
Interaction with a humanoid robot through a conversational interface using DeepSeek

Łukawski, B.∗, Victores, J. G., Balaguer, C., Jardón, A.

RoboticsLab, Department of Systems Engineering and Automation, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911, Leganés, Spain.

Resumen

Se presenta una aplicación para entablar conversaciones con un agente de chat ejecutándose sobre un robot humanoide dotado
con el equipo audio correspondiente (micrófono, altavoz). Se ha diseñado considerando dos limitaciones: todos los componentes
están respaldados por software libre y abierto, y los cálculos se deben ejecutan fuera de línea, bien localmente, o bien en un servidor
dedicado a bordo del propio robot. El intermediario y entorno de trabajo YARP conforma la base de una arquitectura distribuida
de módulos desarrollados en el marco de este trabajo: síntesis de voz (implementada con eSpeak y Piper), reconocimiento de voz
(usando Kaldi por medio de Vosk), detección de palabras de activación (mediante openWakeWord) e inferencia sobre modelos de
lenguaje extensos (con llama.cpp). La aplicación ha sido probada sobre el robot humanoide TEO usando una variante destilada del
modelo de lenguaje DeepSeek-R1. Los resultados muestran que es posible adoptar un agente conversacional sin acceso a red y de
baja latencia para tareas de interacción humano-robot.

Palabras clave: interacción humano-robot, conversación automatizada, modelo extenso de lenguaje, síntesis de voz,
reconocimiento de voz, computación en la frontera, robótica humanoide.

Abstract

This work presents an application that enables users to hold a conversation with a chat agent, aimed to be launched aboard a
humanoid robot equipped with audio sink and source hardware. It was designed to fulfill two constraints: all components are backed
up by free and open-source software, and all computations must be carried out offline, either locally or offloaded to a dedicated edge
server on the robot itself. The YARP robotics middleware and framework was leveraged to be at the foundation of a distributed
architecture of newly developed modules: text-to-speech (implemented with eSpeak and Piper), automatic speech recognition
(powered by Kaldi, wrapped by Vosk), wake word detection (via openWakeWord) and inference on large language models (with
llama.cpp). The application was tested on the humanoid robot TEO using a distilled variant of the DeepSeek-R1 language model.
Results show that a fully offline low-latency conversational agent can be adopted to achieve human-robot interaction tasks.

Keywords: human-robot interaction, chat completion, large language model, text-to-speech, automatic speech recognition, edge
computing, humanoid robotics.

1. Introduction

This work is motivated by the desire to acquire conversa-
tional capabilities on the robot TEO depicted in Figure 1. This
full-sized humanoid features 28 degrees of freedom on four
limbs, torso and head, force-torque and inertial sensors, color
and depth cameras, and a speaker and microphone. These com-
ponents are managed by three on-board computers to perform a
wide range of tasks and functionalities, including manipulation,
locomotion, vision, force feedback, etc. It is sought to explore
other ways of interacting with TEO through a fully offline con-
versation interface using the integrated audio hardware.

Figure 1: TEO humanoid robot (Pérez Martínez et al., 2010).
∗Corresponding author: blukawsk@ing.uc3m.es

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)



2. Background

In this study, it has been deemed interesting to focus on the
main components of the audio system, i.e. speech synthesis and
speech recognition, and analyze the application on human-robot
interaction (HRI) through different means, including speech.

Regarding speech synthesis, text-to-speech (TTS) is de-
vised as a means of automatically producing new sentences
from text, as opposed to simply reproducing it, e.g. from a
cassette, or concatenating isolated words or parts of sentences.
Therefore, TTS can be described as the “grapheme-to-phoneme
transcription of the sentences to utter”. Digital signal process-
ing (DSP) along with natural language processing (NLP) were
highlighted as successful tools prior to the wide adoption of
machine learning. Early implementations struggled to account
for variability, speaker and speaking style effects to derive nat-
ural sounding intonation (Dutoit, 1997). Over the years, fo-
cus was shifted from formant synthesis and articulatory syn-
thesis, although these techniques required less memory, to unit
selection synthesis, thus seeking generation of speech that re-
sembled a more natural voice. Hidden Markov models (HMM)
were deemed a more suitable tool to achieve that (Rashad et al.,
2010). With the advent of deep learning, however, naturalness
of speech has been greatly improved and the focus is shift-
ing towards the development of lightweight deep neural net-
work (DNN) architectures that enable automatic synthesis from
text (Khanam et al., 2022).

Automatic speech recognition (ASR), on the other hand, al-
lows computers to convert voice into written text. To achieve
high quality synthesis, traditional techniques include HMM and
mel-frequency cepstrum coefficients (MFCCs) (Radha and Vi-
mala, 2012). More recent approaches delve into the introduc-
tion of machine learning, yielding much better results in speech
recognition than in other areas that use this technique. While
MFCCs is still used for feature extraction, hybrid models mix-
ing DNN with HMM and Gaussian mixture models (GMM)
provide more accurate output. Recurrent neural networks
(RNN) such as long short term memory (LSTM) gained trac-
tion in new developments (Nassif et al., 2019). More recently,
large language models (LMM) helped centralize the cognitive
competencies of computers and robotic agents through multi-
modal conversation capabilities, acting as a central text-based
coordinating unit (Allgeuer et al., 2024).

Both areas have been merged to seek and study social inter-
action between humans and robots. A line of research involv-
ing the Robovie and Robovie-II humanoid robots investigated
the different ways of them for initiating an conversation and
getting the attention of human participants (Kanda et al., 2004;
Hayashi et al., 2008; Shi et al., 2015) Other studies stressed
on the ability of the robot for sensing people in its vicinity
and knowing their location, towards the interaction with mul-
tiple persons (Bennewitz et al., 2005). Existing systems such as
WikiTalk, a dialogue system, were integrated with the Nao hu-
manoid robot to extend the robot’s interaction capabilities along
with motor functions such as nodding, gesturing, face-tracking,
etc. (Csapo et al., 2012). Erica, a robot with a clearly human
resemblance, was provided with a dialogue engine that allowed
it to proactively produce coherent responses, accounting for fo-
cused words detected in the user’s utterance (Milhorat et al.,
2019).

3. Proposed Architecture

The implementation presented in this work relies on the
middleware and robotics framework YARP (Yet Another Robot
Platform) for leveraging communications and programming
tools focused on developing robotic applications (Metta et al.,
2006). Thanks to its modular approach, a distributed architec-
ture can be introduced in which individual blocks (“devices”)
implemented as dynamically loaded libraries (“plugins”) per-
form an individual task, e.g. data acquisition from a sensor,
PID control of a motor, kinematic computations as a service,
etc. A communications layer wraps each of these devices, thus
exposing their inputs and outputs over a local network of inter-
connected computers. Computationally intensive tasks, espe-
cially those involving the usage of neural networks, can be of-
floaded to stations with graphics processing units (GPU). Pre-
vious works showcase these tools, for instance, to teleoperate
a robotic manipulator arm using a range of low-cost peripher-
als (Łukawski et al., 2023). Although the core of YARP was
written in C++, bindings are provided for a variety of program-
ming languages, most notably Python.

The proposed architecture introduces a collection of YARP
devices written in C++ and orchestrated by a central Python
script serving the role of a chat application. Each device fulfills
a specific task in the setup outlined in Figure 2:

• Test-to-Speech (TTS): synthesizes audio from text.

• Automatic Speech Recognition (ASR): transcribes audio
to text.

• Large Language Model (LLM): generates a text response
from text input using a language model run on the GPU.

• Wake word: ASR module trained to detect a specific
short audio sentence.

• Player: reproduces audio frames using a speaker.

• Recorder: grabs audio frames from a microphone.

CHAT APP

PLAYER

RECORDER

TTS

ASR
LLM

WAKE
WORD

GPU

Figure 2: Proposed architecture. Solid lines indicate two-way communication
via remote procedure calls (RPC, involving request-acknowledge messages).
Dashed lines indicate one-way streaming communication.

Figure 3 describes the Application Programming Interface
(API) of the TTS, ASR (including wake word) and LLM mod-
ules using the Unified Modeling Language (UML). Thanks to
the language bindings, these methods can be called both from
C++ and Python code.



ISpeechSynthesizer

setLanguage(language: string="auto"): ReturnValue

getLanguage(language: string&): ReturnValue

setVoice(voice: string="auto"): ReturnValue

getVoice(voice: string&): ReturnValue

setSpeed(speed: double): ReturnValue

getSpeed(speed: double&): ReturnValue

setPitch(pitch: double): ReturnValue

getPitch(pitch: double&): ReturnValue

synthesize(text: string, sound: Sound&):
ReturnValue

+

+

+

+

+

+

+

+

+

(a) Text-to-speech (TTS).

ISpeechTranscription

setLanguage(language: string="auto"): ReturnValue

getLanguage(language: string&): ReturnValue

transcribe(sound: Sound, transcription: string&,
score: double&): ReturnValue

+

+

+

(b) Automatic Speech Recognition (ASR).

ILLM

setPrompt(prompt: std::string): ReturnValue

readPrompt(prompt: std::string&): ReturnValue

ask(question: std::string, answer: LLM_Message&):
ReturnValue

getConversation(conversation:
vector<LLM_Message>&): ReturnValue

deleteConversation(): ReturnValue

refreshConversation(): ReturnValue

+

+

+

+

+

+

(c) Large Language Model (LLM).

Figure 3: Unified Modeling Language (UML) diagrams of selected YARP C++ interfaces.

4. Software Components

To leverage the distributed and modularized plugin ap-
proach, YARP allows splitting the logic of the devices that per-
form the heavy-lifting of their designated task, and the com-
munications layer that exposes their API over the YARP net-
work. The latter is managed by a separate collection of device
pairs that implement the client-server approach, referred to as
network wrapper servers (NWS) and network wrapper clients
(NWC) in YARP jargon. Data flows through ports handled by
these special devices, while the programmer only needs to care
about their correct instantiation and connection.

The devices presented next belong to the former group. All
internal implementations rely on free and open-source libraries.

4.1. Audio-Related Hardware Devices
Already bundled with the YARP library, two devices are

devoted to communicating with the hardware: to reproduce
sounds using a speaker, and to record audio from a microphone;
see the Player and Recorder blocks in Figure 2, respectively.
The PortAudio library is at the backbone of their implementa-
tion. Another pair of devices is also available for playing audio
files stored on disk, and for recording audio to a file.

4.2. Speech Synthesizer
The TTS devices generate audio from the “robot” side of the

conversation during two phases: to signalize the user that their
prompt was heard and the robot is ready to accept the ques-
tion, and to announce the result of the LLM block. A first de-
vice was implemented using the eSpeak engine, which features
a phonemizer that helps reducing the size of voice models. At
the downside, the resulting speech is neither natural nor smooth.
To overcome this, an alternative device was developed using the
Piper library, whose models are trained with the ONNX infer-
ence engine based on human speech recordings. A fork was
derived from the original repository to wrap Piper’s API in a
convenient C++ library (Hansen, 2025).

4.3. Speech Transcription
As soon as the chat application reports readiness, the ASR

device starts transcribing the user’s voice into text to be fed
into the LLM module. It is implemented using the Vosk toolkit
powered by Kaldi (Povey et al., 2011).

4.4. Wake Word Module
This specialized ASR devices implements the openWake-

Word framework to perform inference through ONNX for de-
tecting short voice sentences. For the purpose of this work, the
“hey, TEO” phrase was trained from a sample synthesized by
Piper. The wake word module initiates the execution flow of
the main application, signaling to the following phases that the
user wants to start a conversation.

4.5. Large Language Model
The conversational agent (or chatbot) has been imple-

mented using the llama.cpp project by Georgi Gerganov, an
inference framework for various large language models. It is
optimized for on-device (i.e. at the edge) transformer model in-
ference, thus allowing to offload most of the computing power
to a dedicated edge server aboard the robot. In the proposed ap-
plication, this device accepts the result of the ASR voice detec-
tion module, and forwards the text response to the TTS device.

At the time of writing, the llama.cpp framework supports
a range of models, including variants of LLaMa (Llama), Mis-
tral, GPT and DeepSeek, among others. Distilled versions of
DeepSeek models with a reduced number of parameters have
been targeted in this work.

Figure 4 depicts an example conversation through this de-
vice carried out with the yarpllmgui graphical interface in-
stalled alongside YARP.

Figure 4: Chat completion GUI app.



5. Chat Completion App

The execution flow of the chat application is depicted in
Figure 5. The user and the “robot”, i.e. the application, are the
conversation actors. It is always initiated by the former, and
conveniently acknowledged by the latter during the dialogue.

"hey, TEO"

"I am ready"

question

answer

"hey, TEO"USER

ROBOT wake
word TTS ASR TTS

LLM

Figure 5: Execution flow of the proposed application.

The task is split in several phases detailed next:
1. A message is sent by the application to the Recorder

module to initiate audio recording from the microphone.
To avoid interference between TTS and ASR, another
message is sent concurrently to the Player module to dis-
able audio playback on the speaker.

2. The execution is blocked until the wake word device re-
ports that the user has articulated the target phrase (e.g.
“hey, TEO”).

3. Audio playback is enabled, audio recording is disabled.
4. The robot acknowledges the reception of the wake word

through the synthesizing of a pre-configured phrase (e.g.
“I am ready to listen”).

5. Audio playback is disabled, audio recording is enabled.
6. The ASR module performs transcribes the question asked

by the user and stores it as text.
7. Audio playback and recording are disabled.
8. The transcribed question is forwarded to the LLM mod-

ule and a text response is produced.
9. Audio playback is enabled, audio recording is disabled.

10. The text response is synthesized by TTS.

The algorithm is looped indefinitely until the user finalizes
the program. Its implementation has been tested and made pub-
licly available on the GitHub platform (RoboticsLab, 2025).

6. Results and Conclusions

The application has been tested using free models:

• TTS: medium quality “lessac“ American English model
phonemized with eSpeak and curated for Piper.

• ASR: lightweight American English model “vosk-
model-small-en-us-0.15” for Android and Raspberry Pi.

• LLM: DeepSeek-R1 distilled from Qwen with 1.5 billion
parameters, quantized using the bfloat16 floating-point
format for better compatibility with llama.cpp.

Exact model versions used in the experiments are listed in
the GitHub repository sources. It has been deemed convenient
to post-process the output of the LLM module since DeepSeek-
R1 includes a usually lengthy chunk of text before the actual
result, solely devoted to reasoning about the asked question.

While it is possible to hold a conversation, it has been con-
cluded that a dedicated edge server with high amounts of RAM
memory would allow to run heavier LLM models, thus greatly
increasing the quality of the chat.

Acknowledgments

The research leading to these results received funding from
“iRoboCity2030-CM” (TEC-2024/TEC-62) of Comunidad de Madrid, Di-
rección General de Investigación e Innovación Tecnológica, 5696/2024; “iRE-
HAB” (DTS22/00105) of Instituto de Salud Carlos III; and EU structural funds.

References

Allgeuer, P., Ali, H., Wermter, S., 2024. When robots get chatty: Grounding
multimodal human-robot conversation and collaboration. In: International
Conference on Artificial Neural Networks. Springer, pp. 306–321.

Bennewitz, M., Faber, F., Joho, D., Schreiber, M., Behnke, S., 2005. Mul-
timodal conversation between a humanoid robot and multiple persons. In:
Proc. of the Workshop on Modular Construction of Humanlike Intelligence
at the 20th National Conferences on Artificial Intelligence (AAAI). pp. 1–8.

Csapo, A., Gilmartin, E., Grizou, J., Han, J., Meena, R., Anastasiou, D., Joki-
nen, K., Wilcock, G., 2012. Multimodal conversational interaction with a
humanoid robot. In: 2012 IEEE 3rd Int. Conf. on Cognitive Infocommuni-
cations (CogInfoCom). pp. 667–672.
DOI: 10.1109/CogInfoCom.2012.6421935

Dutoit, T., 1997. High-quality text-to-speech synthesis: An overview. Journal
of Electricaland Electronics Engineering Australia 17 (1), 25–36.

Hansen, M., 2025. A fast, local neural text to speech system.
https://github.com/roboticslab-uc3m/piper.

Hayashi, K., Kanda, T., Miyashita, T., Ishiguro, H., Hagita, N., 2008. Robot
manzai: Robot conversation as a passive–social medium. Int. Journal of Hu-
manoid Robotics 5 (01), 67–86.
DOI: 10.1142/S0219843608001315

Kanda, T., Ishiguro, H., Imai, M., Ono, T., 2004. Development and evaluation
of interactive humanoid robots. Proc. of the IEEE 92 (11), 1839–1850.
DOI: 10.1109/JPROC.2004.835359

Khanam, F., Munmun, F. A., Ritu, N. A., Saha, A. K., Firoz, M., 2022. Text to
speech synthesis: A systematic review, deep learning based architecture and
future research direction. J. of Advances in Information Technology 13 (5).
DOI: 10.12720/jait.13.5.398-412

Łukawski, B., Victores, J. G., Balaguer, C., 2023. A generic controller for tele-
operation on robotic manipulators using low-cost devices. XLIV Jornadas
de Automática, 785–788.
DOI: 10.17979/spudc.9788497498609.785

Metta, G., Fitzpatrick, P., Natale, L., 2006. YARP: yet another robot platform.
International Journal of Advanced Robotic Systems 3 (1), 43–48.
DOI: 10.5772/5761

Milhorat, P., Lala, D., Inoue, K., Zhao, T., Ishida, M., Takanashi, K., Naka-
mura, S., Kawahara, T., 2019. A Conversational Dialogue Manager for the
Humanoid Robot ERICA. Springer Int. Publishing, Cham, pp. 119–131.
DOI: 10.1007/978-3-319-92108-2_14

Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., Shaalan, K., 2019. Speech recog-
nition using deep neural networks: A systematic review. IEEE access 7,
19143–19165.
DOI: 10.1109/ACCESS.2019.2896880

Pérez Martínez, C., Pierro, P., Martinez, S., Pabon, L., Arbulú, M., Bala-
guer, C., 2010. RH-2: an upgraded full-size humanoid platform. In: Mobile
Robotics: Solutions and Challenges. World Scientific, pp. 471–478.
DOI: 10.1142/9789814291279_0058

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N.,
Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stem-
mer, G., Vesely, K., Dec. 2011. The Kaldi Speech Recognition Toolkit. In:
IEEE 2011 Workshop on Automatic Speech Recognition and Understand-
ing. IEEE Signal Processing Society, iEEE Catalog No.: CFP11SRW-USB.

Radha, V., Vimala, C., 2012. A review on speech recognition challenges and ap-
proaches. World of Computer Science and Information Technology Journal
(WCSIT) 2 (1), 1–7.

Rashad, M., El-Bakry, H. M., Isma’il, I. R., Mastorakis, N., 2010. An overview
of text-to-speech synthesis techniques. Latest trends on communications and
information technology, 84–89.

RoboticsLab, 2025. Text To Speech (TTS) and Automatic Speech Recognition
(ASR). https://github.com/roboticslab-uc3m/speech.

Shi, C., Shiomi, M., Kanda, T., Ishiguro, H., Hagita, N., 2015. Measuring com-
munication participation to initiate conversation in human–robot interaction.
International Journal of Social Robotics 7, 889–910.


	Introduction
	Background
	Proposed Architecture
	Software Components
	Audio-Related Hardware Devices
	Speech Synthesizer
	Speech Transcription
	Wake Word Module
	Large Language Model

	Chat Completion App
	Results and Conclusions

