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Probability and estimation bases
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Probability spaces

“Under both the frequentist and Bayesian paradigms,
probabilities are numbers associated to certain phenomena in
the real world, in particular to the possible outcomes of some
stochastic process.”

• W: Sample space.

• E: s-algebra of W.

• P: Probability function

P: E→ [0,1]

e.g. P(W)=1
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Probability Mass and Density Functions (PMF/PDF)

Discrete random variable: Normalized 
histogram as PMF.

Continuous random variable: Any 
function
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Probability Density Function (PDF) examples

Model of a PT-100 temperature probe

y: output [V]

x: actual temperature [K]

n: random additive noise

Wheeled robot motion model
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PDFs of several variables: concepts

• Marginal pdfs: 

• Joint pdf:

• Conditional pdf: 
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PDFs of several variables: concepts
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Matos, Jose. (2008). UNCERTAINTY TREATMENT IN CIVIL ENGINEERING NUMERICAL MODELS. 



Multivariate Gaussian PDFs

Profusely used everywhere. Moment and information matrix forms.
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Moment form:

Information (or precision) form:
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Relationship between joint and conditional

It can be verified that:
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PDF factorization

Given a joint pdf:

To factor it: splitting it into a product of smaller pdfs, e.g:

In large problems, we easily end up having 100s or 1000s of variables, 
so the dimensionality of the functions matter.
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PDF factorization

Tools and rules to factorize: 

• Independence: 

• Conditional independence:

• Bayes’ rule:

• Law of total probability: 

(“Marginalize b out”)
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Likelihood function

From the Bayes’ rule: 
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Maximum a posterior (MAP) estimation

Find the set of parameters X that maximize the likelihood of a set of 
observations Z.
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Types of estimators for dynamic systems

• A dynamic system has a state vector x that evolves over time:
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Types of estimators for dynamic systems

• Filters: They just estimate the last (“current”) system state.
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Types of estimators for dynamic systems

• Fixed-lag smoother: They estimate the last “n” system states.
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Types of estimators for dynamic systems

• Batch estimator: Obtain results after processing the entire dataset.

19
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Graphical models. Bayes net

Introduction to Factor Graphs - Jose Luis Blanco - UAL 20



Why using graphs?

Algebraic manipulation Graphical models
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Definition

The formalism of graphical models allows us to represent:

• a set of r.v.s and 

• their conditional independence assumptions. 

It was born as a fusion of probability theory and graph theory, and
plays a central role in many machine learning techniques (Bishop, 
2006).
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Taxonomy

(Non-exhaustive) taxonomy of graphical models: 
• Bayesian Network (BN) 

• Dynamic BN (BN)

• Markov Random Field (MRF)

• Factor graphs
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Purpose

Probabilistic graphical models
provide a mechanism to
compactly describe complex
probability densities by exploiting
the structure in them.

→ Efficient factorizations of PDFs

Edges in a graph are important, 
but the lack of them is what is
even more relevant.

Main application in our scope: 
inference.
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Bayesian Network (BN)

• A directed acyclic graphical model.

• Nodes represent variables: both, knowns and unknowns.

• Directed edges carry a semantic meaning of causality.
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Allow encoding a human expert’s knowledge 
as a highly-efficient, sparse probabilistic model



Bayesian Network (BN)

Mathematically, a BN encodes a factorization:

X={x1,…,xn}: all variables

xi: the i’th variable

pi: parents of the i’th variable
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Bayesian Network (BN)
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Dynamic Bayesian Network (DBN)

A BN over variables that have a dynamic state over time. Implicit 
Markov property.
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DBN example: vehicle localization
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Graphical models. Markov 
random field
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Markov Random Field (MRF)

• An undirected graphical model. May (and often will) contain loops.

• Nodes represent variables: both, knowns and unknowns.

• Edges does not carry information about causality, only about some 
“relationship”.

A DBN can be converted into a MRF (not covered here).
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Markov Random Field (MRF): example

Spatial Markov condition.

Introduction to Factor Graphs - Jose Luis Blanco - UAL 32



Markov Random Field (MRF) factorization

Graph clique and maximal clique Factorization of a MRF
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MRF applications: image de-noising

Noisy input Restored
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Factor graphs
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Factor graph (FG)

• A bi-partite graphical model. 
Can contain loops.

• Two types of nodes: variables
and factors.

• Undirected edges: only between 
variables and factors.

Unary, binary,… n-ary factors.
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“Factor Graphs for Robot Perception”
Frank Dellaert, Michael Kaess, 2017



Bayes Network ➔ Factor graph

• “every node in a Bayes net denotes a conditional density on the
corresponding variable and its parent nodes. Hence, the conversion is
quite simple: every Bayes net node splits in both a variable node and
a factor node in the corresponding factor graph. The factor is
connected to the variable node, as well as the variable nodes
corresponding to the parent nodes in the Bayes net. If some nodes in
the Bayes net are evidence nodes, i.e., they are given as known
variables, we omit the corresponding variable nodes: the known
variable simply becomes a fixed parameter in the corresponding
factor.” [Dellaert&Kaess, 2017]
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Bayes Network ➔ Factor graph

Bayes Network Factor graph
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Factor graph (FG) factorization

Mathematically, a FG encodes a factorization:

X={x1,…,xn}: all variables

xi: all variables touching the i’th factor

fi: the i’th factor
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Factor graph (FG) factorization
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Uses of FGs

• Sampling.

• Evaluation. 

• Optimization: 
• MAP estimator. Gradient-based (Gauss-Newton).

• How to do efficiently? (➔ Literature)

• Message-based optimization (not discussed here)
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Error models

• Each factor model a constraint, and must include a measure of 
uncertainty, confidence. The “strength” in the mass-spring model.

• Most common model: Gaussian.

y = f(x) + n           ➔

Problem ➔ Too strict with outliers!
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Error models: robust kernels

• Just one outlier is enough 
to ruin a least-squares 
estimator.
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Error models: robust kernels

Robust M-estimators: based 
on modified cost functions. 

Well-known kernels: 

• Pseudo-Huber,

• Cauchy,

• Geman-McClure,

• Tukey.
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Relationship between graphs and 
sparse matrix Algebra
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Motivation

• Linearization → Jacobian of factors.

• Variable ordering → Important.

• Learn about the most common nonlinear algorithms: GN, LM, DL, etc.
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Nonlinear factor graphs

MAP of nonlinear factor graphs becomes iteratively solving Ax=b
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“Factor Graphs for Robot Perception” Frank Dellaert, Michael Kaess, 2017



Nonlinear factor graphs

Linearization:
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Nonlinear factor graphs

Whitening:
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“Factor Graphs for Robot Perception” Frank Dellaert, Michael Kaess, 2017

Direct methods for LS:
▪ Cholesky (+ forward and back-substitution)
▪ QR

Iteration: Gauss-Newton, DogLeg, Lev-Marq. 



Sparsity

• Sparsity of Jacobians (and hence, Hessians H=J’J) are key for efficiency.
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The elimination algorithm

• For a particular ordering, it 
recovers the Bayes Net for 
variables to be estimated.
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The elimination 
algorithm

• Example. Ordering: L1,L2,X1,X2,X3.
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The importance of ordering

• Dominating cost: factorization of sparse matrices for local factors 
while eliminating.
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The importance of ordering
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Inference via message passing in 
factor graphs
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Inference in FGs

Sum-product Algorithm (SPA): find the marginal of one variable p(xi).

Exact if tree-like. Approximate if the FG has loops.

Max-sum algorithm: find the most likely state (Viterbi decoder).
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The sum-product algorithm
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Example applications of FGs
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Linear–quadratic regulator (LQR)
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(Based on GTSAM blog post by Gerry Chen and Yetong Zhang)



Linear–quadratic regulator (LQR)
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Linear–quadratic regulator (LQR)

Introduction to Factor Graphs - Jose Luis Blanco - UAL 65

(Based on GTSAM blog post by Gerry Chen and Yetong Zhang)



Linear–quadratic regulator (LQR)
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Linear–quadratic regulator (LQR)
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(Based on GTSAM blog post by Gerry Chen and Yetong Zhang)

Equivalent to the well-known Ricatti equation solution.



Nonintrusive load monitoring
(NILM)
• Identifying which appliances are ON/OFF from electric signals, e.g. 

“load disaggregation”. W: real power, R: reactive power. Li =ON/OFF.
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Goutam, Y. G., Chandra, M. G., Srinivasarengan, K., & 

Kadhe, S. (2013, August). On electrical load disaggregation

using factor graphs. In 2013 International Conference on

Advances in Computing, Communications and Informatics

(ICACCI) (pp. 1759-1764). IEEE.
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Applications to robotics & vision

• Large systems of 
keyframes and 
observations.

• SLAM vs 
localization.

• SE(3) vs Euclidean
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Applications to robotics & vision
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Applications to robotics & vision
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Applications to robotics & vision

C++ libraries for factor graphs (tailored to SLAM):

• g2o:   A General Framework for Graph Optimization  [Grisetti et al.]
https://github.com/RainerKuemmerle/g2o

• GTSAM: GeorgiaTech Smoothing and Mapping [Dellaert et al.]

https://github.com/borglab/gtsam
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https://github.com/RainerKuemmerle/g2o
https://github.com/borglab/gtsam


Bundle adjustment, poses-only, structure-only 
optimization
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Applications to robotics & vision

• Poses-only: “factorizing out” some variables comes with the cost of a 
denser information matrix (in principle).

• The “mass-spring” model: “Removing a mass and all springs attached to 
it is equivalent to adding new springs between all affected masses”.

(Next slides from: Thrun, S., & Montemerlo, M. (2006). The graph SLAM algorithm with applications to large-scale 
mapping of urban structures. The International Journal of Robotics Research, 25(5-6), 403-429.)
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Applications to robotics & vision

Introduction to Factor Graphs - Jose Luis Blanco - UAL 76



Applications to robotics & vision
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Applications to robotics & vision
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Applications to robotics & vision
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Applications to robotics & vision
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Applications to robotics & vision
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Time-varying gas mapping with a mobile 
robot
• Model the environment as a discrete set of cells with gas 

concentrations as the “unknown”. Include obstacles information.
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Monroy, J. G., Blanco, J. L., & Gonzalez-Jimenez, J. 

(2016). Time-variant gas distribution mapping with

obstacle information. Autonomous Robots, 40(1), 1-16.



Time-varying gas mapping with a mobile 
robot
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Time-varying gas mapping with a mobile 
robot
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Gas mapping in dynamic 
environments
• Exploring a gas diffusion process using a 

multi-robot system. The physical behavior 
of the diffusion process is modeled using a 
Partial Differential Equation (PDE).
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Wiedemann, T., Shutin, D., & Lilienthal, A. J. (2019). 

Model-based gas source localization strategy for a 

cooperative multi-robot system—A probabilistic

approach and experimental validation incorporating

physical knowledge and model
uncertainties. Robotics and Autonomous Systems.



Manipulator dynamics with factor graphs

• Mechanical systems: kinematics can be also formulated as FGs.

• “This paper describes a unified method solving for inverse, forward, 
and hybrid dynamics problems for robotic manipulators with either 
open kinematic chains or closed kinematic loops based on factor 
graphs”.

Introduction to Factor Graphs - Jose Luis Blanco - UAL 86

Xie, M., & Dellaert, F. (2019). A Unified Method for Solving

Inverse, Forward, and Hybrid Manipulator Dynamics using

Factor Graphs. arXiv preprint arXiv:1911.10065.



Manipulator dynamics with factor graphs
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Xie, M., & Dellaert, F. (2019). A Unified Method for Solving

Inverse, Forward, and Hybrid Manipulator Dynamics using

Factor Graphs. arXiv preprint arXiv:1911.10065.



Manipulator dynamics with factor graphs
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Xie, M., & Dellaert, F. (2019). A Unified Method for Solving

Inverse, Forward, and Hybrid Manipulator Dynamics using

Factor Graphs. arXiv preprint arXiv:1911.10065.

Elimination algorithm for a particular ordering (3-DOF simplified case):



Manipulator dynamics with factor graphs
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Introduction to GTSAM
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GTSAM

• C++ library. 

• Frank Dellaert, Georgia Tech “Institute for 
Robotics and Intelligent Machines”.

• Tailored to SLAM but coded as a general 
purpose library.

• Matlab and Python bindings.

https://github.com/borglab/gtsam/
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GTSAM

• Main C++ classes: 
• NonlinearFactorGraph : The Factor graph.

• FactorXXX: Factors. 
Arguments: 
• N Keys. Can be built with “Symbol” (e.g. “X1”, “V2”).

• Observed value.

• Noise model, e.g. “noiseModel::Diagonal::Sigmas()”

• Values : “Variant” container for initial and final values of all keys. 
Associative container: Key → Value.
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GTSAM: PlanarSLAMExample.cpp 
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GTSAM: PlanarSLAMExample.cpp 
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GTSAM: PlanarSLAMExample.cpp 
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GTSAM: PlanarSLAMExample.cpp 
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GTSAM: Matlab wrapper
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GTSAM MATLAB: Installation

• From sources: 
• Enable building the MATLAB wrapper in CMake.

• Set an installation directory.

• Build the INSTALL target.

• Precompiled version for Windows and MATLAB 64bits:
• https://github.com/jlblancoc/2020-ual-factor-graphs-course

• Clone or download as ZIP and uncompress.
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GTSAM MATLAB: Installation

• From MATLAB: 
• “Add to path”  →

gtsam_toolbox

• (If built from sources
manually, also add the
“bin” directory to the
sytem PATH).
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GTSAM MATLAB: Exercise 1

• Run Pose2SLAMExample.m

• Analyze the code and the results.
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GTSAM MATLAB: Exercise 2

• Modify the file Pose2SLAMExample.m to:
• Remove the observation between Keyframe 5 & 2. Observe the final 

covariances. 

• Restore the removed edge, and introduce small errors in the relative poses.

• After that, define a different covariance and create a new edge between 1 & 
5. Experiment with different information matrices and edge observed values.
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