% 88.89% 96.15% 89.28% 92.59% 

13A3P 90% 85.71% 87.80% 100% 85.71% 92.31% 

13A1P 90% 78.26% 83.72% 85% 73.91% 79.07% 

10B1P 90% 100% 94.74% 80% 88.89% 84.21% 

Average 93.59% 94.41% 93.78% 91.54% 84.03% 87.41% 

Table 3. Accuracy of the estimate of tree height (H) according to Mean error, Median error, 140 
RMSE, relative RMSE (RMSE/mean observed H), and Pearson correlation coefficient (r).   141 

 Faro Focus3D Low-cost PTL 

Reference 
plot 

Mean 
(m) 

Median 
(m) 

RMSE 
(m) 

Relative 
RMSE 

r Mean 
(m) 

Median 
(m) 

RMSE 
(m) 

Relative 
RMSE 

r 

18A1P 0.10 0.22 0.57 8.26% 0.8817 -0.12 0.10 0.84 11.97% 0.6153 

16A2P 0.37 0.37 0.49 7.69% 0.9532 0.44 0.52 0.67 10.29% 0.8853 

13A3P 0.32 0.39 0.43 6.89% 0.9750 0.25 0.46 0.79 13.04% 0.7655 

13A1P 0.38 0.30 0.47 9.05% 0.9701 0.56 0.43 0.65 12.24% 0.9592 

10B1P 0.21 0.27 0.55 5.25% 0.8731 -1.76 -1.84 2.12 20.31% -0.0557 
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Table 4. Accuracy of the estimate of DBH (cm) according to Mean error, Median error, RMSE, 142 
relative RMSE (RMSE/mean observed DBH), and Pearson correlation coefficient (r).  143 

 Faro Focus3D Low-cost PTL 

Reference 
plot 

Mean 
(cm) 

Median 
(cm) 

RMSE 
(cm) 

Relative 
RMSE 

r Mean 
(cm) 

Median 
(cm) 

RMSE 
(cm) 

Relative 
RMSE 

r 

18A1P -0.05 -0.41 2.03 10.44% 0.9030 -2.80 -3.26 4.29 21.85% 0.6409 

16A2P 0.23 0.02 2.37 14.09% 0.7562 0.86 0.04 2.76 16.44% 0.5161 

13A3P 0.84 1.00 2.51 14.34% 0.8975 2.97 3.06 4.46 26.02% 0.8137 

13A1P 1.71 0.75 5.81 39.36% 0.5871 4.16 3.82 6.52 41.70% 0.4703 

10B1P -0.14 -0.24 1.55 5.40% 0.9692 -0.54 0.62 4.10 14.12% 0.6714 

4 Discussion   144 

Faro™ Scene© software (V7.1) was unable to automatically detect the georeferencing 145 
spheres in the low-cost PTL PCs. Therefore, a Matlab code based on geometric and 146 
reflectivity features was developed to detect at least three spheres in each plot and apply 147 
a 3D rigid transformation from local system to global ETRS89. The maximum georef-148 
erencing error (RMSE) along X, Y and Z was 11.05 cm, 19.37 cm and 12.71 cm. 149 

As can be seen in Table 2, PTL PCs provided better precision than recall, i.e. 91.54% 150 
and 84.03% on average, respectively, pointing to a scenario of low over-segmentation 151 
(commission error) and slightly high under-segmentation (omission error). In any case, 152 
the results obtained from the PTL PCs were quite good compared to those provided by 153 
TLS, although the less noisy TLS PCs allowed the omission error to be significantly 154 
reduced to average values below 6%. F1-score average results for the two types of PCs 155 
were only about six percentage points apart. Plot 13A1P, with greater slope and heter-156 
ogeneity (Table 1), showed the lowest recall ratio for both kind of PCs. 157 

Table 3 shows the results of tree height estimates accuracy. In this case, the results 158 
extracted from the TLS and PTL PCs were significantly different, with an average rel-159 
ative RMSE of 7.43% and 13.57%, respectively. Note that a significant part of the error 160 
was centered on plot 10B1P (up to 20.21% of the relative RMSE), which was a fairly 161 
homogeneous plot with trees very similar in height (Table 1). These homogeneous trees 162 
caused clear occlusion problems among themselves along the PTL trajectory, causing 163 
an average error of up to -1.76 m (the apex of the tree was not visible) and a Pearson 164 
correlation coefficient of -0.05. A solution to this problem would be to resort to a tra-165 
jectory that follows a double parallel line-pattern. This would increase to approximately 166 
double the time needed to collect data from a plot, but the area of the plot would be 167 
systematically covered and all trees in the plot would be covered on all sides. 168 

It is widely known that PTL devices exhibit biases in DBH extraction. Table 4 de-169 
picts that DBH values automatically extracted from TLS and PTL PCs presented aver-170 
age relative RMSE of 16.73% and 24.03%, respectively, usually overestimating the 171 
actual values. This was due to the presence of low branches and understory vegetation 172 
that was not adequately filtered out by the UALtree software. This situation was very 173 
evident in plot 13A1P. Furthermore, a significant component of the error in the PTL 174 
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PCs can be attributed to the presence of a very strong noise that converted a ring of 175 
points (visible in TLS data) into a disk of points that it did not even define a clear circle.  176 

5 Conclusions 177 

The results presented in this work proved that the proposed ICP-SLAM algorithm and 178 
the low-cost PTL hardware system are able to construct spatially coherent point clouds 179 
from which to extract relevant forest information at tree level. The performance in seg-180 
menting trees can be considered quite good and close to that provided by high-cost TLS 181 
systems. However, the noisy nature of the SLAM-reconstructed PTL PC made it more 182 
difficult to accurately extract tree height and DBH. While tree height estimates could 183 
be improved by simply using a denser trajectory pattern to avoid occlusions in very 184 
homogeneous forest plots, improving DBH estimates would require working in at least 185 
two directions: i) Improving the extraction algorithm by trying other approaches. ii) 186 
Reducing the noise of the point cloud reconstructed from the ICP-SLAM algorithm by 187 
exploring other local map structures, e.g. surfels (“surface elements”), which implicitly 188 
average out the noise from LiDAR points.  189 
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