

I Simposio CEA de los GT: Ingeniería de Control - Modelado, Simulación y Optimización - Educación en Automática (2025) 32-37

La norma IEC 61499 como herramienta formativa: Integración en el currículo académico para la automatización industrial

Escaño, Juan M.a,*, Pozo, Adrianb, Cámara, Juan F.b, Castaño, Fernando

^aDepartamento de Ingeniería de Sistemas y Automática. Universidad de Sevilla. Camino de los Descubrimientos, 41092, Sevilla, España ^bSchneider Electric. Edificio Bogarias, C. Charles Darwin, 41092 Sevilla, España

To cite this article: Escaño, J.M., Pozo, A., Cámara, J.F., Castaño, F. 2025. The IEC 61499 Standard as a Training Tool: Integration into the Academic Curriculum for Industrial Automation. Actas del I Simposio CEA de los GT: Ingeniería de Control - Modelado, Simulación y Optimización - Educación en Automática. Sevilla, España.

Resumen

La norma IEC 61499 representa un cambio paradigmático en el diseño e implementación de sistemas de control industrial, adaptándose a los retos de la Industria 4.0 gracias a su enfoque distribuido, modular y basado en eventos. Este artículo examina la importancia de incluir esta norma en los planes de estudio de grados y másteres relacionados con la ingeniería, destacando cómo su adopción fortalece la formación de futuros profesionales al dotarlos de competencias avanzadas en sistemas distribuidos, diseño modular e interoperabilidad. A través de un caso práctico desarrollado en una célula de fabricación flexible, se demuestra la aplicabilidad de la norma tanto en entornos educativos como industriales. Además, se describen las herramientas clave para la enseñanza y el uso de IEC 61499, como 4DIAC y EcoStruxure Automation Expert de Schneider Electric, y se analizan los beneficios educativos que surgen de la colaboración con UniversalAutomation.org. Este trabajo subraya cómo la integración de la IEC 61499 en el currículo académico no solo prepara a los estudiantes para afrontar los desafíos de los sistemas ciberfísicos, sino que también fomenta la innovación y la conexión entre la academia y la industria.

Palabras clave: Industria 4.0, Norma IEC 61499, Automatización Industrial.

The IEC 61499 Standard as a Training Tool: Integration into the Academic Curriculum for Industrial Automation Abstract

These instructions constitute a guide for the preparation of articles for the symposium. Use this document as a set of instructions. Please use this document as a "template" to prepare your manuscript. For shipping guidelines, follow the instructions of the article submission system on the symposium's website. The title should not have more than 10 words. The number of authors should not be greater than six. The abstract should not occupy more than 160 words (approximately 8 to 10 lines). Replace Surname1, Initial1. by the last name of the first author and the initial of his name, Surname2, Initial2 by that of the second, etc. Remember that the summary cannot exceed the first page. In the header of page 2 and following should appear the last name of the first author and his initial followed by "et al.".

Keywords: Industry 4.0, Standard IEC 61499, Industrial Automation.

1. Introducción

La industria moderna demanda sistemas de automatización más eficientes, flexibles y capaces de integrarse en arquitecturas distribuidas, requisitos que la norma internacional IEC 61499 (IEC, 2012a,b,c)satisface de manera destacada. Publicada por

primera vez en 2005 por la Comisión Electrotécnica Internacional (IEC), este estándar redefine los principios del diseño y la implementación de sistemas de control industrial. A diferencia de su predecesora IEC 61131, la IEC 61499 adopta un enfoque basado en eventos y bloques de funciones distribuidos, permi-

^{*}Autor para correspondencia: jescano@us.es Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

tiendo un control más dinámico y adaptable a los desafíos de la Industria 4.0.

El núcleo de IEC 61499 radica en su modelo genérico para sistemas distribuidos, el cual introduce bloques de funciones con capacidad para manejar tanto datos como eventos. Estos bloques pueden combinarse en redes que se distribuyen en dispositivos físicos según un modelo de mapeo específico, permitiendo aplicaciones modulares y escalables. Entre los tipos de bloques de funciones definidos, destacan los bloques básicos (BFB) y compuestos (CFB), que soportan tanto la encapsulación lógica como la reutilización en diferentes contextos. Estas características, sumadas al modelo de ejecución controlado por eventos, optimizan el rendimiento y facilitan la interoperabilidad entre dispositivos y herramientas de distintos proveedores.

En este marco, la asociación UAO (Universal Automation Organization)UAO (2021) desempeña un papel crucial al promover la adopción de soluciones basadas en IEC 61499. Fundada en 2021, esta organización sin fines de lucro gestiona un motor de ejecución compartido que facilita la creación de ecosistemas industriales "plug and produce". Estas capacidades permiten que las aplicaciones se ejecuten sin modificaciones en múltiples plataformas de hardware, promoviendo la interoperabilidad y reduciendo significativamente los costos y tiempos de integración.

Dada la relevancia de IEC 61499 en la automatización industrial moderna, su incorporación en los planes de estudio universitarios se justifica ampliamente. Este estándar no solo representa una herramienta técnica de gran alcance, sino que también introduce conceptos esenciales que alinean la formación de ingenieros con las demandas actuales de la industria.

Primero, IEC 61499 dota a los estudiantes de competencias avanzadas en programación distribuida, diseño modular e interoperabilidad. Estas habilidades son fundamentales para abordar los retos de los sistemas ciberfísicos y de la convergencia IT/OT, características centrales de la Industria 4.0. Además, la capacidad de diseñar soluciones escalables y portables entre plataformas refuerza la formación práctica y prepara a los futuros ingenieros para integrarse rápidamente en entornos industriales altamente tecnificados.

Segundo, incluir este estándar en el currículo fomenta la innovación y la creatividad. Al trabajar con herramientas basadas en IEC 61499, como EcoStruxure Automation Expert de Schneider Electric, los estudiantes tienen la oportunidad de experimentar con tecnologías disruptivas y desarrollar soluciones que combinan eficiencia, sostenibilidad y adaptabilidad. Este enfoque les prepara no solo para resolver problemas técnicos, sino también para contribuir al diseño de sistemas industriales más resilientes y sostenibles.

Finalmente, la adopción de IEC 61499 en las universidades fortalece los vínculos entre la academia y la industria. Iniciativas como la de las tres universidades españolas que participan en UniversalAutomation.org ejemplifican cómo la colaboración en estándares abiertos puede generar sinergias entre investigación, educación y práctica profesional. Al formar parte de esta red, las instituciones académicas posicionan a sus egresados como líderes en un mercado laboral en rápida evolución, al tiempo que contribuyen al desarrollo de un ecosistema de automatización más accesible y estandarizado.

En este artículo, se explora cómo la enseñanza de IEC

61499 puede transformar la formación académica en ingeniería de control y automatización. A través de un caso práctico en una célula de fabricación flexible, se demuestra cómo esta norma puede aplicarse tanto en el ámbito educativo como en el industrial, subrayando su impacto en la preparación de profesionales para la industria del futuro.

2. Diferencias entre la IEC 61499 y la IEC 61131

La norma IEC 61499 y la norma 61131 (IEC, 2024) son dos estándares importantes en el campo de la automatización industrial. Aunque ambos tienen como objetivo el desarrollo de sistemas de control, existen diferencias significativas en términos de enfoque, arquitectura y capacidades [2]. La norma IEC 61131 se centra en la programación de lógica de control para sistemas de automatización industrial utilizando lenguajes tradicionales como Ladder Diagram (LD), Function Block Diagram (FBD), Structured Text (ST), Instruction List (IL) y Sequential Function Chart (SFC). Estos lenguajes se utilizan principalmente para programar la lógica de control secuencial en controladores programables. Por otro lado, la norma IEC 61499 adopta un enfoque más distribuido y modular. En lugar de centrarse en la lógica de control centralizada, propone un modelo de programación basado en Funciones de Control Distribuidas (Distributed Control Functions, DCF). Estas funciones se distribuyen en diferentes dispositivos dentro del sistema y se comunican entre sí mediante eventos y datos.

La norma IEC 61131 se basa en una arquitectura centralizada, donde la lógica de control se implementa en controlador programable central. Este controlador ejecuta los programas desarrollados en los lenguajes anteriormente mencionados y gestiona las entradas y salidas del sistema. En contraste, la norma IEC 61499 propone una arquitectura distribuida en la que las funciones de control se distribuyen en varios dispositivos denominados Automation Components (AC). Cada AC contiene una o más funciones de Control Distribuidas (DCF) que encapsulan la lógica de control y las acciones asociadas. Estos AC pueden comunicarse entre sí mediante eventos y datos, lo que permite una mayor flexibilidad y escalabilidad en los sistemas de automatización.

La norma IEC 61499 fomenta la modularidad y reutilización de componentes de control como parte fundamental de su enfoque distribuido. Las Funciones de Control Distribuido (DCF) en la IEC 61499 son unidades lógicas de programación que encapsulan la lógica de control y las acciones asociadas. Estas DCF pueden ser desarrolladas y probadas demanera independiente, lo que facilita la reutilización de componentes en diferentes aplicaciones y sistemas. Por otro lado, la norma IEC 61131 también permite, la modularidad a través del uso de bloques de funciones y funciones de biblioteca, pero su enfoque principal es la programación secuencial en un controlador centralizado.

En la norma IEC 61499, el modelo de bloque de función se utiliza para diseñar y desarrollar sistemas de control distribuido en entornos industriales. Un bloque de función es una unidad lógica que representa una tarea específica dentro del sistema de control (Vyatkin, 2007). Un bloque de función tiene entradas, salidas y variables internas. Las entradas son los datos que recibe el bloque de función, como información de sensores o de

otros bloques. Las salidas son los datos que el bloque de función genera y envía a otros bloques o dispositivos externos. Las variables internas son como "memoria" para el bloque de función, donde se almacenan datos temporales o se realizan cálculos. El modelo de bloque de función se basa en eventos. Cuando ocurre un evento, desencadena una acción en el bloque de función. Por ejemplo, un evento puede ser un cambio en una entrada o una condición específica. El bloque de función realiza una acción como respuesta al evento, como generar una salida o actualizar una variable interna. Una característica importante del modelo de bloque de función es su capacidad de reutilización y configuración modular. Los bloques de función pueden diseñarse para tareas específicas y luego ser utilizados en diferentes partes del sistema de control. Esto permite una mayor flexibilidad y eficiencia en el desarrollo de sistemas de control distribuido. Además, los bloques de función pueden ejecutarse en diferentes dispositivos hardware, lo que permite distribuir el control en varios nodos. Esto descentraliza el control y distribuye la carga de trabajo en el sistema.

3. Modelos de la norma IEC 61499

La arquitectura de la norma se compone por una serie de modelos que se detallan a continuación:

Modelo de Aplicación: en este modelo, se divide una aplicación de control en pequeñas unidades lógicas llamadas "bloques de función". Estos bloques de función representan diferentes tareas o funcionalidades dentro del sistema de control. Cada bloque de función puede recibir y enviar datos a otros bloques, lo que les permite comunicarse y trabajar juntos para lograr los objetivos de control deseados.

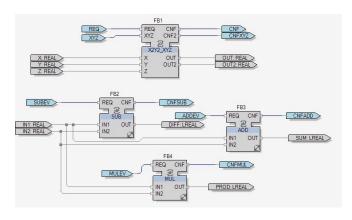


Figura 1: Modelo de Aplicación (IEC 61499)

Modelo de Dispositivo: este modelo se ocupa de cómo los bloques de función se comunican entre sí. Se basa en el concepto de eventos, donde un bloque de función puede generar un evento que activa acciones en otros bloques. Los eventos pueden ser disparados por cambios en los datos de entrada, por temporizadores o por condiciones específicas definidas en el sistema. Esta comunicación basada en eventos permite una coordinación efectica entre los bloques de función distribuidos del sistema. El dispositivo es capaz de comunicar con la red de bloques funcionales a través de un interfaz de proceso y con otros dispositivos por una interfaz de comunicación.

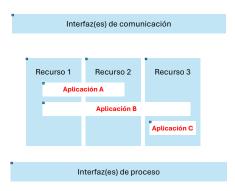


Figura 2: Modelo de Dispositivo (IEC 61499). Un Dispositivo se especifica mediante sus interfaces de proceso e interfaces de comunicación

Modelo de Recurso: aquí se aborda la asignación de recursos necesarios para ejecutar los bloques de función. Estos recursos pueden incluir elementos físicos como procesadores, memoria, entradas/salidas, así como recursos de software como bibliotecas y componentes necesarios para el funcionamiento de los bloques de función. El modelo de recurso se enfoca en la gestión eficiente de estos recursos, asegurando que estén disponibles en el momento adecuado para ejecutar las funciones de control necesarias.

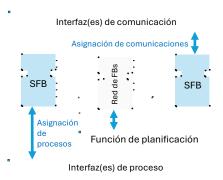


Figura 3: Modelo de Recurso (IEC 61499): Contenedor de ejecución principal de la red de FBs. Cada Recurso es independiente de otros Recursos en el dispositivo

Modelo de Sistema: este modelo describe cómo se lleva a cabo la ejecución de los bloques de función en el sistema distribuido. Define el ciclo de vida de los bloques de función, desde su creación hasta su eliminación. También establece cómo se activan y desactivan los bloques de función, es decir, cuándo comienzan y dejan de realizar las tareas de control. Este modelo garantiza un control coherente y predecible dentro del sistema distribuido.

Estos modelos de la norma IEC 61499 proporcionan un enfoque estructurado para el desarrollo y diseño de sistemas de control distribuido en entornos industriales. Permiten la modularidad, la reutilización y la flexibilidad al definir y combinar bloques de función, y establecen una base sólida para la comunicación y coordinación efectiva entre los componentes del sistema.[5]

4. Inclusión de la IEC 61499 en el currículum

La inclusión de la norma IEC 61499 en los currículos de grados y másteres relacionados con la ingeniería, como Ingeniería en Automática y Electrónica Industrial, Ingeniería de Control y Robótica, y másteres en Automática y Robótica o Ingeniería Industrial, se ve fortalecida por la colaboración con la Universal Automation Organization (UAO). Esta organización, que cuenta con 104 miembros, incluidos 23 instituciones académicas (3 de ellas españolas), proporciona un completo conjunto de recursos educativos para la enseñanza de esta norma. Entre ellos, destaca un programa de 13 módulos didácticos, cuyo contenido incluye los siguientes temas:

- 1. Motivaciones y orígenes
- 2. Evolución del software para la automatización industrial
- 3. El ecosistema de la automatización industrial
- 4. La norma IEC 61499
- 5. Control basado en estados Parte 1
- 6. Control basado en estados Parte 2
- 7. Patrones de diseño
- 8. SCADA (Supervisión, Control y Adquisición de Datos)
- 9. Comunicaciones
- 10. Gestión de alarmas y eventos
- 11. Control de procesos
- 12. Interacción con hardware en aplicaciones
- 13. Proyecto final

Estos módulos están diseñados para proporcionar a los estudiantes una formación integral, con materiales que incluyen transparencias, vídeos, prácticas de laboratorio y clases impartidas por referentes en la norma, como el profesor Valeriy Vyatkin. Universidades españolas como la Universitat Jaume I, la Universidad de Sevilla y la Universidad de León ya han integrado esta norma en sus asignaturas, utilizando estos recursos para ofrecer una formación avanzada que conecta la teoría con la práctica, alineada con las necesidades actuales de la industria 4.0 y la automatización avanzada.

5. Herramientas de programación

Para su implementación, existen herramientas de código abierto y comerciales, cada una con características únicas que responden a necesidades específicas.

En el ámbito del código abierto, Eclipse 4diac (Eclipse, 2025) se ha consolidado como la herramienta más avanzada y versátil. Desarrollada por la Universidad Tecnológica de Viena, 4DIAC no solo permite diseñar aplicaciones distribuidas, sino que incluye un motor de ejecución llamado FORTE, optimizado para funcionar en hardware industrial, como PLCs y dispositivos embebidos. Además, 4diac soporta la integración con sistemas de comunicación industrial estándar, lo que la convierte en una plataforma ideal para desarrollar aplicaciones distribuidas complejas con capacidades de despliegue en entornos reales. Su entorno de desarrollo, 4diac-IDE, ofrece herramientas específicas para mapear y monitorizar en tiempo real la distribución lógica entre múltiples dispositivos.

Por otro lado, el Function Block Development Kit (FBDK) (Holobloc, 2025), creado por Holobloc Inc., se centra en ofrecer

un marco sencillo y directo para aprender y experimentar con la norma IEC 61499. A diferencia de 4DIAC, que está orientada tanto a la investigación como a la industria, FBDK es una herramienta más limitada pero ideal para introducir a estudiantes y nuevos usuarios en el concepto de bloques funcionales distribuidos. Su entorno gráfico se enfoca en la creación de aplicaciones simples, con énfasis en la simulación y la comprensión teórica de los flujos de datos y eventos en sistemas distribuidos. FBDK destaca por su facilidad de uso y su enfoque pedagógico, pero no está diseñado para implementaciones industriales.

En el ámbito comercial, la herramienta disponible es EcoStruxure Automation Expert (EAE) (Schneider-Electric, 2023), desarrollada por Schneider Electric. EAE se distingue por ser la primera plataforma industrial plenamente compatible con la IEC 61499, enfocada en la automatización distribuida y escalable para aplicaciones de la industria 4.0. Su diseño modular permite la integración de múltiples dispositivos y controladores distribuidos, facilitando la gestión de la lógica de control, la comunicación entre dispositivos y el despliegue directo en hardware compatible. Además, EAE se integra perfectamente con el ecosistema EcoStruxure, lo que permite su conexión con soluciones de supervisión SCADA, análisis de datos y mantenimiento predictivo. Como herramienta comercial, EAE garantiza soporte técnico especializado y una implementación robusta en proyectos industriales de alta complejidad.

6. Ejemplo: Célula de fabricación flexible

En esta sección se describe un ejemplo práctico que ilustra la implementación de la norma IEC 61499 en el diseño y operación de una célula de fabricación flexible. Este sistema fue desarrollado en el laboratorio de Automática de la Escuela Técnica Superior de Ingeniería de la Universidad de Sevilla (ver Fig. 4) y combina estaciones de trabajo independientes con elementos de transporte que operan de manera coordinada para ejecutar tareas complejas de manufactura. El objetivo principal de este proyecto fue demostrar cómo la norma facilita la modularidad, el control distribuido y la eficiencia operativa en sistemas industriales avanzados.

Figura 4: Imagen general de la célula de fabricación flexible del Departamento de Ingeniería de Sistemas y Automática de la Universidad de Sevilla

La célula de fabricación flexible estaba compuesta por cuatro cintas transportadoras que permitían desplazar bandejas, las cuales servían como soporte para los palets procesados en las diferentes estaciones. Dos de estas cintas se ubicaron a un nivel diferente respecto a las otras dos, lo que requirió el uso de sensores y pistones para transferir las bandejas entre diferentes alturas. Este movimiento resultó esencial para conectar las estaciones de trabajo, ya que cada una cumplía una función específica dentro del proceso de manufactura.

El sistema incluía varias estaciones, como un almacén de palets gestionado por un robot que organizaba las piezas en posiciones predefinidas. También se diseñó una cinta adicional en el centro de la célula para realizar modificaciones a los productos, y una estación equipada con un robot con visión artificial que realizaba el control de calidad. Sin embargo, el foco principal del proyecto estuvo en la estación denominada "alimentador de bandejas", la cual utilizaba pistones y sensores para introducir o retirar bandejas del circuito según fuera necesario. Estas bandejas actuaron como el medio de transporte que conectaba los distintos procesos dentro de la célula.

Para gestionar este sistema, se emplearon varios PLCs que controlaban tanto el movimiento de las cintas como el funcionamiento del alimentador de bandejas. Con la implementación de EcoStruxure Automation Expert (EAE), los PLCs existentes se configuraron como E/S distribuidas, y el control centralizado se llevó a cabo mediante un softdPAC, un controlador basado en Linux que ejecutaba toda la lógica de la aplicación. Este diseño permitió aprovechar el cableado existente de las tarjetas E/S de los PLCs M340, que se utilizaron únicamente para transmitir información de campo (ver Fig. 5). La interacción con la célula se realizó a través de un HMI ejecutado en un PC que utilizaba el entorno de EAE. Durante la puesta en marcha, se utilizaron tanto una máquina virtual con Ubuntu como una Raspberry Pi 4. Fue fundamental garantizar que todos los dispositivos, incluidos los PLCs M340, el PC con EAE y el softdPAC, estuvieran conectados a la misma red, permitiendo así una comunicación correcta mediante el protocolo Modbus TCP/IP.

La adopción de la norma IEC 61499 aportó múltiples beneficios al proyecto. Una de las ventajas más destacadas fue la posibilidad de programar cada estación de manera independiente, lo que facilitó su integración y redujo la complejidad al añadir nuevas estaciones. Además, la ejecución basada en eventos permitió optimizar el uso de recursos, ya que las estaciones solo se activaban cuando era necesario, a diferencia de la ejecución cíclica tradicional.

Este proyecto también sentó las bases para futuros desarrollos en la célula de fabricación flexible. Además de la integración de las estaciones existentes, se planteó la creación de un nivel superior de control que orquestara de manera automática e inteligente el movimiento de las cintas y la operación de las estaciones. También se consideró el desarrollo de un gemelo digital, que permitiría probar modificaciones en un entorno virtual antes de implementarlas físicamente, así como realizar análisis de datos para predecir fallos y mejorar el mantenimiento.

7. Conclusiones

La incorporación de la norma IEC 61499 en los planes de estudio de ingeniería representa un avance estratégico para ali-

near la formación académica con las necesidades de la Industria 4.0. Este estándar no solo redefine la forma en que se diseñan y gestionan los sistemas de control industrial, sino que también introduce un enfoque distribuido y modular que promueve la interoperabilidad, la escalabilidad y la eficiencia operativa.

El caso práctico desarrollado en la célula de fabricación flexible de la Universidad de Sevilla ha demostrado cómo la IEC 61499 facilita la implementación de sistemas distribuidos, permitiendo que cada estación funcione de manera autónoma e integrada. La capacidad de programar estaciones de forma independiente, combinada con la ejecución basada en eventos, optimiza el uso de recursos y simplifica la incorporación de nuevas funcionalidades. Además, la utilización de herramientas como EcoStruxure Automation Expert y 4DIAC ejemplifica cómo la tecnología habilitada por esta norma puede traducirse en aplicaciones industriales prácticas.

A nivel educativo, la IEC 61499 dota a los estudiantes de competencias avanzadas en programación distribuida, diseño modular y gestión de sistemas ciberfísicos. Estas habilidades no solo preparan a los futuros ingenieros para afrontar retos complejos, sino que también fomentan la innovación y la creatividad, permitiéndoles desarrollar soluciones sostenibles y adaptables en entornos industriales dinámicos.

El vínculo entre la academia y la industria, fortalecido por iniciativas como la participación de universidades españolas en UniversalAutomation.org, resalta la importancia de colaborar en estándares abiertos para generar sinergias entre investigación, formación y práctica profesional. Este enfoque asegura que los egresados estén preparados para liderar la transformación digital y contribuir al desarrollo de sistemas de automatización más accesibles y eficientes.

Referencias

Eclipse, F., 2025. Eclipse 4diac. https://eclipse.dev/4diac/, accessed: 2025-01-17.

Holobloc, 2025. unction block development kit (fbdk). https://www.holobloc.com/fbdk11/index.htm, accessed: 2025-01-17

IEC, 2012a. Function blocks - part 1: Architecture (iec 61499-1:2012). https://webstore.iec.ch/en/publication/5506, accessed: 2025-01-17.

IEC, 2012b. Function blocks - part 2: Software tool requirements (iec 61499-2:2012). https://webstore.iec.ch/en/publication/5507, accessed: 2025-01-17.

IEC, 2012c. Function blocks - part 4: Rules for compliance profiles (iec 61499-4:2013). https://webstore.iec.ch/en/publication/5508, accessed: 2025-01-17.

IEC, 2024. Programmable controllers (iec 61131:2024 ser). https://webstore.iec.ch/en/publication/62427, accessed: 2025-01-17.

Schneider-Electric, 04 2023. EcoStruxure Automation Expert. Conceptos básicos. Schneider Electric.

UAO, 2021. Universal automation organization. https://universalautomation.org, accessed: 2025-01-17.

Vyatkin, V., 2007. IEC 61499 Function Blocks for Embedded and Distributed Control Systems Design. ISA.

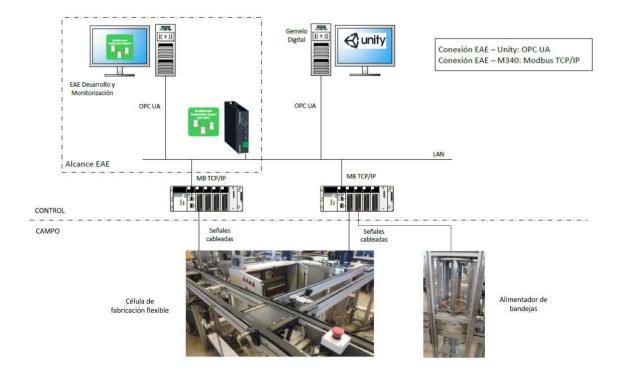


Figura 5: Arquitectura general delsistema de fabricación flexible