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Research Interests:
• Mobile robotics for

• Planetary exploration
• Agriculture

• Vehicle dynamic modelling and estimation
• Advanced driving assistance systems (ADAS) towards

self-driving vehicles
• New: Biomedical devices
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• Navigation in challenging environments, including planetary surfaces

and agricultural settings

• Mechanics of wheel/terrain interaction drawing from Terramechanics

theory

• State and parameter estimation

• Automated online estimation of motion states and key parameters

of vehicle/terrain (e.g., terrain awareness)

• Identification of terrain regions that can be safely traversed

Advanced Mobile Robotics



Off-roadIn-road

CLAAS AXION 840 4WD
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Wheeled robots
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• Limitations on irregular terrains

Rule of thumb: obstacles higher than wheel radius can not be climbed !!

cosα=1-h/r
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Alternatives

• Track-based locomotion

MAXX II – Fixed wheels
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Alternatives cont’ed

MAXX 1

Type c

• Suspended wheels

a) Vertical spring and dampers

b) Torsion bars
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Sono state eseguite: 

32 prove

Alternatives cont’ed

https://www.youtube.com/watch?v=JoJ-8MdYjyc
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Sono state eseguite: 

32 prove

Alternatives cont’ed

Issue: Turning by skid-steering
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NASA/JPL’s rovers

Rocky 8:
• 6 wheel/6-steer, rocker-bogie design
• Vehicle mass: 400 kg
• Manipulator: 1 m, Mini corer for 5 cm deep drilling
• Instrument deployment arm
• Communications: 40 Mbits/day = 20 Mbits/hr
• Energy availability: 2000-5000 W-hours
• Actual maximum speed envisaged: 6 cm/sec
• Dimensions: 2.9 m long, 3.6 m wide, Wheel:

diameter=0.5 m, width=20-30 cm.
• Travel: 13 days dedicated to “traverse days,” 3 km/13

sols = 230 m/sol on average (rover will move only for
about 4 hours/sol). Note: Sol = Mars day, about 23.5
hours.



DUNE: 4-wheel drive 4-wheel steer rover employing a rocker-type suspension



Rocker vs elastic suspension system

Rocker

Elastic
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Comparison chart



2020 Robotic Mobility Lab @Poliba 15/48

Sherpa rover

AUTONOMOUS DECISION MAKING IN VERY LONG TRAVERSES 
An H2020 project funded within Strategic Research Cluster on 
Space Robotics Technologies



Estimation challenges

• Mobile Robots are increasingly being used in high-risk, rough terrain situations,
such as reconnaissance, patrol, search and rescue applications, and planetary
exploration.

• Conventional control and localization algorithms are not well suited to uneven terrain,
since they generally do not consider the physical characteristics of the vehicle and its
environment.

• Little attention has been devoted to the study of the dynamic ill-effects occurring at
the wheel-terrain interface, including slippage.

These effects compromise the vehicle performance in terms of odometry
accuracy, traction ability, power consumption leading to potential danger of
entrapment with consequent mission failure

Solution: provide a planetary rover with terrain awareness ability

NASASherpa
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Six-wheeled Mars rover analogue
University of Michigan  (NASA/JPL contract) Four-wheeled Moon rover analogue

Tohoku University, Japan (JSPS Fellow)

Slippage estimation

Improve odometry-based localization
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• Wheel slip detection based on observing different sensor modalities
implemented onboard and defining deterministic conditions for vehicle slippage
(AWSD)

• Odometry correction based on motor current measurements (iComp)
• wheel slippage estimation from electrical current and correction of corrupted encoders readings

accordingly

Improve odometry-based localization

Motor current
data

Wheel encoder
data

Module 1: 
All-Wheel 

Slippage Detection 
(AWSD)

Tilt 
sensors

Module 2: 
Current 

compensation

Linear displacement 
output

Current-compensated 
odometry

Odometry derived only 
from encoders

AWS flag
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All Wheel Slippage Detection

•Encoder Indicator (EI) – compares encoder readings with each other

•Gyro Indicator (GI) – compares encoder readings with those of the gyro that

measures rate-of-turn around the z-axis

•Current Indicator (CI) – monitors motor electrical currents, which are roughly

proportional to the torque applied to each wheel
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Encoder Indicator

• While the linear velocities of the wheels differ from each other according to their

distance from the Instantaneous Center of Rotation (ICR) of the vehicle, their

longitudinal components must be equal on either side of the vehicle

• Our hypothesis is that unequal speeds in the three wheels of a side suggest

wheel slippage

No-slip maneuver

Left Side:

Right Side:
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Encoder Indicator, cont’d

• In order to express this hypothesis mathematically, we adopted
fuzzy logic that uses rules to map from inputs to outputs

• The Fuzzy inference system fuses the sensory information based
on the rule set shown in Table 1, which implement our in-depth
physical understanding of the behavior of the encoders



Encoder Indicator, cont’d

• Output of the fuzzy logic system of the Encoder Indicator (blue line, the bold line
shows the smoothed output):

– for a high-traction terrain (Figure a)
– and a high-slippage terrain (Figure b)

a) High traction terrain (no slippage) b) Sloped, sandy terrain with substantial slippage



• This method aims at detecting wheel slippage by comparing encoder data with
gyro data.

• We can compute the rate-of-turn ω of the vehicle from each one of the three
encoder pairs, identified by index i: the front, the center, and the rear pair,
according to:

• We can now compare each of the three ωEnc,i with the rate-of-turn measured by
the z-axis gyro ωGyro, which we consider the ground truth in this approach.

• If no slippage occurred in a wheel pair, then one can expect good
correspondence between the rates-of-turn derived from the encoders of that
wheel pair and the gyro. Poor correspondence suggests wheel slippage

d i, r/l - distance traveled by the right/left wheel of wheel pair i.
ϕ i ,r/l - steering angle of the right/left wheel of wheel pair i.
b - vehicle width (distance between the left and right wheel).
T - sampling interval.

Gyro Indicator



Gyro Indicator, cont’d

• Also for the Gyro Indicator, we developed a Fuzzy inference system to fuse
sensory data.

• The fuzzified output of the GI is here expressed in terms of a binary, so-
called “AWS flag,” which is raised whenever the system’s confidence in the
existence of an AWS condition is greater than 0.5 (red bold line in the
bottom graph).



Current Indicator

• The Current Indicator aims at detecting AWS by monitoring the electrical currents drawn by
the drive motors of the vehicle.

• When a torque is applied to a wheel, shearing action is initiated on the terrain interface
creating a tangential stress region τ, whose resultant gives the so called tractive effort F

– Using Terramechanics theory it is possible to find a relationship between F and the wheel slip i
– Since torque is roughly proportional to the motor current I, it is also possible to link I to the wheel slip

c, ϕ - cohesion and internal friction angle, respectively
K - shear deformation modulus (i)
j - shear displacement.

Terramechanics theory (Bekker, Wong):
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Relating wheel slip with motor current

Experimental data

Terramechanics Theory



We defined the parameter velocity slippage correction Sc, which represents the 

correction value to be used for slippage compensation

Experimental data

Sc obtained with linear fitting

Velocity slip correction Sc
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Odometry correction

On-line calibration



iComp

Encoder
Ground truth

Encoder
Ground truth

After compensation



iComp

• It is generally beneficial to know that AWS has occurred or that some wheels are
approaching a condition of impending slippage to compensate odometry errors and
optimize traction control.

• The CI is useful not only to flag occurrences of AWS but indeed is also useful for
correcting odometry errors incurred by AWS with values derived from momentary
motor currents.
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Experiments

Non è possibile v isualizzare l'immagine.

• The rover traveled autonomously along a pre-programmed, near-rectangular path
• Each run consisted of three uninterrupted loops, resulting in a total travel

distance of D = 43 m per run
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Path of the rover

Slippage detection
Slippage detection
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Results

Odometry Odometry
+Gyro iComp

E % 
(CW)

3.7 3.0 0.45

E % 
(CCW)

4.6 4.3 0.53

Non è possibile v isualizzare l'immagine.

Table I: Return Position errors
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Lateral drift

No Drift Lateral Drift
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FTrace system
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Experimental Validation

• The FTrace system was tested in the field using the rover El-Dorado,
equipped with a cost-effective rear webcam, and a sampling rate of 5 Hz.

• The test field was located on the shorelines of a sandy beach, comprising
large flat areas and sparse mounds of different extensions and heights.

• Ground-truth data was provided by a laser-based tracking system.
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Slip Angle Estimation

VIDEO
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Odometry-based localization



• Experimental data: results here presented are obtained from two previous SherpaTT test
campaign
• Utah: rocky terrain; sensors unavailable: stereo camera,
• Morocco: sandy terrain; sensors unavailable: stereo camera , IMU, GPS

Soil modelling

𝑈𝑡𝑎ℎ 𝑀𝑜𝑟𝑜𝑐𝑐𝑜

AUTONMOUS DECISION MAKING
IN VERY LONG TRAVERSES
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Main goal: build a terrain model based on a set of selected
proprioceptive features

Soil modelling
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STATISTIC MOMENTS

S1 Mean

S2 Variance

S3 Skewness

S4 Kurtosis

FEATURE SET

F1 Longitudinal Force

F2 Torque

F3 Current

F4 Mechanical Power

F5 Electrical Power

F6 Friction Coefficient

F7 Acceleration X

F8 Acceleration Z

F9 Speed Deviation

F10 Sinkage

F11 Slippage

𝑊𝐵 𝑚 · 𝑆𝑆𝑊𝑆𝑆𝐵Soil modelling

𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡



2020 Robotic Mobility Lab @Poliba 41/48

Statistical Terrain classifier



FEATURE SET

F1 Longitudinal Force

F2 Torque

F3 Current

F4 Mechanical Power

F5 Electrical Power

F6 Friction Coefficient

F7 Acceleration X

F8 Acceleration Z

F9 Speed Deviation

F10 Sinkage

STATISTIC MOMENTS

S1 Mean

S2 Variance

S3 Skewness

S4 Kurtosis

𝑊𝐵 𝑚 · 𝑆𝑆𝑊𝑆𝑆𝐵

𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

Excessive wheel slippage estimation



On-line estimation of vehicle-terrain parameters using model-based
observers (e.g., Recursive Least Square, Extended Kalman Filter,
Cubature Kalman Filter, etc)

Model-based vehicle dynamic estimation

Reina G , Leanza A., Messina A., “On the vibration
analysis of off-road vehicles: Influence of terrain
deformation and irregularity“, Journal of Vibration
and Control, 24 (22), 2018.

General quarter vehicle model

Model-based observer

state

measure



Terrain properties observer



2020 Robotic Mobility Lab @Poliba 45/48

Results

Reina G. , Leanza A., Messina A., “Terrain estimation via vehicle vibration measurement and
cubature Kalman filtering“, Journal of Vibration and Control, 2020.
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Results
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Regolith estimation with a Moon buggy



Tire pressure

Cornering stiffness



Muchas gracias por la atención !!!!

Feel free to drop me an email: giulio.reina@poliba.it

check progress @ www.vagostudio.com/giulio/

LORENZO
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On-line tuning technique


