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aUniversity of Almeria, Department of Informatics, CIESOL, ceia3, Ctra. Sacramento s/n, 04120, Almerı́a, Spain. (fernando.ca, jcmoreno)@ual.es
bVision for Robotics Lab (V4RL), University of Cyprus, Kallipoleos 75, Nicosia 1678, Cyprus. border.rowan@ucy.ac.cy

cUniversity of Almeria, Department of Engineering, CIESOL, ceia3, Ctra. Sacramento s/n, 04120, Almerı́a, Spain. jlblanco@ual.es

Resumen

La agricultura intensiva bajo invernadero se ha convertido en uno de los pilares del crecimiento demográfico de la sociedad. Sin
embargo, a medida que pasan los años, el aumento de la superpoblación tanto en los humanos como en el mundo animal, requiere
que la agricultura existente deba ser más eficiente y sostenible. En esta búsqueda, la automatización en general, y la robótica en
particular, juegan un papel fundamental, ya que son herramientas para la resolución óptima de algunos problemas claves en este
campo, relacionados con el desarrollo de tareas tediosas, sucias y/o peligrosas, las tareas denominadas DDD (del inglés Dull, Dirty,
Dangerous). Este trabajo se centra en la aplicación de un algoritmo de Next Best View (NBV), en concreto SEE+, para la obtención
de un modelo 3D de nube de puntos haciendo uso de un brazo robot UR10 de Universal Robot. El trabajo describe como usar
una cámara que cuenta con tecnologı́a LiDAR para construir un modelo 3D de los frutos, que será usado posteriormente para la
recolección automatizada en el interior de invernaderos. Para ello, este algoritmo NBV clasifica la nube de puntos para determinar
la próxima mejor visión y obtener un rápido escaneo del fruto para su posterior recolección. Los resultados muestran como ha sido
posible detectar un tomate para el que, previamente y con técnicas tradicionales, era imposible conocer con certeza su ubicación.
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Agriculture Surface Edge Explorer (AgriSEE): Active reconstruction of occluded tomatoes in greenhouses

Abstract

Intensive greenhouse agriculture has become one of the pillars of society’s population growth. However, increasing overpop-
ulation in both the human and animal world requires existing agriculture to become more efficient and sustainable. Automation
in general, and robotics in particular, play a fundamental role in addressing these challenges, particularly for ‘dull’, ‘dirty’ and
‘dangerous’ tasks. This work focuses on applying a Next Best View (NBV) algorithm, SEE+, to obtain a 3D point cloud model
using a Universal Robot UR10 robot arm. The work describes how to use a camera with LiDAR technology to generate a 3D model
for fruits, which will later be used for the automated harvesting inside greenhouses. The NBV algorithm classifies the point cloud
to determine the next best view and can efficiently obtain a scan of the fruit for subsequent harvesting. The results show how it has
been possible to determine with precision the location of a tomato, something difficult to do using traditional techniques.
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1. Introduction

The global area of greenhouses now exceeds 490,000 ha,
with an estimated annual growth rate of 20% since 1980.
Around 20% of this area is located in the southeastern Iberian
Peninsula of Spain, where the total area dedicated to vegetable
crops exceeds 77,000 ha (Trenda, 2023). This sector has a

high social relevance in the greenhouse farming industry of
the peninsula, generating approximately 100,000 direct jobs
and around 25,000 indirect ones. Spanish greenhouses rep-
resent the Mediterranean-type greenhouse, which account for
92% of the global greenhouse area and typically features a low
or medium level of technological development (Moreno et al.,
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2024; Cañadas-Aránega et al., 2024a). However, this sector
faces competition from systems with highly advanced technolo-
gies in developed countries, such as the Netherlands, and low-
tech systems with significantly lower associated costs, as in
Morocco or Turkey. It is essential to improve productivity and
quality in order for Spanish greenhouses to remain competitive.
Moreover, the growing demand for food — both for humans
and animals — combined with the labour shortage in rural ar-
eas and the increasing interest in autonomous systems, partially
driven by the COVID-19 pandemic, further justifies the explo-
ration of such technologies (Moreno Úbeda et al., 2022).

Greenhouses exhibit a certain degree of structural organi-
zation but differ significantly from controlled environments in
industrial settings, such as automotive production lines. Highly
automated machinery is crucial for addressing this challenge to
ensure the development and advancement of greenhouse agri-
culture. One of the key considerations when deploying robots
in this context is the use of suitable sensors that must be capa-
ble of detecting obstacles and localizing the robot within green-
houses, which are highly dynamic environments with limited
communication (Bac et al., 2013; Ko et al., 2014; Aranega et al.,
2024; Blanco-Claraco et al., 2023). These systems can perform
various tasks beyond navigation, such as automated crop har-
vesting. Maximizing the efficiency of greenhouse surfaces is
a fundamental strategy to ensure optimal productivity and it is
essential to adapt the various task-specific algorithms to operate
effectively under this constraint.

The use of robots designed specifically for greenhouse en-
vironments has been researched since 1987. During the crop
season in these agricultural settings up to 80% of the total time
is spent on monitoring and fruit harvesting, which has been
one of the main tasks studied (Cañadas-Aránega et al., 2024b;
Sánchez-Molina et al., 2024). The most successful develop-
ments have employed robotic arms to perform automated har-
vesting tasks. These robots are typically equipped with RGB-D
cameras to detect shapes or depth levels in the scene and/or Li-
DAR sensors, which enable 3D scanning and mapping of the
environment (Rong et al., 2022).

Environmental mapping is crucial in harvesting tasks as it
determines the fruit’s 3D position. This positioning is used
by various algorithms that identify and label objects within the
greenhouse. In Rong et al. (2022), the YOLOv5 algorithm (Ge
et al., 2021) is used to detect a tomato cluster from a 2D image
and estimate the position of the fruit. In Zheng et al. (2024),
the YOLOv5 SE variant is employed to identify tomatoes using
RGB and depth images. In Liu et al. (2024), SLAM techniques
are used to determine the distance between fruits with measure-
ments from a 2D LiDAR. However, accurately determining the
number of fruits inside a greenhouse remains challenging as
some are occluded and can not be detected by these technolo-
gies. This motivates the development of algorithms that can
estimate such occlusions and ensure efficient fruit harvesting.

It is important to have a 3D model of the fruit as this allows
the robotic arm to plan and execute appropriate trajectories.
However, obtaining high-quality 3D observations is challeng-
ing regardless of the final application. A scene (i.e. a bounded

region of space) is observed by combining individual 3D mea-
surements of surfaces taken from different viewpoints. An ob-
servation is considered complete when sufficient measurement
coverage is obtained from all visible surfaces. The final sur-
face coverage depends on the sensor capabilities, scene struc-
ture and viewpoints from which the measurements are acquired
Border et al. (2018). Algorithmic view selection reduces hu-
man uncertainty by intelligently choosing the most informative
viewpoints. This challenge of planning a subsequent view that
provides the most significant improvement in a scene observa-
tion is known as the Next Best View (NBV) problem.

This work presents an approach for scanning different views
of a tomato cluster and reconstructing a 3D model from the re-
sulting point cloud, based on the NBV algorithm presented in
Border et al. (2018). The simulation setup in that work con-
sists of a fixed platform where the target objects are placed,
and an independent UR10 robotic arm equipped with an Intel
RealSense L515 camera mounted on the end-effector. The ob-
ject of study in the simulation experiments is a 3D model of
a tomato plant, representative of the typical crops cultivated in
Almerı́a’s greenhouses. The experimental results confirm that
SEE is capable of acquiring high-quality observations, provid-
ing a solid foundation for the future development of algorithms
aimed at detecting occluded fruits.

This paper is organized as follows. Section 2 provides an
overview of the project in which this study is framed and de-
tails of the simulation experiments. Section 3 presents the sim-
ulation results for the models derived from the experimental
setup. Finally, Section 4 outlines the main conclusions of this
research.

2. Materials and Methods

This section outlines the materials and methods used in the
development of this work.

2.1. Materials
This subsection describes the materials employed during

the execution of the project.

2.1.1. 3D Tomato Model
A 3D model of the tomato fruit cultivated in the experi-

mental greenhouse of Agroconnect was used for the simula-
tion. These facilities1 are located in La Cañada de San Ur-
bano, Almerı́a. The greenhouse is part of the Institute for Re-
search and Training in Agriculture, Fisheries, Food, and Or-
ganic Production of Andalusia (IFAPA), next to the University
of Almerı́a. It is a Mediterranean-type greenhouse, typical of
the region, with an area of 1,850 square meters, a robust steel
structure, and a polyethylene cover.

The accurate modeling of the greenhouse and its compo-
nents is essential for programming the various tasks to be per-
formed inside. The models required for the simulation were
generated based on real data from the greenhouse, as presented
in Cañadas-Aránega et al. (2024). This work aims to scan a
tomato plant to identify occluded tomatoes. Figure 1 shows a

1Funded by the Ministry of Science, Innovation and Universities in collaboration with the European Regional Development Fund (ERDF) through the 2019 call
for advanced scientific and technological equipment.



3D model of a tomato plant that meticulously reproduces all as-
pects of its structure, including the various shapes of its leaves
and stems.

a Frontal view b Rear isometric view

Figure 1: 3D model of the tomato plant

2.1.2. UR10 Robotic Arm
The UR10 robotic manipulator from Universal Robots was

used in the simulation. This 6 DoF robotic arm is designed for
industrial applications that require precision and repeatability.
The UR10 supports payloads up to 10 kg and has a maximum
reach of 1300 mm, making it suitable for inspection, 3D scan-
ning, and object manipulation. The robot was controlled us-
ing the UR Robot Operating System (ROS) interface within the
simulated environment, allowing complete control and moni-
toring of its movements (Figure 2).

Figure 2: UR10 with Intel RealSense L515 mounted on the end-
effector

2.1.3. Intel RealSense L515
An Intel RealSense L515 camera was employed to capture

depth data. This depth-sensing device is based on time-of-flight
(ToF) technology and is especially suitable for indoor environ-
ments. It offers high accuracy when measuring distances from
reflective and dark surfaces. The sensor provides a depth reso-
lution of up to 1280×720 pixels at 30 fps and an RGB resolution
of 1920×1080 pixels. The LiDAR technology integrated into

the camera was used for this experiment (Figure 3). The cam-
era was mounted on the end-effector of the robot arm, enabling
dynamic scanning of 3D scenes during motion. Data acquisi-
tion and synchronization with the UR10 were managed using
the Intel RealSense SDK 2.0 and ROS.

Figure 3: Intel RealSense L515

2.2. Methods

This subsection describes the methods employed during the
execution of the project.

2.2.1. Surface Edge Explorer (SEE)
SEE is a measurement-direct NBV approach that makes

viewpoint planning decisions directly from sensor measure-
ments to achieve a minimum required point density. It per-
forms surface scanning by classifying each point individually
based on the density of neighboring measurements (Figure 4).
Points located at the boundary between regions are classified as
frontier points. The algorithm proposes viewpoints to acquire
new measurements around these frontier points. Initial view-
points are selected based on the local surface geometry but can
be refined to proactively avoid known occlusions. Observation
efficiency is maximized by selecting views that cover the most
frontier points while minimizing motion. If a viewpoint fails, it
is reactively adjusted to avoid unknown occlusions or disconti-
nuities not taken into account in previous iterations. The obser-
vation process concludes once all frontier points are observed
or deemed unobservable (Border and Gammell, 2024).

Figure 4: Illustration of the orthogonal vectors used by SEE
to represent the local surface geometry. The normal vector, en
is perpendicular to the local plane (out of page), the frontier
vector, ef , points toward the partially observed region, and the
boundary vector, eb, lies along the boundary between fully and
partially observed regions (Border and Gammell, 2024).



The experiment evaluates the reconstructed model obtained
by applying SEE to scan a tomato plant. The tested approaches
were tuned to maximize surface coverage using the fewest
viewpoints and the shortest time. Proper scanning of a tomato
plant requires adapting SEE to the specific geometry of the
fruit. The proposed viewpoints for observing frontier points
on the tomato are based on the cylindrical shape of the surface
normals, so accurate model calibration before the experiment
is essential. Each LiDAR measurement is classified as core
(c), frontier ( f ), or outlier (o), using the algorithm from Bor-
der et al. (2018). For frontier points ( f ), their surface normal,
en, must point outwards from the surface to be considered valid
viewpoints, as shown in Figure 5. After multiple scans, SEE
stores the points and merges them using the Iterative Closest
Point (ICP) algorithm to reconstruct the final 3D object (Border
et al., 2024).

Figure 5: Illustration of how the correct normal direction is de-
termined. Normal vectors en and −en are evaluated for visi-
bility from the current viewpoint vc = (xc, ϕc). The correct
vector is the one not occluded by nearby surface measurements
(black dots). It is obtained by projecting occluding points onto
a sphere and searching along both projected directions, w+ and
w−, until free space is found (Border and Gammell, 2024).

2.2.2. ROS and RViz
The robotic system was developed using ROS Noetic, the

latest distribution compatible with Ubuntu 20.04 LTS and
aimed at x86 64 architectures. ROS Noetic provided the com-
munication infrastructure between nodes, enabling the integra-
tion of the UR10 robotic arm, the Intel RealSense L515 cam-
era, and the data processing modules within the simulation.
The project architecture relied on topics, services, and custom
messages to synchronize the robot’s kinematics with visual and
depth data.

RViz, the official visualization tool for ROS, was used to vi-
sualize the environment, the robot’s 3D model, and sensor data.
The URDF models of the UR10 and the point cloud streams
from the RealSense camera were loaded, allowing real-time
monitoring of the robotic arm’s movements and environment
scanning. Additionally, visual markers were used to represent
trajectories, key positions, and points of interest.

3. Results

Several experiments were conducted on the tomato plant
model developed in this study and here we present the one
that yielded the best results. The model was observed within
a robotic arm simulation environment. The setup consists of
a UR10 robotic arm with an RGB-D camera mounted on the

end-effector and a table on which the plant branch was placed
(Figure 6). The center of the table and the base of the UR10 are
separated by 0.75 m. The table offers a usable volume of 0.8 m;
therefore, smaller models were adjusted to fit within a bound-
ing box of 0.8 × 0.8 × 0.6 m. The maximum model height is
0.6 m to allow the end-effector to access top-down views of the
model.

Figure 6: Simulation environment

For this scanning process, the parameters defined in (Bor-
der and Gammell, 2024) are maintained, as they have given the
best results. These values are averaged over the total number of
independent experiments using the tomato plant model. In this
context, a total of 20 experiments were carried out, showing in
this paper the one with the best results. The simulated camera
is defined by its field of view in degrees, θx and θy, and its reso-
lution in pixels, ωx and ωy (Table 1). The sensor measurements
are obtained by projecting rays onto the triangulated surface of
the model and adding Gaussian noise (µ = 0 m, σ = 0.01 m)
to the ray intersections. This noise magnitude was selected to
represent the measurement noise associated with depth cameras
(e.g. Intel RealSense L515) (Border and Gammell, 2024).

Table 1: Intel RealSense L515 properties

Property RGB camera Units
θx 70 degrees
θy 43 degrees
ωx 848 pixels
ωy 480 pixels

Figure 7 shows the simulation environment in operation,
where the arm traces its path with a black line, shows the view
normals, displays the blue bounding cube, and classifies the
scanned points in green. SEE successfully scans a high per-
centage of the plant, including occluded surfaces. The result of
the scan is shown in Figure 8.



Figure 7: Working simulation environment

a Front view b Side view

c Isometric view d Top view

Figure 8: .PLY model with σ= 0.01 m

Observation performance is quantified in terms of the sur-

face coverage obtained, the travel distance required and the time
taken to capture a complete observation. This model achieved a
surface coverage of approximately 60% compared to the ground
truth, with a total travelled distance of 0.5 m and a scanning
time of 1 minute. As shown, the model includes information
about occluded tomatoes due to the multiple views obtained
by SEE, some examples are front view (Figure 8a), side view
(Figure 8b), isometric view (Figure 8c), and top view (Figure
8d). This information is crucial for planning efficient harvesting
tasks, as it enables the detection of hidden objects that would
otherwise be impossible to perceive using traditional 2D sensor-
based techniques.

In this link, you can observe the movements of the robot
arm with SEE in Rviz, from its initial position until the algo-
rithm finishes, resulting in the complete 3D model.

4. Conclusion

This work contributes to the advancement of agricultural
robotics by implementing an innovative NBV approach aimed
at obtaining more complete and accurate 3D models of tomato
clusters. The simulation experiments, employing a UR10
robotic arm and an Intel RealSense L515 camera, validate the
feasibility of capturing multiple perspectives of a 3D tomato
plant model to generating a dense and detailed point cloud. This
type of observation is essential for detecting occluded fruits,
which can not be perceived using conventional RGB imaging
or 2D sensing techniques.

The SEE algorithm has proven particularly effective in plan-
ning views that maximize surface coverage and reconstruction
quality, thereby reducing reliance on predefined camera posi-
tions or manual interventions. These richer 3D observations
pave the way for future research on automated trajectory plan-
ning for robotic arms during harvesting tasks, optimizing exe-
cution time and process accuracy.

In summary, these results lay the groundwork for develop-
ing autonomous robotic systems capable of operating efficiently
in complex agricultural environments. This work represents a
significant first step towards improved precision agriculture in
greenhouses, leveraging robust, adaptive, and intelligent tech-
nologies focused on fruit harvesting — a task that accounts for
approximately 80% of the time spent in crop production.
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