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Abstract

The demand for robots capable of performing assistive tasks has increased due to the need to support people in various en-
vironments, such as healthcare and domestic settings. However, among all possible tasks, those involving the manipulation of
deformable objects—such as fabrics—pose a greater challenge. This work presents an implementation of robotic cloth manipula-
tion using the TIAGo++ robot and algebraic machine learning (AML) algorithms. These algorithms allow for the definition of rules
that are constructed from the model’s inputs and outputs during training. AML is applied as a regression problem to estimate the
optimal pick and release points of the folded cloth. Then, using an RGB-D camera, the 3D positions of these points are obtained,
and a manipulation routine is executed to unfold the cloth. The point estimation in the image has been evaluated by comparison
with a standard convolutional neural network. Finally, experiments were conducted on the complete folding task—comprising both
perception and manipulation—demonstrating the effectiveness of the proposed implementation.
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Aprendizaje máquina algebraico para desdoblado de prendas robótico

Resumen

La demanda de robots que realicen tareas de asistencia ha aumentado debido a la necesidad de ayudar a las personas en distintos
entornos, como el sanitario y el doméstico. Sin embargo, de todas las tareas posibles, aquellas que implican la manipulación de
objetos deformables, como los tejidos, representan un reto mayor. En este trabajo se presenta una implementación de manipulación
robótica de telas utilizando el robot TIAGo++ y algoritmos de aprendizaje automático algebraicos (AML, por sus siglas en inglés).
Estos algoritmos permiten la definición de reglas que se construyen a partir de las entradas y salidas del modelo durante el apren-
dizaje. De esta manera, AML se aplica a un problema de regresión para obtener los puntos óptimos de agarre y de soltado de la tela
doblada. A continuación, mediante una cámara RGB-D, se obtiene la posición en el espacio de estos puntos y se lleva a cabo una
rutina de manipulación para ejecutar el desdoblado de la tela. La estimación de los puntos en la imagen se ha evaluado mediante la
comparación con una red convolucional estándar. Finalmente, se han realizado experimentos de la tarea completa de doblado, que
incluye percepción y manipulación, mostrando la efectividad de la implementación.

Palabras clave: Percepción y sensorización, Sistemas robóticos autónomos, Manipuladores robóticos, Aprendizaje automático,
Manipulación de prendas.

1. Introduction

The demand for robots to perform assistance tasks has in-
creased due to the growing need to support people in various
environments. As a result, multiple assistive robotics appli-
cations have been developed in clinical, domestic, and other
operational settings, covering tasks such as object transporta-
tion (Naranjo-Campos et al., 2024b), cooking (Nilwong et al.,

2023), coffee-shop service (Naranjo-Campos et al., 2024a), and
ironing (Estevez et al., 2017b,a). However, among these tasks,
the manipulation of deformable objects, such as fabrics, poses
a greater challenge, particularly in processes such as folding
textiles.

The field of fabric manipulation presents various challenges
and has led to multiple approaches. A key aspect is the percep-
tion of the deformable object, which involves the parametriza-
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tion and categorization of garments to design adapted manipu-
lation routines (Yew et al., 2018).

Another critical component in fabric manipulation is the
grasping and manipulation process. This area of research em-
phasizes optimizing grasp strategies by adapting the robot’s
end-effector or gripper to the specific properties of the mate-
rial (Borràs et al., 2020; Lee et al., 2024). In parallel, precise
motion planning of the robotic arm is essential to execute ma-
nipulation tasks effectively. To enhance adaptability and ad-
dress the uncertainty arising from the malleable nature of fab-
rics, several planners incorporating object deformation models
have been proposed (Luque et al., 2024; Wang et al., 2024).
A widely adopted approach leverages machine learning tech-
niques for fabric manipulation, unfolding, and grasping (Chen
et al., 2023; Gu et al., 2024), often utilizing data derived from
human demonstrations (Jia et al., 2019; Fu et al., 2023; Zhu
et al., 2025).

Regarding fabric perception, machine learning algorithms
are commonly used for wrinkle detection, grasp point identifi-
cation, and task-specific goal determination. However, neural
network-based methods often minimize training error, which
in some cases leads to data memorization without achieving
proper generalization (Goodfellow et al., 2016). To address
this issue, regularization techniques and validation strategies
have been proposed. An innovative alternative is Algebraic Ma-
chine Learning (Martin-Maroto and de Polavieja, 2018), which
is based on an algebraic representation of the training data. This
approach has proven effective in supervised learning tasks such
as handwriting recognition, as well as in regression problems
with real-world data.

In this context, we propose implementing a fabric folding
task using perception and manipulation with the TIAGo++mo-
bile manipulator robot. The idea is to use Algebraic Machine
Learning (AML) algorithms to determine the optimal pick-and-
place points in 2D images of textiles, and to estimate their posi-
tions in space using the robot’s RGB-D camera. Subsequently, a
manipulation routine has been designed that incorporates force
control to perform the unfolding motion.

2. Materials

In this section, we present the materials used in the im-
plementation of the folding system. First, we describe the
TIAGo++ robot, followed by an overview of the AML algo-
rithm used for perception, as well as a convolutional neural net-
work employed as a baseline.

2.1. TIAGo++
The robot used to perform the task is the TIAGo++ bi-

manipulator mobile platform from PAL Robotics1, shown in
Figure 1. It features a modular design that allows adapta-
tion to the specific requirements of the research task. In its
default configuration, it consists of a sensorized mobile base
for autonomous navigation, a prismatic torso, two 7-degree-of-
freedom arms, two grippers as end-effectors, force sensors on

the end-effectors, and an RGB-D camera mounted on a pan-
and-tilt system.

On the other hand, the complete kinematic chain is avail-
able in URDF format, which enables the computation of both
forward and inverse kinematics, and thus the achievement of
desired end-effector poses when feasible. This is accomplished
using the PyKDL2 library, a tool designed for efficient kinemat-
ics calculations.

Figure 1: Mobile bi-manipulator robot TIAGo++ in its set up for the folding
task.

2.2. Algorithms for perception
To implement the perception of pick and place points on

the fabric image, two supervised learning algorithms have been
tested: a Convolutional Neural Network (CNN) as a baseline,
and the AML algorithm.

2.2.1. Convolutional Neural Network
The Convolutional Neural Network (CNN) architecture has

been used as a reference, as it is a well-established technique
that allows for performance evaluation.

The structure of the selected CNN, shown in Figure 2 and
available as open source3, has been applied to similar tasks,
thus providing a reliable baseline. It was implemented in Keras
and trained using the Adam optimizer, minimizing the mean
squared error (MSE) loss function.

Figure 2: Architecture of the convolutional neural network used as a baseline.

1See https://blog.pal-robotics.com/tiago-bi-manual-robot-research/, accessed on March 19, 2025.
2See https://docs.ros.org/en/diamondback/api/kdl/html/python/, accessed on March 19, 2025.
3See https://github.com/roboticslab-uc3m/alma-dnn, accessed on May 5, 2025.
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2.2.2. Algebraic Machine Learning
Algebraic Machine Learning (AML) (Martin-Maroto and

de Polavieja, 2018) is a novel approach that hybridizes deter-
minism and probabilism. It enables the explicit embedding of
rules (deterministic) while simultaneously incorporating multi-
ple data inputs (probabilistic). Furthermore, AML allows un-
certainties to be explicitly represented within specific appli-
cations; however, this still relies on expert human knowledge
(Fox and Victores, 2024). The core AML algorithms check that
the human-defined constraints are maintained in the subsequent
relationships between inputs and outputs that are learned dur-
ing training (Martin-Maroto and de Polavieja, 2018). Human-
defined rules are enacted through explicit instances of the “<”
inclusion relationship operator, which is the same operator used
to aggregate large quantities of data to the model and can be
used at any time. The basic building blocks are AML “con-
stants”. They are called constants because they are always
present in an AML model, i.e., they are present in the model
constantly. Constants can be expressed in natural language so
they can be understandable for model users. At the same time,
constants are the primitives used by the algebra and can be com-
bined within the model via the “⊙” merge operator to be sets
of constants called “atoms”. Training algorithms lead to the
“freest model” of an algebra, which accurately describes the
system through the minimum set of rules (through the reduc-
tion of “cardinality”). This is achieved by the trace-invariant
“crossing” of atoms derived from the original constants. The
“full crossing” training algorithm involves internally checking
all the combinations of atoms of a training batch to establish an
algebra, while the “sparse crossing” algorithm includes heuris-
tics for the efficiency of these operations without the loss of
generality.

The implementation code is provided in an open-source
repository4, that contains the applied algorithm.

3. Methodology

Two different environments have been developed for this
task, both implemented as Gymnasium5 (formerly OpenAI
Gym) environments. Gymnasium provides a lightweight ab-
straction layer that cleanly decouples environments from per-
ception algorithms in the code. This makes it possible to switch
between environments when testing an algorithm, or to test dif-
ferent algorithms on the same environment. To improve code
and algorithm reusability, all environments have been designed
to share common observation and action spaces. They have
been released and open-sourced under a common repository6.

The following sections detail the perception process and de-
scribe both environments.

3.1. Perception of pick and place points
The input to the CNN or the AML consists of a 100x100

image, while the output consists of four values representing the
coordinates of the pick and place pixels. Each input image is

a three-channel representation of a rectangular sheet of cloth,
which can vary in size, proportions, angular orientation, and
may be folded along arbitrary lines.

For the input image, we leverage from previous develop-
ments (Estevez et al., 2020), which provide an image that has
been transformed from a depth point cloud in color in camera
coordinates to a very simplified flat matrix, the rectified depth-
map.

Figure 3 illustrates the part of the pipeline of transition from
full depth point cloud to the flat segmented garment, where
height clusters are obtained via the watershed algorithm7.

Figure 3: Transformation from full depth point cloud to the segmented garment
(background removal) laying flat with obtained height clusters.

The garment surface is provided as a flat discrete image,
where each pixel corresponds to a discrete value that marks to
which layer (merged similar height clusters) it belongs (low-
est is without garment, first height involves one layer of cloth,
second height involves two layers of cloth e.g. due to a fold).

On the other hand, for the use of the AML algorithm, im-
ages were encoded using three “constants” for each of the
10,000 pixels. Each of the four output fields was modeled as
the idempotent summation of a constant in an ascending chain
and another constant in a descending chain.

According to this embedding method for real numbers, a
value x is represented as:

gx ⊙ lx,

where lx is a constant in an ascending chain (i.e., lx ≤ lx+1) and
gx is a constant in a descending chain (i.e., gx+1 ≤ gx). Since
there are 4 output fields, 8 chains are required.

Training was conducted in a supervised manner, and an al-
gebraic model M was derived. The output for an image term I

4https://github.com/roboticslab-uc3m/alma-aml, accessed on May 5, 2025.
5https://github.com/Farama-Foundation/Gymnasium, accessed on March 19, 2025.
6https://github.com/roboticslab-uc3m/gymnasium-alma, accessed on May 5, 2025.
7https://scikit-image.org/docs/0.24.x/auto_examples/segmentation/plot_watershed.html, accessed on March 19, 2025.
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was computed as follows; for each of the four fields, we calcu-
lated:

x = argmini|disM(gi ⊙ li, I)|.

3.2. Folding 2D

The environment named FakeFolding-v0, provides test-
ing against a ground truth labeled pairs dataset (Victores and
Jardon Huete, 2025). Upon use, it loads a random image from
the test dataset, as well as its corresponding ground truth. The
environment evaluates the accuracy of estimated pick-and-place
points with the perception algorithms over images from the
labeled dataset. Observations are 100×100 grayscale images
(0–255); actions are four coordinates. The reward is the squared
error vs. ground truth.

3.3. Folding with TIAGo++

The TiagoFolding-v0 builds upon FakeFolding-v0,
implementing a cloth folding task using the TIAGo++ robot.
It can operate both to the simulation environment (see Figure
4) and with the real robot (see previous Figure 1).

Figure 4: Screenshot of TiagoFolding-v0 connected to TIAGo++ robot sim-
ulator.

In the setup, MuJoCo8 is used to simulate the TIAGo++
robot9, which interacts with a deformable cloth object. How-
ever, in both the simulation and real robot implementations,
movements are executed via joint position commands commu-
nicated through ROS.

The observation space is defined as a Box of 100x100 rep-
resenting grayscale pixel values in the range 0-255. The ac-
tion space is also a box containing four values corresponding
to the pick-and-place coordinates. Then, it initializes by taking
a grayscale image of the cloth object using the camera of the
TIAGo++ rectified and adapted as described at the beginning
of this Section.

The step function receives the pick-and-place points de-
tected from the image using the presented solvers algorithms
and initiates the folding procedure. The first step involves deter-
mining the 3D positions of these points using depth information
from the RGB-D camera and its intrinsic/extrinsic parameters
and robot kinematics.

After transforming the image coordinates into 3D space,
four key poses—pre-pick, pick, pre-place, and place—are com-
puted using inverse kinematics. To achieve this, PyKDL, along
with the TIAGo++ robot’s kinematic model, enables the spec-
ification of end-effector poses. The positions of the pick and
place poses correspond to the previously computed points,
while the pre-pick and pre-place positions are set 0.15m above
them. Then, the orientation for these poses are defined as fol-
lows:

• Roll: Set to π to ensure the gripper aperture remains hor-
izontal.

• Pitch: Set to π/2 so that the fingertips make contact with
the fabric.

• Yaw: Adjusted to align perpendicularly with the line con-
necting the pick and place points, ensuring the fabric cor-
ner is covered, as it is shown in the Figure 5.

Yaw
angle World

Frame

X

Y Z

Figure 5: Yaw angle estimation for orientation in folding poses.

Since achieving the exact desired position and orientation
may not always be feasible, a relaxation mechanism is applied.
A tolerance of ±10 degrees is considered for pitch and yaw an-
gles. If the mentioned orientation is not feasible, inverse kine-
matics is computed for alternative angles within this range until
four valid poses are found or the maximum number of attempts
is reached.

Once the valid poses are determined, the robot proceeds
with the pick-and-place operation, as illustrated in the motion
sequence in Figure 6, following these steps:

1. Moves to the pre-pick pose using the joint values ob-
tained from inverse kinematics.

2. Executes a cartesian descent along the vertical axis until
a variation in the vertical axis force is detected, indicating
contact with the fabric.

3. Closes the gripper to grasp the fabric corner.
4. Returns to the pre-pick pose and transitions to the pre-

place pose.

8See https://mujoco.readthedocs.io/en/stable/overview.html, accessed on March 19, 2025.
9See https://github.com/pal-robotics-forks/mujoco_menagerie/tree/140ae8d30b430d9d8d8f0c42e031b93b59cb2968/pal_tiago_dual,

accessed on March 19, 2025.

https://mujoco.readthedocs.io/en/stable/overview.html
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5. Performs another Cartesian descent until again a varia-
tion in the vertical axis force is detected, which means a
contact with the placement surface.

6. Opens the gripper to release the fabric.
7. Returns to the pre-place pose and then to its initial con-

figuration, completing the folding task.

1

2
3

45

6
7

Figure 6: Pick-and-place routine: (1) move to pre-pick, (2) descend, (3) grasp,
(4) move to pre-place, (5) descend, (6) release, (7) return to initial pose..

This structured approach ensure precise execution of the
folding procedure while maintaining adaptability to variations
in the workspace (handled by a proper workspace calibration).

Finally, the reward is computed based on the error measure-
ment using the concept of Rectangularity (feature-based learn-
ing as performed in Victores (2014)), calculated as the ratio
between the area of the contour and the area of the minimum
bounding box.

4. Results

This section presents the experiments conducted, which
are divided into two categories. First, by the use of the
FakeFolding-v0 environment, the AML and CNN algorithms
are evaluated on a dataset of images with known ground truth,
and their performance is assessed by measuring the prediction
error. Second, the complete folding task is executed using the
AML algorithm and the TiagoFolding-v0 environment, eval-
uating rectangularity reward outcome.

4.1. AML and CNN evaluation

The experiments in this environment involved testing vari-
ous images from a dataset with known ground truth. Pick and
place pixel points were obtained using both the CNN and AML
solvers, and the error was evaluated by comparing the solver
outputs to the ground truth. This error was computed over 10
runs, and the resulting mean and standard deviation are pre-
sented in Table 1. The “misses” value given for the AML results
can be interpreted as an uncertainty metric of the output.

Table 1: Comparison of errors between Ground Truth and solver results over
10 runs using dataset images. Mean and standard deviation (std) of the errors
are calculated.

Error Type DNN AML
Pick X Error 3.1 ± 1.3 2.3 ± 1.4 (misses 1.2 ± 0.7)
Pick Y Error 1.7 ± 0.8 4.1 ± 1.9 (misses 0.9 ± 0.5)
Place X Error 2.2 ± 1.2 5.2 ± 2.0 (misses 1.5 ± 0.9)
Place Y Error 0.3 ± 0.9 8.2 ± 2.1 (misses 2.4 ± 1.1)s

4.2. Folding task performance
Experiments on folding with TIAGo++ were conducted

with the real robot, with pick-and-place pixel points estimated
using the AML algorithm. The manipulation process is illus-
trated in Figure 7, where the resulting Rectangularity value over
10 runs was 97 ± 2%.

Figure 7: Sequence of manipulation process.

5. Conclusions

In summary, this work presents a functional minimum vi-
able demonstration of cloth folding using the TIAGo++ bi-
manipulator robot. A novel Algebraic Machine Learning al-
gorithm has been integrated and applied to a regression task to
estimate pick and place points, which are then used in a robotic
manipulation routine. Both the perception algorithm and the
complete folding task (perception and manipulation) have been
evaluated through a series of experiments, showing positive re-
sults.
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