
 
 

 

 

 
 
 
 

 

 
 

 

____________________ 
 
*Autor para correspondencia: jmanrique@umh.es 
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) 
 

 

Automatic keypoint generation in learning-by-demonstration trajectories for a 

surgical robot 
 

Manrique-Córdoba, J. a, *, Poveda-Pérez, M. a, Martorell-Llobregat, C. b, Sabater-Navarro, J.M. a 
a Grupo de Robótica Médica. Instituto de Bioingeniería. Universidad Miguel Hernández de Elche, 03202. Elche, España. 

b Neurosurgery unit. Hospital General de Elche, 03202. Elche, España.; 
 

 

Resumen 

La robótica quirúrgica es una de las áreas más prometedoras de la robótica; sin embargo, la mayoría de los sistemas robóticos 
aplicados a la cirugía operan bajo un esquema de teleoperación directa. Para mejorar el rendimiento de estos sistemas, sería 
deseable aumentar el nivel de autonomía de los robots quirúrgicos. El objetivo principal de este artículo es desarrollar una 
metodología para la generación automática de trayectorias aprendidas mediante la demostración de procedimientos quirúrgicos. 
Se presenta el detalle de un algoritmo para obtener puntos clave en las trayectorias obtenidas de los cirujanos. Estos puntos clave 
contienen no solo información geométrica, sino también cinemática y el campo de fuerza ejercido por el cirujano. La codificación 
presentada permite la implementación de un esquema de aprendizaje de demostración basado en modelos ocultos de Markov, 
específico para operaciones quirúrgicas. La principal contribución de nuestra propuesta reside en el uso de puntos clave obtenidos 
de todas las demostraciones y la integración de la información de velocidad y fuerza con la información geométrica. Para ello, 
se presentan los resultados experimentales obtenidos en varias pruebas realizadas en un sistema especialmente diseñado para 
obtener las fuerzas y trayectorias realizadas por neurocirujanos en un procedimiento de fresado de hueso mastoideo. 

Palabras clave: robótica quirúrgica, aprendizaje por demostración. 

 

Abstract 

Surgical robotics is one of the most promising areas of robotics, however most robotic systems applied to surgery operate 
under a direct teleoperation scheme. In order to improve the performance of these systems, it would be desirable to increase the 
level of autonomy of surgical robots. The main objective of this paper is to develop a methodology for the automatic generation 
of trajectories learned by demonstrating surgical procedures. The detail of an algorithm for obtaining keypoints in the trajectories 
obtained from surgeons is presented. These keypoints contain not only geometric information, but also kinematics and the force 
field exerted by the surgeon. The coding presented allows the implementation of a demonstration learning scheme based on 
hidden Markov models particularized for surgical operations. The major contribution of our proposal approach is the use of 
keypoints obtained from all the demonstrations and the integration of speed and force information together with geometric 
information. For this, the experimental results obtained in several tests carried out in a setup specially designed to obtain the 
forces and trajectories carried out by neurosurgeons in a mastoid bone milling procedure are presented. 

Keywords: surgical robotics, learning by demonstration. 
 

1. Introduction 

Surgical robotics is one of the most successful areas of 
robotics, with broad acceptance, impressive economic returns, 
and highly active research and development communities. In 
2015, more than 650,000 procedures were performed 
worldwide (Sridhar, et al., 2017), since then there has been a 
25% annual growth in the number of procedures (Mayor et al., 

2022). In Europe, most robotic procedures are performed in the 
field of urology, while in the US, gynecology and general 
surgery led the sector (Sridhar, et al., 2017). Existing 
commercial surgical robots are mostly focused on orthopedic 
procedures, neurosurgical interventions, and minimally 
invasive surgical techniques. The rapid spread of this 
technology has been largely due to the perceived benefits of 
improved ergonomics, dexterity, safety, and ease of surgery. 



 

 

One of the main goals in robotic surgery has been on 
developing robotic platforms that can work together with the 
surgeon. Robotic systems have evolved according to the 
different tasks to be performed and the possible interfaces with 
the surgeon. Therefore, many studies have focused their efforts 
on automating certain actions in the surgical environment 
(Bauzano Nuñez, et al., 2015). This article addresses the idea 
of improving autonomous behavior in performing simple and 
repetitive tasks that a surgeon can execute during a surgical 
procedure, for which the robotic system must be indicated both 
the trajectory and the forces that it must follow with the goal 
of completing said task. 

The trajectories that are indicated to the robot can come 
from a planning carried out from preoperative images, or they 
can be supported by the information obtained from the 
performance of the same procedures by experienced surgeons. 
This information can be obtained through surgical navigation 
systems, which is extended to systems that allow 3D 
localization of the different actors involved in the surgical 
procedure. 

Usually, the information acquired from the trajectories can 
be very dense, obtained at a sampling frequency higher than 
the communication that can be established with the robot, 
which complicates making an identical replica of the sampled 
trajectory. There are different geometry and/or trajectory 
simplification algorithms, especially focused on cartographic 
generalization applications, among the best known are the 
Douglas-Peucker algorithm (Douglas & Peucker, 1973), the 
Visvalingam–Whyatt algorithm (Visvalingam & Whyatt, 
1993), the sleeve-fitting algorithm (Zhao & Saalfeld, 1997) 
and the Reumann–Witkam algorithm (Rangayyan, et al., 
2008), which are developed for two dimensions. 

Given that robotic surgery seeks cooperation between the 
robot and the surgeon, a robotic system that can be adapted to 
the limitations that this situation presents are collaborative 
robots, which are designed to share the workspace with 
humans, unlike conventional industrial robots. Collaborative 
robots tend to be much lighter in weight, with great mobility, 
and flexibility, allowing them to be programmed to perform a 
wide variety of tasks (Sherwani, et al., 2020). The 
collaborative robots developed by Universal Robots (UR) are 
commonly used in different activities in the industrial, 
medical, and educational fields, as well as a wide range of 
applications (Vivas & Sabater, 2021). In particular, these 
robots have an integrated teach pendant that allows their 
programming. This programming can be done by guidance, 
indicating the waypoints that make up the trajectories to be 
followed, or by establishing the coordinates of said points. 

 The work presented aims to obtain resampled trajectories 
with a significantly lower number of points, potentially 
defining parametric key points, so that those can be sent to a 
surgical robot that replicates the trajectories learned from the 
surgeon without compromising other parameters such as 
precision, velocity or interaction forces exerted. 

The work is organized as follows. Section II summarizes 
the equipment and the experimentation carried out, presenting 
the details of the implemented resampling algorithm and 
explaining the proposed codification. Section III shows the 
results obtained both with digitally generated virtual 
trajectories and with real trajectories executed by surgeons and 
captured by an optical surgical navigation system. A real 
trajectory for milling in a mastoid reaming procedure These 

results are briefly commented in section IV along with the 
conclusions and future work. 

 

 
Figure 1- Schematic workflow for learning by demonstration in surgical 
procedures. 

 

2. Methods 

An schematic flowchart representation of the complete 
process is shown in Fig 1. First, the trajectories of the surgeon's 
hands are tracked and coded to be learned. The capture of the 
demonstrated trajectories is carried out with an optical tracking 
system (Optitrack V120:TRIO) which captures the position of 
the infrared optical markers attached to tool. The read 
trajectories are encoded and the kinematic and force 
information is added. Data Acquisition. The processes and 
modules needed to obtain the correct interpretation of the 
maneuvers during a surgical protocol are shown. Contained in 
the green box are the modules that are used in the offline 
process for training, while in the yellow box the modules that 
participate in the online process for the recognition of 
maneuvers are shown. 

In this paper we focus on the process of extracting 
information and coding it to make it understandable to Hidden 
Markov models. Characteristic vectors (VCM) are constructed 
containing the relevant information of the trajectory (position 
and velocity) and forces at each instant of time. 

2.1. Data Acquisition 

Based on the markers’ locations with respect to a fixed 
reference frame, position and orientation (pose) of predefined 
rigid bodies are inferred over a set of discrete time instants. 
The measured trajectories from the perception phase are 
denoted by 
 

Γ! = #𝛾",!, 𝛾$,!, ⋯ , 𝛾%!,!'!&"
'

 m=1,...M. (1) 
 
where 𝑚 is used for indexing the demonstrations, 𝑀 refers to 
the total number of demonstrations, and 𝑁! denotes the 
number of measurements of the demonstration Γ!. 
 

Each position measurement is a D-dimensional, in this case 
a 6 D geometric vector containing position and orientation, and 
the position vector is denoted as: 

X(,! = #𝑥",!
(") , 𝑥",!

($) , ⋯ , 𝑥",!
(+)'   (2) 

 
for 𝑛 = 1, 2, . . . , 𝑁𝑚, 𝑚	 = 	1, 2, . . . , 𝑀. 
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The velocity values for each dimension of the recorded 
trajectories were calculated using an empirically chosen delay 
value of 𝑝 sampling periods, i.e 
 

𝜈(,!
(-) = #𝑥(./,!

(-) − 𝑥(0/,!
(-) ' #𝑡(./,! − 𝑡(0/,!'6  (3) 

 
for 𝑛	 = 	1, . . . , 𝑁𝑚 and 𝑑	 = 	1, . . . , 𝐷, where d denotes the 
dimensionality of the sequences and t denotes the time instants. 
Then, the vector of the velocities is denoted as: 
 

V(,! = #𝑣",!
(") , 𝑣",!

($) , ⋯ , 𝑣",!
(+)'    (4) 

 
The force is computed as the variation of force between 

two instants of time:  
 

𝑓(,! = #𝑓(./,! − 𝑓(0/,!' #𝑡(./,! − 𝑡(0/,!'6  (5) 
 
Being that each demonstration is coded as:  
 
𝛾(,! = #X(,!, V(,!, 𝑓(,!		'           (6) 

2.2.  Douglas-Peucker algorithm extended for 3 dimensional 
position information 

First, a modification is presented to adapt the classic 
Douglas-Peucker algorithm to a 3D space, containing only 
position information of surgical tools. 

In order to generate a parametric library of surgical 
trajectories of different simple maneuvers, a 3D trajectory 
subsampling method is required, allowing to reduce the order 
of the learned trajectory while defining key points that can be 
used as measurement parameters of the trajectory. In addition, 
a method to represent the obtained key points in the 3D space 
and the time associated with said points is required. 

As mentioned in the introduction, the Douglas-Peucker 
algorithm is an algorithm mainly used in 2D spaces for 
cartography applications. This work relies on the geometric 
principle of the algorithm to be applied in a 3D space. Thus, the 
Douglas-Peucker algorithm implemented starts from a matrix 
R and a tolerance ε; the matrix R, size 𝑛𝑥4, each row condenses 
the information of the n points of the trajectory, and each point 
stores in the information of its 𝑋, 𝑌, 𝑍 coordinates and the time 
t when that point must be reached. 

𝑅 = [𝑃", 𝑃$, … , 𝑃(] (7) 

𝑃( = [𝑋(, 𝑌(, 𝑍(, 𝑡(]1 (8) 

The algorithm verifies that 𝑛	 > 	2, if this inequality is not 
true R is returned as the optimized trajectory, otherwise the 
distance 𝑑 that exists between the points 𝑃" and 𝑃( is obtained: 

𝑑 = F(𝑍( − 𝑍")$ + (𝑌( − 𝑌")$ + (𝑋( − 𝑋")$ (9) 

Consecutively, it is intended to calculate the perpendicular 
distance from the line that joins the points 𝑃" and 𝑃( to the 
furthest point of the trajectory. With the distance 𝑑 an 
evaluation of the relative positions between the points is 
conducted, if 𝑑 is less than the minimum computable distance 
in the software in which the calculation is implemented (in 
Matlab: 𝑒𝑝𝑠	 = 	2.204𝑒0"2), then the distance to the furthest 

point will be calculated from point 𝑃". Thus, to find the furthest 
point in the trajectory, a loop is executed from 𝑃$  to 𝑃(0", 
storing the perpendicular distance between the line joining 𝑃" 
and 𝑃( to each point in the trajectory 𝑑𝑝(𝑘), for 𝑑 < 𝑒𝑝𝑠: 

𝑑𝑝(𝑘) = F(𝑍3 − 𝑍")$ + (𝑌3 − 𝑌")$ + (𝑋3 − 𝑋")$ (10) 

For 𝑑 > 𝑒𝑝𝑠: 

𝐴 = P

1 𝑋"
1 𝑋(

𝑌" 𝑍"
𝑌( 𝑍(

1 𝑋3
0 1

𝑌3 𝑍3
1 1

Q 
 

(11) 

𝑑𝑝(𝑘) = |det	(𝐴)| (12) 

The vector 𝑑𝑝 stores the distances to each of the points of 
the trajectory, the distance with the greatest value is selected 
from it, assuming that the furthest point is 𝑃3, the algorithm 
evaluates if the distance of this point is greater than the 
tolerance ε defined for this trajectory, if the distance is greater 
than the tolerance, a recursive call to the algorithm is made 
with two sub-trajectories, the first from 𝑃" to 𝑃3 and the second 
from 𝑃3 to 𝑃(, from which the reduced trajectory is built; on 
the other hand, if the maximum distance 𝑑𝑝 is less than the 
tolerance then the reduced path will become [𝑃", 𝑃(]. 

2.3.  Augmented resampling algorithm for 6D position, 
velocity and forces 

For the implementation of the augmented algorithm, the 
coding of (6) is used. The augmented trajectories approximate 
a linear model in state variables, in which the object will be 
considered to be moving at constant velocity, although subject 
to acceleration perturbations. Therefore, the linear system is a 
simple process that can be described with the equation of states 
(13) and the equation of outputs, where for each demonstration 
𝑚, the state vector considered 𝛾3.",! is composed of the 
position, the speed and the increase of force at each instant of 
time 𝑘, 𝑦3,! is the measure of the output and 𝑢 It is a known 
input to the system. The variable 𝑤, is the process noise, while 
𝑧, is the noise in the measure. 

𝛾3.",! = 𝐷"𝛾3,! +𝐷$𝑢3,! +𝑤3,!
𝑦3,! = 𝐷4𝛾3,! + 𝑧3,!

 (13) 

2.4.  Test protocol  

The platform designed for the measurement of forces has 
great versatility, since it can be adapted to different minimally 
invasive surgery procedures as can be seen in the different 
experiments presented in the article. The common set-up of all 
the experiments has been a force sensor that is placed under 
the support pieces of the surgical scenario for the different 
medical procedures, so that there is always the measurement 
of forces exerted on the surgical scenario. This sensor is from 
the OnRobot brand and provides precise measurements of 
force along the 6 dimensions; (3 forces, 3 torques), being able 
to relate this force with the one that would receive the 
surrounding tissue to the area of interest in a real surgical 
intervention. The OnRobot sensor is of the high-precision 
HEX-E/High model. 
 



 

 

It should be noted that this experimentation is very versatile 
since it allows with the same very basic set-up to measure the 
force exerted by the surgeon. Due to this design, different tests 
and simulations of minimally invasive surgery can be made, 
which, although it currently has many advantages for both 
patients and health personnel, must continue to improve to 
make it safer and more accurate. 
 

Figure 2 shows an image of the setup showing the placement 
of the force sensor. 

 

3. Results 

This section presents the results of the experimentation 
carried out. Initially, the digitally created trajectories are 
shown in comparison with their corresponding simplification 
and the trajectories executed by the robot; Later, the same 
comparison is shown with real trajectories. 

 
3.1 Digitally generated trajectories 
 
Figure 3-a shows the square trajectory digitally created, it is 

made up of 80 points and presents a smoothing in its corners, 
because it is intended to be executed at a constant speed. When 
simplifying, a tolerance of 1 cm has been indicated, thus the 
smoothing in the corners of the square is removed, generating 
a toolpath of 5 points. The average absolute error obtained 
between the digitally created trajectory and the simplification 
is 0.334 cm, while the average error between the simplified 
trajectory and the one carried out by the robot is only 0.123 
cm, thereby, in the comparison between the digital trajectory 
and that carried out by the robot, an average absolute error of 
0.3814 cm is obtained. 

a) 
 

b) 

c) d) 

Figure 3.- Digital trajectories resampled. 

3.2 Real basic trajectories 
 
Initially, a square trajectory of approximately 10 cm long is 

drawn (Figure 4), this is done on an elastic surface, so the 
trajectory shows noise as a result of both the Optitrack 
measurement and the pulse of the user who executes the 
trajectory, considering the same tolerance characteristics for 
simplification, a trajectory reduced to two points is obtained, 
which is intended to be executed with the robot. From the 
comparison between the trajectory traced by the user and the 
simplification, an average absolute error of 0.608 cm is 
obtained, while the comparison between the simplified path 
and the one executed by the robot results in an average error of 
0.261 cm. 

 
3.3 Real surgical trajectories 
 
This experiment simulates a manual mastoid milling 

intervention, which is necessary to access the tympanic cavity. 
In this type of operations it is crucial to measure the force in 
this type of experiments since when performed with a milling 
tool a force is being applied that is proportional to the 
mechanical energy transferred and the heat that is generated, 
therefore, it must be controlled so as not to perform an 
unwanted burn to the patient or destroy healthy surrounding 
tissue. 

 
The set-up consisted of the OnRobot sensor located under 

a platform that holds a 3D model of the mastoid. Through this 
platform, the forces are transmitted while milling to the sensor. 
The design of the experiment can be seen in Figure 2. 

 
The forces recorded by the sensor located on the platform 

that are presented in this article, are originated by the forces 
that are exerted in the MUT (Material Under Test). The force 
occurs in all three axes since it depends on the direction of 
execution of the maneuvers by the surgeons.  

 
Therefore, the force recorded by the F/T sensor is obtained 

by the sum of several components (equation (14)). These 
components are the force applied by the surgeon. Fhand, the 
offset of sensor reference values or bias Fb, the forces due to 
the action of gravity Fg, the characteristic noise of the sensor 
Fn, forces caused by inertia Fi, and finally, the forces due to the 
interaction with the external elements or contact forces 
between the surgical tool and the tissues Fcont. 
 

Fsensor= Fhand + Fb + Fg + Fn + Fi + Fcont        (14) 

The results obtained in this experiment consist of eight tests 
of 5 minutes each, since the neurosurgeons have taken 40 
minutes to perform the complete milling intervention. Due to 
this division of the data, it has been possible to observe how the 
force values decrease as the operation progresses since it goes 
from a more superficial area in which there is no tissue that can 
be easily damaged, to a more sensitive area in which there are 
already blood vessels and nerves. 

In figure 5, one of the graphs obtained with the force data 
on the sensor is presented. It is appreciated how there is a wide 
variability of movements because it is not a controlled 
movement, but as shown in figure 2 a three-dimensional 
milling is performed on the surface of the mastoid.  
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Figure 2. - Setup for recording interaction forces. 

 



 

 

 
The trajectory of the second interval with a length of 5-minute 
is plotted in 3D in Figure 6-a). The original trajectory is 6000 
sampling points. 

 
Figure 5. Forces read on the sensor F/T. 

In the surrounding figures the application of the proposed 
algorithm is observed for a tolerance of 0.001m (6-b) in which 
267 keypoints are obtained (VCi), for a tolerance of 0.0025m 
(6-c) in which 121 keypoints are obtained (VCi) and for a 
tolerance of 0.005m (6-d) in which 53 keypoints (VCi) are 
obtained. If it is considered that the diameter of the bur used 
was 0.003m, it can be concluded that the result 6-c allows a 
representation of the reliable trajectory, in which the forces 
exerted have been considered. 

 

 

 
 
 
 

 

 
 

 
  

 

 
 

 
  

 

 
 

 
 

 
 

Figure 4.  Real basic trajectories. 

 



 

 

 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 6. Mastoid milling trajectories. Second interval. Tolerance of 0.001m 
(6-b) in which 267 keypoints are obtained Tolerance of 0.0025m (6-c) in 

which 121 keypoints are obtained . Tolerance of 0.005m (6-d) in which 53 
keypoints are obtained 

 

4. Discussion and Conclusions 

The present work aims to provide an alternative for 
reducing the number of points in 3D trajectories based on 
demonstrations, simplifying a very dense amount of data with 
a simple, easily executable trajectory, where the least amount 
of information possible is lost. The Douglas-Peucker algorithm 
is implemented, with modifications so that it can be used in 3D 
spaces, and kinematic and force information is integrated prior 
to define the keypoints for learning stages.  

The results obtained show that the proposed simplification 
based on the Douglas-Peucker algorithm introduces an error 
directly related to the tolerance established in the 
simplification, thus, being able to vary the amount of data that 
represents the trajectory and therefore its error. On the other 
hand, the error obtained between the RDP simplification and 
the trajectory executed by the robot is lower, which is related 
to the noise of the data read from the robot and the precision it 
has when executing the movements. In this proposal, the 
execution time of each trajectory is taken into account, 
obtaining different results for the same route at different 
speeds.  

This proposal aims to open a path to the execution of simple 
or standardized parametric surgical trajectories, in scenarios 
that require an instrument to move from a point A to point B 
along an established path, regardless of the way in which the 
path is defined. As future work, the implementation of the 

HMM of figure 1 is proposed that allows learning by 
demonstration algorithms. Likewise, we suggest the possibility 
that the trajectory can be adaptive, considering that surgical 
environments may present movements of the elements present 
in the development of the trajectory, it is interesting to provide 
an alternative that constantly updates the information of the 
trajectory. 
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