
 
 

  
 

 

 
XX Simposio CEA de Control Inteligente 

 

25-27 de junio de 2025, Huelva 

 

____________________ 
 
*Autor para correspondencia: ajcalde@unex.es 
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) 
 

AI-supported supervision and management of PEM electrolyzers for green hydrogen 
production 

 
Calderón, A.J.a, *, Calderón, D.a, Calderón, M.a, González, I.a 

a Departamento de Ingeniería Eléctrica, Electrónica y Automática, Escuela de Ingenierías Industriales, Universidad de Extremadura. 
Avenida de Elvas s/n, 06006 Badajoz, España. 

 
 

 
 

Resumen 

La producción de hidrógeno verde, impulsada por fuentes de energía renovable, es fundamental para la transición hacia un 
futuro energético sostenible. No obstante, la eficiencia y seguridad de las instalaciones de generación de hidrógeno verde 
dependen críticamente de sistemas de supervisión y monitorización avanzados. Este artículo explora el potencial transformador 
de la IA generativa en el diseño y optimización de estos sistemas. Se analizan las capacidades de la IA generativa para crear 
modelos predictivos, detectar anomalías, optimizar el rendimiento y mejorar la seguridad en la producción de hidrógeno verde, 
abordando desafíos clave y delineando futuras líneas de investigación. 

Palabras clave: Inteligencia Artificial, Supervisión, Gestión, Optimización, Hidrógeno, Electrolizador. 
 

AI-supported supervision and management of PEM electrolyzers for green hydrogen production 

Abstract 

Green hydrogen production, powered by renewable energy sources, is fundamental to the transition to a sustainable energy 
future. However, the efficiency and safety of green hydrogen generation facilities depend critically on advanced monitoring and 
supervision systems. This article explores the transformative potential of generative AI in the design and optimization of these 
systems. The paper analyzes generative AI's capabilities to create predictive models, detect faults, optimize performance, and 
improve safety in green hydrogen production, addressing key challenges and outlining future research directions. 

Keywords: Artificial Intelligence, Supervision, Management, Optimization Hydrogen, Electrolyzer. 
 

1. Introduction 

The imminent need for energy solutions that limit the 
carbon footprint has positioned hydrogen as a promising 
alternative to fossil fuels. However, currently, much of 
hydrogen production is derived from fossil fuels, limiting its 
potential as an energy carrier. 

Hydrogen is not a primary energy source but rather an 
energy carrier, that is, a product that requires an energy input 
to be obtained and that has the ability to store energy for 
subsequent, gradual release when required. 

Depending on the raw material required and the CO2 
emissions generated to obtain it, hydrogen is generally 
classified into the following colors: 

• Green hydrogen or renewable hydrogen: hydrogen 
generated from renewable electricity, using water as 

a raw material, through an electrolysis process. 
Likewise, hydrogen obtained through biogas 
reforming or biochemical conversion of biomass, 
provided that established sustainability requirements 
are met will be renewable. 

• Gray hydrogen: Hydrogen produced from natural gas 
or other light hydrocarbons such as methane or 
liquefied petroleum gases through reforming 
processes. 

• Blue hydrogen: hydrogen obtained in a similar way to 
grey hydrogen, but to which carbon capture, use and 
storage techniques are applied (CCUS: Carbon 
Capture, Utilization and Storage), which allows 
reducing up to 95% of CO2 emissions generated 
during the process. 

In particular, green hydrogen produced through the 
electrolysis of water generated by renewable energy, is the key 
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to the energy transition. This one is crucial for decarbonization, 
acting as a clean and flexible energy carrier (IEA, 2019). Its 
production from renewable sources is essential for a 
sustainable energy future. Efficiency, cost, safety, and 
scalability are key challenges in green hydrogen production 
(IRENA, 2020). 

Among the various electrolysis technologies, Proton 
Exchange Membrane (PEM) electrolysis stands out for its high 
efficiency, high current density, and ability to operate 
dynamically, effectively integrating with intermittent 
renewable energy sources such as solar and wind (Ursua et al., 
2012). Its rapid response has made it the most widely used 
technology in combination with renewable energy (Gong et 
al., 2023), (Folgado et al., 2024b). PEM electrolyzers offer a 
sustainable method of hydrogen production, using electricity 
to split water into H₂ and oxygen. 

However, optimizing the performance and durability of 
PEM electrolyzers presents significant challenges. The 
complexity of the electrochemical process, the gradual 
degradation of components over time, and the sensitivity to 
operating conditions (temperature, pressure, humidity) require 
advanced management strategies. Robust supervision and 
monitoring systems are necessary to ensure the efficient, safe, 
and reliable operation of this equipment (Folgado et al., 2023). 
These systems have evolved with advances in automation, 
computing, communications, and control (Folgado et al., 
2024a). The latest generation derives from the confluence of 
Supervisory Control and Data Acquisition (SCADA) systems 
and the Industrial Internet of Things (IIoT) (Folgado et al., 
2024a). 

On the other hand, one of the most disruptive and 
promising technologies currently available is Artificial 
Intelligence (AI), which is making significant inroads into 
many sectors, most notably the energy sector (Verma et al., 
2024). AI is also impacting supervision and monitoring 
systems, providing advanced resources and functionalities. 
Therefore, AI is positioned as a powerful tool to address the 
challenges related to electrolyzer management. 

Generative AI refers to a class of artificial intelligence that 
has multiple algorithms with the remarkable ability to generate 
new, realistic data that was not part of the original data. 
Generative AI, with models such as Generative Adversarial 
Networks (GANs), Variational Autoencoders (VAEs), and 
Transformers, can create new data, designs, and solutions 
(Goodfellow et al., 2014). 

GANs consist of a generating network and a discriminator 
network that are trained simultaneously through an adversarial 
process. The generating network aims to create realistic 
synthetic data, while the discriminator network attempts to 
distinguish between real and generated data. This process 
creates a competition between the two networks, ultimately 
resulting in the generation of highly convincing synthetic 
content. VAEs, on the other hand, take a probabilistic approach 
to generating new data. They learn the underlying distribution 
of the data and use it to generate new samples. Variational 
autoencoders are generative models used in Machine Learning 
(ML) to generate new data as variations of the input data they 
are trained on. 

The term "Transformer" in AI refers to a type of neural 
network architecture that uses Deep learning and self-attention 

techniques to handle data sequences, providing significant 
improvement in tasks such as machine translation, text 
generation, and language understanding. Transformers are a 
type of neural network architecture that changes an input 
sequence into an output sequence.  

This article addresses the diverse applications of AI in the 
monitoring and management of PEM electrolyzers, from 
process optimization and early fault diagnosis to lifespan 
prediction and the development of predictive control 
strategies. The various AI techniques used, such as ML, Deep 
learning, and expert systems, will be discussed, as well as the 
benefits and challenges associated with their implementation. 
Figure 1 aims at illustrating the interplay between AI 
technologies and PEM electrolyzers. 

The structure of the document is as follows. After the 
introductory section, the fundamentals of hydrogen generation 
using PEM technology are described. Subsequently, 
generative AI applications in management and monitoring of 
PEM electrolyzers are expounded. The applications in the 
scope of predictive maintenance of PEM generators are 
analyzed in the fourth section. Finally, the main conclusions 
and future research works are outlined in the fifth section. 

 

 
Figure 1: Interplay between AI technologies and PEM electrolyzers. 

 

2. Operating description and working principle of PEM 
electrolyzers 

PEM electrolyzers work by splitting water molecules into 
hydrogen and oxygen using a proton-conducting polymer 
membrane as a solid electrolyte. Water is fed to the anode, 
where it is oxidized to produce oxygen, protons, and electrons. 
The protons travel through the membrane to the cathode, where 
they combine with electrons to form hydrogen. 

The corresponding chemical reaction is shown in (1): 
 

2𝐻𝐻2𝑂𝑂 →  2𝐻𝐻2 + 𝑂𝑂2 (1) 
 
where E denotes the amount of electrical energy needed to 

drive the electrolysis reaction. 
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Figure 2: Schematic diagram of a PEM electrolyzer showing the anode, 
cathode, membrane, water supply, and hydrogen and oxygen production. 

 
In a PEM electrolyzer, water is dissociated into H2 and O2 

by application of an electric current. O2 is hereby generated at 
the anode, while hydrogen is produced at the cathode with the 
reactions occurring on a catalyst layer coated on each 
respective electrode. Positioned in between both electrodes is 
the solid PEM, which serves three main purposes: it provides 
a gas-diffusion barrier for the generated O2 and H2, it functions 
as semi-permeable membrane allowing only H+ to cross, and 
it is electrically non-conductive. 

When water decomposes into O2-gas and H+ at the anodic 
side, O2 exits the chamber, while H+ is drawn through the PEM 
by application of an electric field. After permeating the PEM, 
they recombine at the cathode and produce H2-gas. There are 
two diffusion layers, one positioned on each side of the two 
electrodes, which together make up the Membrane Electrode 
Assembly (MEA). Their job is to facilitate efficient current 
distribution to and from the electrodes, supplying a 
homogeneous dispersion of water to the anode surface, and 
lastly alloying gaseous products to diffuse out of the MEA 
assembly and exit their respective chambers (Figure 2). Lastly, 
encasing the MEA are bipolar plates (BPP), which contribute 
to the cell's structural integrity and separate individual cells 
when assembled into a stack. 

Figure 3 shows the general layout of a green hydrogen 
production plant in which hydrogen is generated from 
photovoltaic energy and stored in bottles for later use. 

 

 
Figure 3: General layout of a green hydrogen production plant. 

 

3. Applications of AI in the Supervision and 
Management of PEM Electrolyzers 

In the context of hydrogen, AI can contribute to improving 
its production, storage, transportation and use, serving to 
predict different parameters, safety protocols or the 
management of hydrogen generation (Ramesh et al., 2023). 

Specifically, as noted in the Introduction, AI can be 
integrated with monitoring systems to provide advanced 
features and improve the management and control/operation 
capabilities of PEM electrolyzers. Furthermore, IoT and 
Digital Twin technologies can also contribute to these 
functionalities through effective real-time data transmission 
and virtual representation of physical equipment, respectively. 

One of the biggest challenges to be solved in the application 
of AI to generate green hydrogen is the availability and quality 
of data to train the algorithms (Bassey and Ibegbulam, 2023). 
The scarcity of data in failure scenarios or rare events makes it 
difficult to train robust models. Generative AI can create 
synthetic data that mimics normal and abnormal plant behavior 
by varying pressure, temperature, flow rate, voltage, etc. 

Precise control of the operating conditions of these devices 
to maintain optimal temperature, pressure, and humidity is 
crucial to ensuring system efficiency and stability. AI can be 
used to optimize operating parameters, such as voltage, 
current, and temperature, to maximize efficiency and hydrogen 
production. 

Furthermore, due to the intermittent nature of renewable 
energy, integrating electrolyzers with these renewable primary 
energy sources poses a considerable challenge. In fact, the 
dynamic operation of a PEM stack, i.e., with a variable 
generated flow rate, negatively affects its degradation and 
performance (Frensch et al., 2019), (Wei et al., 2019). 

On the other hand, PEM electrolyzers generate large 
volumes of sensor data related to voltage, current, temperature, 
pressure, humidity, and hydrogen generation. AI can be used 
to analyze this data to identify patterns, trends, and correlations 
that would be difficult or impossible to detect manually. 

 

3.1. Specific Applications of Machine Learning in PEM 
Electrolyzer Optimization 

ML has become an indispensable tool for process 
optimization in various industries, and PEM electrolyzer 
management is no exception. ML algorithms can learn from 
historical data and adapt their models to optimize performance 
based on changing conditions (Schmidt et al., 2019). Some of 
the most commonly used types of ML algorithms include: 

• Classification: Used to classify data into different 
categories, such as the health status of the electrolyzer 
(good, average, poor) or the presence of specific 
faults. Common classification models include logistic 
regression, Support Vector Machines (SVMs), 
decision trees, and neural networks. 

• Regression: Used to predict continuous variables, 
such as energy efficiency, hydrogen production, or 
membrane degradation. Common regression models 
include linear regression, polynomial regression, 
SVM, and decision trees. Support Vector Regression 
(SVR) is an extension of SVM. 
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• Clustering: Used to group similar data together, 
which can help identify patterns and anomalies. 
Common clustering algorithms include K-means, 
hierarchical clustering, and DBSCAN (Density-
Based Spatial Clustering of Applications with Noise). 

• Reinforcement Learning: Used to train an agent to 
make decisions that maximize reward over time. In 
the context of PEM electrolyzers, reinforcement 
learning can be used to develop optimal control 
strategies that minimize energy consumption and 
maximize hydrogen production. 

Generative AI can be used to analyze operating data and 
simulate different configurations to identify operating 
parameters that maximize hydrogen production and minimize 
energy consumption, optimizing pressure, temperature, flow 
rate, and voltage in the electrolysis process. In this sense, AI 
can address the optimization of the performance and energy 
efficiency of PEM electrolyzers from different perspectives. 

ML algorithms can be used to optimize voltage, current, 
temperature, pressure, and water flow to maximize efficiency 
and hydrogen production. For example, regression models can 
be used to predict energy efficiency based on operating 
parameters and then optimization algorithms can be used to 
find optimal values. In a similar sense, membrane degradation 
is one of the main factors limiting the lifespan of PEM 
electrolyzers. ML algorithms can be used to predict membrane 
degradation based on historical data and operating conditions. 
This enables preventive maintenance and an extension of 
electrolyzer lifespan. Moreover, ML algorithms can be used to 
enhance the design of electrolyzer components, such as the 
membrane, electrodes, and flow channels. This can improve 
the electrolyzer's efficiency, durability, and cost. 

Reinforcement learning can be used to develop control 
strategies that allow the electrolyzer to adapt to fluctuations in 
energy from renewable sources. This improves system stability 
and reliability. 

The output of a PEM generator is estimated using ML from 
solar radiation data in (Mert, 2021). The hydrogen flow rate 
and current of a laboratory-scale PEM electrolyzer are 
estimated through ML algorithms in (Ozdemir and Pektezel, 
2024). ML is also applied to predict the hydrogen production 
rate in a PEM generator from photovoltaics in (Salari et al., 
2024). The cell voltage of an electrolyzer is estimated using 
ML-based models in (Bonab et al., 2024). 

 

3.2. Advanced management of PEM electrolyzers 

In addition to ML and Deep learning, expert systems and 
AI-based predictive control play a crucial role in the advanced 
management of PEM electrolyzers. 

Expert systems are computer programs designed to emulate 
the decision-making capabilities of a human expert in a 
specific field. In the context of PEM electrolyzers, an expert 
system could be used to diagnose faults, recommend corrective 
actions, and optimize operating parameters based on the 
knowledge and experience of engineers and scientists working 
in the field. The components of an expert system are: 

• Knowledge base: Contains expert knowledge about the 
problem domain, including rules, facts, and heuristics. 

• Inference engine: Uses knowledge from the knowledge 
base to reason and reach conclusions. 

• User interface: Allows users to interact with the system 
and receive explanations and recommendations. 

The application of expert systems offers several advantages 
that make them highly suitable for advanced electrolyzer 
management. On the one hand, it makes expert knowledge 
available to operators and technicians without the need for a 
human expert. Furthermore, due to the consistency and 
objectivity of decision-making, the risk of human error is 
reduced. On the other hand, it allows for handling complex 
situations that require the integration of multiple sources of 
information. 

Model Predictive Control (MPC) is an advanced control 
technique that uses a system model to predict its future 
behavior and optimize control variables to achieve a desired 
objective (Camacho and Bordons, 2007). In the context of 
PEM electrolyzers, MPC can be used to optimize operating 
parameters, such as voltage, current, and temperature, to 
maximize efficiency and hydrogen production while 
minimizing component degradation (Calderón et al., 2020). 

AI-based predictive control can manage constraints on 
control variables and state variables, ensuring the electrolyzer 
operates within safe and efficient limits. It also compensates 
for disturbances, such as fluctuations in power from renewable 
sources, improving system stability and reliability. 
Furthermore, it enables real-time optimization of operating 
parameters, adapting to changing conditions. 

The combination of ML, Deep learning, expert systems, and 
AI-based predictive control can create a holistic management 
system for PEM electrolyzers. 

The integration of AI into a holistic management system 
enables real-time monitoring through the collection and 
analysis of sensor data. Operating parameters can also be 
optimized using ML algorithms. AI-based predictive control 
can optimize the performance and durability of the 
electrolyzer. Furthermore, it can provide recommendations 
and explanations to operators and technicians through an 
expert system to assist with decision-making. 

 

4. Applications of Generative AI in Predictive 
Maintenance of PEM Electrolyzers 

Degradation and a gradual loss in efficiency of PEM  
electrolyzer assemblies is a common issue. Reasons may 
involve poisoning of the electrode catalysts, clogging of the 
diffusion layer mesh, decomposition of the humidified 
perfluorosulfonated polymer membrane, leaching and 
migration of aggressive F--ions toward the anode, as well as 
corrosion of the BPP due to the presence of water and working 
voltage of +1.8-2.0 V at the anodic side. Particularly the latter 
poses a big concern for the lifetime and ultimately 
commercialization of PEM-cells, since BPPs are not only 
responsible for separating single cells and channeling reagents 
within the electrolyzer assembly. Instead, they are also 
responsible for assuring structural integrity of the stack, and 
for conducting heat and electrical current.  

Also, the lifespan of PEM electrolyzers and their 
performance decrease as they are used. Various 
electrochemical phenomena occur, such as ohmic losses, 
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corrosion, overvoltages, and membrane thinning, among 
others (Feng et al., 2017), (Scheepers et al., 2020). AI can 
predict electrolyzer behavior under different operating 
conditions, enabling proactive management and predictive 
control. 

Generative AI can create predictive models of plant 
performance under different operating conditions, predicting 
hydrogen production, energy consumption, equipment wear, 
and maintenance needs. Different sensor configurations and 
their optimal placement can even be simulated to maximize 
coverage and accuracy, while considering costs, redundancy, 
and sensitivity. 

Moreover, generative AI can be used to predict equipment 
wear and proactively schedule maintenance, reducing 
downtime and maintenance costs by optimizing maintenance 
scheduling based on equipment criticality and resource 
availability. This enables early fault diagnosis, allowing 
anomalies to be detected and potential failures to be predicted, 
thus avoiding unplanned downtime and reducing maintenance 
costs. 

Generative AI offers a set of tools to address these 
challenges, as it can learn normal plant behavior and detect 
subtle deviations that could indicate impending failures, such 
as anomalous changes in temperature patterns, energy 
consumption, or hydrogen production (Patil et al., 2024). 

 

4.1. Fault Diagnosis and Prediction Using Deep Learning 

Deep learning has proven particularly effective for 
diagnosing and predicting faults in complex systems. Deep 
neural networks' ability to extract complex features and learn 
abstract representations of data makes them ideal for health 
monitoring of PEM electrolyzers (Goodfellow et al., 2016). 

Deep neural networks can automatically learn relevant 
features from data, eliminating the need for manual, often 
costly and time-consuming feature engineering. Furthermore, 
Deep learning can handle unstructured data, such as images 
and audio, which can be relevant for monitoring the health of 
PEM electrolyzers. For example, thermal images can be used 
to detect hot spots, which may indicate potential faults. 
Furthermore, in many cases, Deep learning models outperform 
traditional ML models in diagnostic and predictive tasks. The 
most commonly used types of deep neural networks are: 

• Convolutional Neural Networks (CNN): These are 
especially useful for image processing and can be used 
to analyze thermographic images or scanning electron 
microscopy images to detect defects in the membrane 
or electrodes. 

• Recurrent Neural Networks (RNNs): These are well-
suited to processing time-series data and can be used to 
analyze sensor data over time to detect patterns that 
indicate potential failures. LSTM (Long Short-Term 
Memory) and GRU (Gated Recurrent Unit) variants are 
particularly popular due to their ability to remember 
long-term dependencies. 

• Autoencoders: These are used to learn compact 
representations of data and can be used to detect 
anomalies. An autoencoder is trained to reconstruct 
input data, and any significant deviation between the 
input and output may indicate an anomaly. 

4.2. Specific Applications of Deep Learning in Failure 
Diagnosis and Prediction 

Deep learning models can be used to detect anomalies in 
sensor data, which may indicate potential faults. For example, 
a sudden increase in voltage or a decrease in hydrogen 
production could indicate a membrane or electrode failure. 

These models can also be trained to identify specific faults 
based on sensor data. For example, a CNN can be trained to 
detect membrane defects from thermographic images. 

Finally, these models can be used to predict the remaining 
lifespan of the electrolyzer based on historical data and 
operating conditions. This enables preventive maintenance and 
optimization of the replacement strategy. 
 

5. Conclusions and future work 

While the application of AI in PEM electrolyzer supervision 
and management offers significant potential, there are 
challenges that must be addressed for its successful 
implementation (Figure 3). Data quality and quantity are 
crucial to the success of AI models. Collecting relevant and 
reliable data can be costly and time-consuming. On the other 
hand, it is important to validate AI models in real-world 
environments to ensure their performance and reliability. 

Some AI models, especially deep neural networks, can be 
difficult to interpret. This can make it difficult to understand 
how the model makes its decisions and to identify the 
underlying causes of failures. AI models must be robust and 
able to generalize well new operating conditions. This requires 
careful validation and testing of the models. Implementing AI 
systems can be expensive, especially if it requires the purchase 
of new hardware and software. AI systems can be vulnerable 
to cyberattacks. It is important to implement appropriate 
security measures to protect data and models. 

In (Bassey and Ibegbulam, 2023) it is asserted that the full 
potential of AI in the production of green hydrogen needs to be 
explored through research on its integration with technologies 
such as IoT, advanced models and its application in real-world 
installations to demonstrate its effectiveness and scalability. 
Integrating AI with other technologies, such as the IoT and 
cloud computing, can improve the efficiency and reliability of 
PEM electrolyzer management systems. 

 

 
Figure 3: Scheme of challenges and future work directions. 
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As it has been expounded in the paper, AI offers a set of 
powerful tools to improve PEM electrolyzer supervision and 
management. From process optimization and early fault 
diagnosis to lifetime prediction and the development of 
predictive control strategies, AI has the potential to 
significantly improve the efficiency, durability, and cost-
effectiveness of green hydrogen production. While there are 
challenges that need to be addressed, future research and 
development directions promise to further unlock AI's 
potential in this crucial field. As demand for green hydrogen 
continues to grow, the adoption of AI in PEM electrolyzer 
management and supervision will be critical to ensuring 
sustainable and efficient hydrogen production. Investment in 
research and development, as well as collaboration between 
academia, industry, and government agencies, will be key to 
accelerating AI implementation and making green hydrogen a 
global energy reality. 
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