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Resumen 

Los sensores utilizados en los sistemas de control de plantas de producción de hidrógeno son componentes críticos que están 

sometidos a diversas condiciones ambientales, que repercuten en su fiabilidad y en la precisión de las mediciones. El sistema de 

control depende de la precisión de las mediciones para tomar decisiones como la activación de la unidad de refrigeración o la 

optimización del proceso. Los sistemas también pueden equiparse con unidades de detección de fallos para detectar 

comportamientos fuera de rango. El problema surge cuando las mediciones del sensor se desvían del valor real. Este trabajo 

propone una solución práctica para detectar fallos de deriva en sensores de temperatura integrados en electrolizadores utilizando 

un concepto inteligente basado en la combinación de fusión de sensores y lógica difusa.  

Palabras clave: fusión de sensores, detección de fallos, lógica borrosa, electrolizador PEM. 

Sensor fusion and fuzzy logic-based approach for maintenance in hydrogen production plants 

Abstract 

Sensors used in control systems of hydrogen production plants are critical components which are subject to various 

environmental conditions that impact on their reliability and accuracy of measurements. The control system depends on accurate 

measurements to make decisions such as activation of the cooling unit or optimisation of the process. The systems can also be 

equipped with fault detection units to detect out-of-range performances. Problem arises when the sensor measurements drift from 

the actual value. This paper proposes a practical solution to detect drift faults in temperature sensors embedded in electrolysers 

using an intelligent concept based on the combination of sensor fusion and fuzzy logic. The proposed solution can be integrated 

into control systems to ensure that drifting sensors are detected, recalibrated or replaced early.  

Key words: Sensor fusion, faults detection, fuzzy logic, PEM electrolyser. 

 

1. Introduction 

1.1 Background study 

Hydrogen gas can be produced by electrolysers which are 

devices that convert electrical energy into hydrogen gas.  The 

control system of electrolysers can be equipped with sensors 

which provide information for decision making.. This helps 

to avoid membrane drying or overheating. The challenge 

with such fault detection systems is that the sensors used can 

experience drift faults which are progressive loss of accuracy 

over time and can cause a misinterpretation of high or low 

temperature as normal and vice versa.  

When drift fault occurs, the fault detection system has a 

high possibility to allow abnormal temperature faults to go 

undetected. A promising solution for the detection of these 

sensor problem is the use of an approach called sensor data 

fusion (SDF) which is the process of combining information 

from other sensors in a control system to estimate the state of 

a dynamic system. The resulting estimate is, in some senses, 

better than it would be if the sensors were used individually 

(Galar and Kumar, 2017). In Figure 1a the schematic 

representation of a conventional fault detection system is 

shown where a process data such as temperature is measured 

by a sensor and the signal is passed to a fault detection system 

to determine abnormal process data such as high temperature. 

In Figure 1b, the application of sensor fusion is shown where 

the same temperature sensor signal is fused with another 

sensor signal measuring a different but correlated process data 

such as voltage, current, pressure among others. The fusion of 

the two sensor signals provides better detection of faults than 

with a single sensor.  

Limited studies exist in the use of SDF for detection of 

faults in hydrogen systems. Some of the available ones include 

the work by (Zhong et al., 2024) who used multi-sensor fusion 
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to detect internal water state in a proton exchange membrane 

(PEM) fuel cell based on particle filter using sensor signals 

from voltage and high frequency resistance measurements. 

  

 
                  (a)                                                     (b) 

 

Figure 1: (a) Schematic illustration of conventional fault detection 
system. (b) Application of sensor data fusion (SDF) to fault detection 

 

The authors indicated that the detection with sensors 

fusion was more accurate than with either of voltage or high 

frequency alone. 

In another study by Masali et al. (2024), sensor data 

fusion was used to detect hydrogen leakage by incorporating 

signals from electromagnetic, ultrasonic, and optical sensors. 

Overall, various scientific literatures have shown that 

there are limited studies on the use of SDF for fault detection 

in hydrogen-based systems. This paper aims to fill this 

research gap and demonstrate the application of SDF in a 

PEM electrolyser. The remaining part of this paper is 

structured as follows. Section 2 identifies a proposed solution 

to implement the concept of sensor fusion which is 

subsequently used to solve the problem of drift faults in 

temperature sensors. In section 3, results are presented and 

discussed while in section 4 conclusions and future work are 

identified. 

 

2. Methodology 

The methodology proposed seeks to detect drift faults within 

sensors used in control systems and involves the 

incorporation of the technique of sensor data fusion along 

with fuzzy logic (Vélez et al., 2010). This is all together 

applied to a real case of a 1 Nm3/h H2-PEM electrolyser 

(Caparrós et al., 2021), Figure 2. In this layout, de-ionized 

water in a tank (WT-02) flows through a cooling unit to bring 

the water to the optimum operating temperature after which 

it passes through a recirculating pump (P002). The outlet of 

the pump has two pathways. One path is through is a filtration 

unit to remove ions before returning to back to the tank. The 

other path feeds the electrolyser. The electrolyser is 

energised by a power supply unit providing direct current. 

The water is split into oxygen and hydrogen at the anode and 

cathode respectively. The hydrogen produced passes through 

a cooling unit to reduce the temperature. The oxygen 

produced contains a significant amount of moisture both of 

which passes into a separator tank where oxygen is separated 

from water. The entire process is controlled by a 

programmable logic controller (Siemens® S7-1200). 

Various input sensors are incorporated for measuring process 

data such as conductivity, temperature, pressure, flow, 

voltage and current. The controller uses these input signals to 

determine when to operate output devices such as valves and 

pumps. 

As the interest of the authors is to demonstrate the use of the 

proposed solution in electrolysers, hydrogen temperature 

sensor, TT121 (see Figure. 2), has been chosen for this 

research because it is a critical variable in the hydrogen 

production process (Abiola et al., 2023). If the hydrogen 

temperature sensor TT121 gives wrong measurement due to 

drift fault, the cell membrane (interface where the separation 

between oxygen and hydrogen occurs) will be degraded, 

provoking loss of efficiency and unsafe operation. To address 

drift fault in the temperature sensor, authors proposed solution 

involves the fusion of signals related to temperature and 

electrolyser voltage efficiency. These two signals will be used 

as input to a fuzzy logic system whose output provides a 

means to characterise the health status of the temperature 

sensor in terms of the presence of drift fault. 

 

 
Figure 2: Layout of PEM electrolyser used in this research. 
 

The proposed solution can serve as a useful fault detection 

subsystem in control systems to detect drift faults.  

2.1. Development of the fault detection system.  

 To find the relation between efficiency and temperature, 

expression (1a) is considered (Bessarabov and Millet, 2018). 

This relates the heat dissipated and the electrical power 

consumed by the electrolytic cell. To scale up from single 

cell to multi-cell stack, it is possible to obtain (1b). 

 

𝜂𝑐𝑒𝑙𝑙 = 1 −
𝑄𝑐𝑒𝑙𝑙
𝑃𝑐𝑒𝑙𝑙

 (1a) 

𝜂𝑠𝑡𝑎𝑐𝑘 = 1 −
𝑄𝑠𝑡𝑎𝑐𝑘
𝑃𝑠𝑡𝑎𝑐𝑘

= 1 −
𝑁𝑐𝑒𝑙𝑙𝑄𝑐𝑒𝑙𝑙
𝑁𝑐𝑒𝑙𝑙𝑃𝑐𝑒𝑙𝑙

 (1b) 

Where: 

𝜂𝑐𝑒𝑙𝑙  is the cell efficiency 

𝑄𝑐𝑒𝑙𝑙  is the heat dissipated in the cell (W) 

𝑃𝑐𝑒𝑙𝑙  is the electrical power consumed by the cell (W) 

𝜂𝑠𝑡𝑎𝑐𝑘 is the stack efficiency 

𝑄𝑠𝑡𝑎𝑐𝑘 is the heat dissipated in the stack (W) 

𝑃𝑠𝑡𝑎𝑐𝑘 is the electrical power consumed by the stack (W) 

𝑁𝑐𝑒𝑙𝑙  is the number of cells in the stack 

From the physicochemical point of view, the heat 

dissipated in the stack, 𝑄𝑠𝑡𝑎𝑐𝑘, can be expressed in terms of 
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the heat due to the hydrogen, oxygen and water flows in the 

electrolytic reaction, (2). 

𝑄𝑠𝑡𝑎𝑐𝑘 = (𝑚̇H2𝑐H2 + 𝑚̇O2𝑐O2 + 𝑚̇H2O𝑐H2O)∆𝑇 (2) 

Where: 

𝑚̇H2  is the stack hydrogen mass flow (g/s) 

𝑐H2  is the specific heat capacity of hydrogen (14.30 J/g K) 

𝑚̇O2    is the stack oxygen mass flow (g/s) 

𝑐O2  is the specific heat capacity of oxygen (0.92 J/g K) 

𝑚̇H2O is the water mass flow (g/s) 

𝑐H2O   is the specific heat capacity of water (4.18 J/g K) 

∆𝑇 is the change in temperature from initial to new state (K) 

The hydrogen 𝑚̇H2 , oxygen 𝑚̇O2  and water 𝑚̇H2O mass 

flows can be obtained from (3).   

𝑚̇𝑖 = 𝑚𝑜𝑙̇ 𝑖𝑀𝑖 (3) 

Where: 

𝑖 is H2, O2 or H2O respectively 

𝑚𝑜𝑙̇ H2 is the stack hydrogen molar flow (mol/s)  

𝑀H2   is the hydrogen molar mass (2 g/mol) 

𝑚𝑜𝑙̇ O2  is the stack oxygen molar flow (mol/s); in electrolysis, 

molar relation between H2, and O2 is:  𝑚𝑜𝑙̇ 𝑂2 = 
𝑚𝑜𝑙̇ 𝐻2

2
⁄  

𝑀O2  is the oxygen molar mass (32 g/mol) 

𝑚𝑜𝑙̇ H2O is the water molar flow (mol/s) 

𝑀H2O is the water molar mass (18 g/mol) 

From (3), (2) can be written as (4). 

𝑄𝑠𝑡𝑎𝑐𝑘 = (𝑚𝑜𝑙̇ H2𝑀H2𝑐H2 +𝑚𝑜𝑙
̇
O2𝑀O2𝑐O2

+ 𝑚𝑜𝑙̇ H2O𝑀H2O𝑐H2O)∆𝑇 
(4) 

Regarding the molar flow, according to Faraday law, the 

hydrogen molar flow of an electrolytic stack powered by an 

electrical current 𝐼𝑠𝑡𝑎𝑐𝑘 , can be obtained from (5): 

𝑚𝑜𝑙̇ 𝐻2 = 
𝑁𝑐𝑒𝑙𝑙𝐼𝑠𝑡𝑎𝑐𝑘

2F
 (5) 

Where: 

𝐼𝑠𝑡𝑎𝑐𝑘   is the current consumed by the stack (A) 

F is the Faraday constant (96 485.33 As/mol) 

 

On the other hand, the electrical power consumed by the 

stack can be written as (6). 

𝑃𝑠𝑡𝑎𝑐𝑘 = 𝐼𝑠𝑡𝑎𝑐𝑘𝑉𝑠𝑡𝑎𝑐𝑘  (6) 

Where: 

𝑉𝑠𝑡𝑎𝑐𝑘  is the voltage required by the stack (V). 

Then, replacing (2), (4), (5) and (6) in (1b), it is possible to 

obtain (7) that relates temperature and stack efficiency: 

∆𝑇 =

(

  
 1 − 𝜂𝑠𝑡𝑎𝑐𝑘

(𝑀H2  𝑐𝐻2 +
1
2𝑀O2𝑐𝑂2)

2𝐹
+ 
 𝑚̇𝐻2𝑂𝑐𝐻2𝑂
𝑃𝑠𝑡𝑎𝑐𝑘

 )

  
 

 (7) 

Equation (7) shows that the greater the temperature 

change, the lower the efficiency. Then, when the temperature 

change is maximum, ∆𝑇𝑚𝑎𝑥, the stack operates at minimum 

efficiency,  𝜂𝑠𝑡𝑎𝑐𝑘,𝑚𝑖𝑛. Consequently, maximum efficiency, 

𝜂𝑠𝑡𝑎𝑐𝑘,𝑚𝑎𝑥, will correspond to minimum temperature change, 

∆𝑇𝑚𝑖𝑛 . Once it has been obtained the expression that relates 

temperature change and efficiency, we will consider 

developments from Bessarabov at al. (Bessarabov and Millet, 

2018) to obtain the expression that allows us to determine the 

efficiency (8a) for single-cell and (8b) for multi-cell stack. 

 

𝜂𝑐𝑒𝑙𝑙 =
𝑉𝑡ℎ
𝑉𝑐𝑒𝑙𝑙

 (8a) 

𝜂𝑠𝑡𝑎𝑐𝑘 =
𝑉𝑡ℎ𝑠𝑡𝑎𝑐𝑘
𝑉𝑠𝑡𝑎𝑐𝑘

= 
𝑁𝑐𝑒𝑙𝑙𝑉𝑡ℎ
𝑁𝑐𝑒𝑙𝑙𝑉𝑐𝑒𝑙𝑙

 (8b) 

 
Where: 

𝑉𝑡ℎ is the theoretical potential of the reversible redox reaction 

in the water decomposition (1.23 V) 

𝑉𝑐𝑒𝑙𝑙  is the experimental cell voltage (V) 

 

Then, expression (8b) allows us to calculate the stack 

efficiency at any operation point, and expression (7) computes 

the temperature change, taking into account the calculated 

value of the efficiency.  

2.2. The fuzzy variables.  

From the previous section, the two variables of interest 

(𝜂𝑠𝑡𝑎𝑐𝑘 and ∆𝑇) can be used to design the fuzzy logic system 

which is capable of detecting drift-type faults in hydrogen 

temperature sensor (TT121). To determine the universe of 

discourse of the fuzzy sets representing the input variables, the 

manufacturer’s data obtained from (Caparrós et al., 2021) are 

used, together with expressions (7) and (8b) to calculate 

maximum and minimum values of temperature change ∆𝑇 and 

efficiency 𝜂𝑠𝑡𝑎𝑐𝑘 , respectively, as shown Table 1.   

Expression (7) indicates that, when the temperature 

changes from an initial state, 𝑡𝑜, to a new state, t, this involves 

a change in efficiency, that now is 𝜂𝑠𝑡𝑎𝑐𝑘. 

To handle the variables in the fuzzy logic system, they are 

going to be normalised as show in equations (9) and (10). 

 

𝜂𝑠𝑡𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅ =
𝜂𝑠𝑡𝑎𝑐𝑘𝑡 − 𝜂𝑠𝑡𝑎𝑐𝑘,𝑚𝑖𝑛

𝜂𝑠𝑡𝑎𝑐𝑘,𝑚𝑎𝑥 − 𝜂𝑠𝑡𝑎𝑐𝑘,𝑚𝑖𝑛
 (9) 

 

Where 𝜂𝑠𝑡𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅  is the normalised stack efficiency. 
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Table 1: Numerical calculation of  𝜂𝑒 and ∆T 

Parameter Numerical data and calculations 

Electrolyser 
data from 

(Caparrós et 

al., 2021) 

Number of cells, 𝑁𝑐𝑒𝑙𝑙 = 6 

Minimum cell voltage 𝑉𝑐𝑒𝑙𝑙,𝑚𝑖𝑛 = 1.6 VDC (begin of 

life, BoL) 

Maximum cell voltage 𝑉𝑐𝑒𝑙𝑙,𝑚𝑎𝑥 = 2.4 VDC (end of 

life, EoL) 

Maximum H2 operating pressure = 40 bar 

Minimum stack current 𝐼𝑠𝑡𝑎𝑐𝑘,𝑚𝑖𝑛 = 100 A 

Maximum stack current 𝐼𝑠𝑡𝑎𝑐𝑘,𝑚𝑎𝑥 = 900 A 

Water flow rate 16.97 l/min (Caparrós et al., 2021); this 

corresponds to 𝑚̇𝐻2𝑂 = 0.2778 kg/s 

Stack 

efficiency,

𝜂𝑠𝑡𝑎𝑐𝑘 

𝜂𝑠𝑡𝑎𝑐𝑘,𝑚𝑖𝑛 =
𝑉𝑡ℎ

𝑉𝑐𝑒𝑙𝑙,𝑚𝑎𝑥
=
1.23 VDC

2.4 VDC
= 0.51 

 

𝜂𝑠𝑡𝑎𝑐𝑘,𝑚𝑎𝑥 =
𝑉𝑡ℎ

𝑉𝑐𝑒𝑙𝑙,𝑚𝑖𝑛
=
1.23 VDC

1.6 VDC
= 0.77 

Temperature 

change, ∆𝑇 

    

Room temperature 22.2 ºC 

∆𝑇𝑚𝑖𝑛 =

(

  
 1 − 𝜂𝑠𝑡𝑎𝑐𝑘,𝑚𝑎𝑥

(𝑀H2 𝑐𝐻2 +
1
2
𝑀O2𝑐𝑂2)

2𝐹
+ 
 𝑚̇𝐻2𝑂𝑐𝐻2𝑂
𝑃𝑠𝑡𝑎𝑐𝑘,𝑚𝑖𝑛

 
)

  
 

 

∆𝑇𝑚𝑎𝑥 =

(

  
 1− 𝜂𝑠𝑡𝑎𝑐𝑘,𝑚𝑖𝑛

(𝑀H2 𝑐𝐻2 +
1
2
𝑀O2𝑐𝑂2)

2𝐹
+ 
 𝑚̇𝐻2𝑂𝑐𝐻2𝑂
𝑃𝑠𝑡𝑎𝑐𝑘,𝑚𝑎𝑥

 
)

  
 

 

 

Solving the above equations yields the following: 

∆𝑇𝑚𝑖𝑛 = 0.19 
ºC 

∆𝑇𝑚𝑎𝑥 = 5.43 
ºC 

 

 

∆𝑇̅̅̅̅ =
∆𝑇𝑡 − ∆𝑇𝑚𝑖𝑛
∆𝑇𝑚𝑎𝑥 − ∆𝑇𝑚𝑖𝑛

 (10) 

Where:  
∆𝑇̅̅̅̅  is the normalised temperature change. 

∆𝑇𝑡 is the change in electrolyser temperature in t (oC). 

Also, considering the data from Table 1, Figure 3a shows 

efficiency dependency with changes in temperature, while a 

similar plot with normalised values is displayed in Figure 3b.  

This plot is then used along with (7) to define the various 

fuzzy variables shown in Table 2 and Figure 4. 

 

    
Figure 3: (a) Plot of efficiency (𝜼𝒔𝒕𝒂𝒄𝒌) with changes in temperature (Δ𝑇).  
(b) Normalised values of efficiency (𝜂𝑠𝑡𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅ ) and temperature change (Δ𝑇)̅̅ ̅̅ ̅. 

Table 2: Fuzzy variables 

Fuzzy Variables 
Linguistic 

Variable 

Gaussian 

Parameters 

[σ  ,  c] 

Input 1 

𝜂𝑠𝑡𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅ 

-Over (below range) [0.1 , -0.25] 

L (Low) [0.2 , 0] 

ML (Medium Low) [0.1, 0.25] 

M (Medium) [0.1 , 0.5] 

MH (Medium High) [0.1 , 0.75] 

H (High) [0.1 , 1] 

+Over (above range) [0.1 , +1.25] 

Input 2 

   ∆𝑇̅̅̅̅  

-Over (below range) [0.1 , -0.25] 

L (Low) [0.2 , -0] 

ML (Medium Low) [0.1, 0.25] 

M (Medium) [0.1 , 0.5] 

MH (Medium High) [0.1 , 0.75] 

H (High) [0.1 , 1] 

+Over (above range) [0.1 , +1.25] 

Output  

(Sensor health) 
 

Healthy [0.2 , 0] 

Warning [0.1 , 0.75] 

Faulty [0.2 , 1] 

 

According to Figure 3b, the range of values is expected to be 

within 0 to 1. Hence the fuzzy set is divided into sets at 

intervals of 0.25 with out-of-range sensor values defined as  

-0.25 and +1.25. This is shown in Table 2Figure 4 is built from 

two inputs which are the normalised efficiency, 𝜂𝑠𝑡𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅ , and 

normalised temperature change, ∆𝑇̅̅̅̅ , while the output is the 

hydrogen temperature TT121 sensor health condition. 

The x-axis in Figure 4b and 4c is enlarged from -0.25 to +1.25. 

The membership L for both inputs (𝜂𝑠𝑡𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅  and ∆𝑇̅̅̅̅ ) have the 

Gaussian parameter (σ = 0.2) which makes it wider compared 

to others with σ = 0.1.  Regarding the sensor health condition, 

the memberships are classified into three fuzzy sets namely: 

“healthy”, “warning” and “faulty”, Figure 4d. 

 

(a) 

 

          
(b) 

 

         
(c) 
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(d) 

 
Figure 4: (a) Conceptual scheme of the fuzzy logic system; (b) 𝜼𝒔𝒕𝒂𝒄𝒌̅̅ ̅̅ ̅̅ ̅̅  input membership 

plot; (c) ∆𝑇 input membership plot; (d) Hydrogen sensor (TT121) health condition 

output with membership plot. 

The healthy condition indicates that the sensor measurement 

is good (sensor at healthy condition), “warning” indicates 

that the measurement is going out of expected range and 

faulty indicates that sensor measurement has drifted. See 

Table 3 for a section of the fuzzy rules out of a total of 49. 
Table 3: A section of the fuzzy rules 

2.3. Model development. 

In the development of the proposed solution as shown in 

Figure 5, a model is developed in MATLAB Simulink®, 

version 2024. The fuzzy logic unit was developed using the 

fuzzy logic toolbox in MATLAB. The electrolyser cell 

voltage values, 𝑉𝑐𝑒𝑙𝑙 , are used to calculate the efficiency, 

𝜂stack𝑡 using equation (8) for each time step.  

 
Figure 5: Fault detection model in MATLAB Simulink® environment. 

 

In addition, changes in hydrogen temperature 

measurements from an initial state, 𝑡𝑜, to a new state t, are 

obtained corresponding to the same instance of the efficiency 

calculated. The stack efficiency values, and temperature 

measurements computed from (9) and (10) are fused together 

in the fuzzy logic system, to compute normalised 

efficiencies, 𝜂𝑠𝑡𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅ , and normalised temperature changes, 

∆𝑇̅̅̅̅ .  These data are then used for evaluation of the hydrogen 

sensor TT121 health. 

3. Result and discussion 

3.1. Testing of the proposed solution. 

An initial test for normal electrolyser operation (no 

failures) was performed and the signals from the fuzzy logic 

system were observed. In normal operation, normalised input 

information represented in terms of 𝜂𝑠𝑡𝑎𝑐𝑘, and operating 

temperature, represented in terms of  ∆𝑇̅̅̅̅  are plotted as shown 

in Figure 6. The time step is measured in minutes of which 

values from 0 to 500 are not plotted since this represent period 

of initialisation and purging of the electrolyser. The stack 

current is from 100A until 900A with a corresponding increase 

in voltage. Initial temperature is 22 oC and peaks around 28 
oC. Efficiency values at the beginning of electrolyser 

operation was 77%  (𝜂𝑠𝑡𝑎𝑐𝑘  ~ 1) and gradually decreases as 

temperature increases (Δ𝑇̅̅̅̅  > 0). Based on the developed fuzzy 

system, it is noted from Figure 6b that during the beginning of 

operation up to the time step, 1200 min, the signals generated 

by the fuzzy logic system are tending towards the warning 

zone. Figure 6a shows the normalised changes in temperature 

∆𝑇̅̅̅̅  is increasing at a faster rate compared to the drop in 

normalised efficiency 𝜂𝑠𝑡𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅  which is often experienced when 

the system is starting to operate. At time step t > 1200 min,  

𝜂𝑠𝑡𝑎𝑐𝑘 starts to decrease at a rate comparable with ∆𝑇̅̅̅̅ , meaning 

that the electrolyser temperature is ramping up. This 

performance matches with normal operation. The fuzzy 

system output advises that the sensor reading is healthy. In 

points t = 1400 min, t = 1700 min, t = 2000 min and t = 2150 

min, it is observed that the fuzzy logic system output notifies 

of a potential problem with the sensor health condition, Figure 

6b. 

 
(a) 

 

 
(b) 

Figure 6: a) Evolution of 𝜂𝑠𝑡𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅  and Δ𝑇̅̅̅̅  during normal 

operation. b) Response of the fuzzy system during normal 

operation.  

This is explained because at these points, the efficiency 

remains almost constant. If the efficiency doesn’t change, 

neither should the temperature; otherwise, this is an indicator 

of the sensor health is being harmed. 

In the second test, Figure 7a, drift fault signals, δ, with a half-

wave sine profile between t = [600 min, 800 min] and t = [1400 

min, 1600 min] are introduced into the hydrogen temperature 

measurement TT121. Failure signals cause (∆𝑇̅̅̅̅ + 𝛿1) to rise 

to 0.7 in the first case, and (∆𝑇̅̅̅̅ − 𝛿2)  drop to −0.5 in the 

second one. These deviations (drift-type faults) over the 

normal operation of the electrolyser plant, are detected early 

so that it can produces warnings and alarms for each case, as 

indicated in 7b. 

Rule Details 

rule1 If   𝜂𝑠𝑡𝑎𝑐𝑘  is -over and ∆𝑇̅̅̅̅  is -over then TT121 is Faulty 

rule2 If  𝜂𝑠𝑡𝑎𝑐𝑘  is L and ∆𝑇̅̅̅̅  is -over then TT121 is Faulty 

rule3 If  𝜂𝑠𝑡𝑎𝑐𝑘  is ML and ∆𝑇̅̅̅̅  is -over then TT121 is Faulty 

rule4 If  𝜂𝑠𝑡𝑎𝑐𝑘  is M and ∆𝑇̅̅̅̅  is -over then TT121 is Faulty 

rule5 If  𝜂𝑠𝑡𝑎𝑐𝑘  is MH and  ∆𝑇̅̅̅̅  is -over then TT121 is Faulty 

rule6 If  𝜂𝑠𝑡𝑎𝑐𝑘  is H and ∆𝑇̅̅̅̅  is -over then TT121 is Faulty 

rule7 If  𝜂𝑠𝑡𝑎𝑐𝑘  is +over and ∆𝑇̅̅̅̅  is -over then TT121 is Faulty 

rule8 If  𝜂𝑠𝑡𝑎𝑐𝑘  is -over and ∆𝑇̅̅̅̅  is L then TT121 is Faulty 

rule9 If  𝜂𝑠𝑡𝑎𝑐𝑘  is MH and ∆𝑇̅̅̅̅  is M then TT121 is in Warning 

rule10 If  𝜂𝑠𝑡𝑎𝑐𝑘  is M and ∆𝑇̅̅̅̅  is M then TT121 is Healthy 
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Once the faults disappear, as demonstrated at t = 800 min and 

t = 1580 min, the fuzzy logic system indicates that the 

temperature sensor reading has return to healthy operation.  

3.2. Fuzzy rules base validation.   

Finally, the fuzzy rules defined previously are also 

validated with experimental electrolyser data.  Figure 8 

shows that the numerical data obtained from the developed 

fuzzy system corresponds closely with the experimental data 

obtained from (Caparrós et al., 2021). The plots also confirm 

inverse relationship between changes in efficiency and 

temperature.  The figure shows that the rules defined for fault 

detection are within the ±0.25 accuracy, as indicated by the 

region marked OK. Any sensor signal measurement outside 

the normal zone will trigger a warning or fault. 

3.3. Comparison with conventional fault detection.   

Comparing the developed solution with conventional 

fault detection systems as shown in Table 4, the output signal 

from the fuzzy logic system is particularly useful to 

determine when the sensor accuracy begins to deviate, rather 

than the conventional system which indicates faults only 

when the sensor has failed in form of Boolean logic (1 or 0). 

 
Table 4: Comparison with conventional fault detection systems 

Parameter Authors´ Proposal 
Conventional Systems 

(Wang et al., 2017) 

Accuracy ±0.25 ±1 

Detection range  

of fault  

Continuous values 

 0 to 1 

Discrete values 

 0 and 1 

Response time 0.2 - 0.5 s 60 s 

 

Additionally, in authors’ proposal, response time is shortened 

by a factor of 120, and accuracy is four times better. 

 

4. Conclusion and future work 

This paper demonstrates the application of sensor data 

fusion to detect drift faults in temperature sensors used within 

control systems of hydrogen plant. The developed system 

does not depend on training data before it can be used to detect 

drift faults in sensors. Once the electrolyser plant starts 

operation, the proposed solution allows an immediate 

detection of abnormal sensor readings due to drift. Such 

information will help maintenance personnel to plan when to 

replace or re-calibrate the faulty sensor. This situation is better 

than conventional fault detection systems, which mainly 

detect faults when the sensor has failed. The solution 

developed can be used in other types of systems such as fuel 

cells.   

 
Figure 8: Plot of relation between normalised efficiency 𝜂𝑠𝑡𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅  and normalised 
temperature Δ𝑇̅̅̅̅ ; comparing the profile used to tune the fuzzy system and the 

profile obtained from experimental data. 
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Figure 7: a) Evolution of 𝜂𝑠𝑡𝑎𝑐𝑘 and Δ𝑇̅̅̅̅  during drift-type fault at two 

different samples. b) Response of the fuzzy output to the drift-type sensor 

faults. 


