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Resumen 

La evaluación precisa y no destructiva del contenido graso de aceitunas en condiciones de campo es crucial para optimizar 

los programas de cosecha, mejorar la calidad del aceite, y avanzar en la introducción de la agricultura de precisión en los olivares. 

Este trabajo investiga el potencial de las imágenes hiperespectrales, adquiridas directamente en un olivar comercial en 

condiciones de iluminación natural, para la estimación del contenido graso de aceitunas en fase de maduración visibles en la 

superficie de los olivos. La investigación en curso se centra en el desarrollo de modelos de estimación capaces de, a partir de los 

perfiles espectrales de las aceitunas muestreadas, estimar con precisión su contenido graso sobre materia seca. Las primeras 

aproximaciones empleando Regresión de Mínimos Cuadrados Parciales (PLSR) arrojaron resultados prometedores considerando 

la limitada capacidad de este enfoque de modelado, lo que induce a la exploración del desempeño de modelos no lineales, más 

complejos y con mayor potencial descriptivo. 

Palabras clave: agricultura de precisión, análisis de imágenes en agricultura, calidad de alimentos, sensores de software en 

agricultura, evaluación de la calidad. 

 

In-Field Hyperspectral Imaging for Estimation of Olive Fruit Fat Content per Dry Matter: Ongoing Research 

Abstract 

Accurate and non-destructive assessment of olive fruit fat content in field conditions is crucial for optimising harvest 

programs, improving oil quality, and advancing the introduction of precision agriculture in olive groves. This work investigates 

the potential of hyperspectral imaging, acquired directly in a commercial olive grove under natural lighting conditions, for 

estimating the fat content of ripening olives visible on the surface of the trees. The ongoing research focuses on developing 

estimation models capable of accurately predicting the olives' fat content per dry matter from their sampled spectral profiles. 

Initial approaches using Partial Least Squares Regression (PLSR) yielded promising results considering the limited capability of 

this modelling approach, which leads to exploring the performance of more complex, nonlinear models with greater descriptive 

potential. 

Keywords: precision farming, image analysis in agriculture, food quality, software sensors in agriculture, quality assessment. 

 

1. Introducción 

The olive tree (Olea europaea L.) plays a significant role in 

the Mediterranean economy, constituting a fundamental part of 

the global olive oil industry. This Mediterranean staple, valued 

for its gastronomic and nutraceutical properties, supports 

numerous industries. Precision agriculture is innovatively 

taking shape for optimal management in olive groves, and 

especially in high density orchards to make production 

profitable. This would involve modifying the way farming is 

done to account for the spatial and temporal variability that 

lurks inside agricultural fields, and thus it would require more 

advanced tools to monitor important parameters. 

The accurate measurement of crucial agricultural indicators 

is increasingly being recognised as important in the field of 

precision agriculture, including fruit ripening. Ripening is 

defined as a complex series of physical and biochemical 

changes, among which oil accumulation is a key indicator of 
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maturity, thus being indicative of the optimum time for 

harvesting (Hermoso et al., 1991).  

Conventional chemical methods for determining fat 

content, such as Soxhlet extraction (AENC, 1961), are costly 

and impractical for large-scale fieldwork. Consequently, olive 

growers typically assess ripeness at a general level by 

observing the olives' external colour and subjectively 

comparing it against a defined grading scale. Recent 

investigations, however, have revealed a mismatch between fat 

content and external colour, thereby discrediting colour as an 

accurate and reliable indicator of ripeness. [Grilo et al., 2019]. 

This report describes the preliminary findings of ongoing 

experiments aimed at developing a methodology, based on 

hyper spectral imaging, for the objective, accurate, and non-

destructive evaluation of olive fruit fat content per dry matter 

straight in the field.  

2. Materials and methods 

2.1 Experimental layout  

The study was conducted in a commercial olive orchard 

(Olea europaea L., cv. Picual) managed by Nuestra Señora de 

la Oliva S.C.A. in Huelva, Andalusia, Spain (37°20'10.986'' N, 

7°1'49.46'' W). Sampling occurred over 7 weeks in September 

and October, coinciding with the end of pit hardening and the 

harvest season. 

Fifteen trees were selected for the study. During each 

sampling session throughout the lifetime of the experiment, 

olive fruits visible within a 60 x 40 cm wooden frame placed 

over the canopy of the study trees (Figure 1) were 

photographed to acquire hyperspectral information. 

Immediately after photographing, the same sets of olives 

within the frame were carefully harvested, labelled, and 

transported to the laboratory for chemical determination of fat 

content per dry matter for each sample. This procedure resulted 

in 105 paired sampling points of hyperspectral and laboratory 

reference data. 

 

 
Figure 1: Sampling point wood frame. 

2.2 Materials 

A Headwall Co-Aligned VNIR – SWIR push broom-type 

hyperspectral imaging system (Headwall Photonics Inc., 

Bolton, U.S.A.) was employed for in-field hyperspectral data 

acquisition. The VNIR sensor captures 273 spectral bands 

spanning the range of 399-1003 nm, with a spectral sampling 

interval ranging between 2 and 3 nm. The SWIR sensor 

captures 270 spectral bands spanning the range of 899-2509 

nm, with a fixed spectral sampling interval of 6 nm. The device 

utilised in this study transforms each spatial image into a three-

dimensional hyperspectral data cube. The dimensions of this 

cube are defined by m pixels in height, which varies depending 

on the displacement across the scanning direction, and 640 

pixels in width, with a spectral dimension comprising 273 

bands for VNIR, and 270 bands for SWIR. 

A purpose-built acquisition device, incorporating a tripod 

with a precision rotation head and a stepper motor for 

controlled scanning speed, was developed for the present 

study. The system (Figure 2) was equipped with a height 

adjustment mechanism, enabling a range of 1.3 to 2 m, to 

ensure coplanar alignment between the camera and the wooden 

frame that delineated the sampling area. The stepper motor 

regulated a constant scanning speed, which was determined by 

the Headwall’s software based on illumination conditions and 

camera-to-target distance. This was essential for the push 

broom operation, as it guaranteed the acquisition of spatially 

accurate hyperspectral images of the targeted fruit clusters 

within the defined frame. A high-reflectivity fabric was placed 

within the scanning field of view for subsequent radiometric 

correction and reflectance normalisation. 

 

 
Figure 2: Figure 2: Designed scanning device, consisting of a tripod with a 

rotating head to enable push-broom operation with the hyperspectral camera. 

Headwall's Hyperspec III and SpectralView software 

packages were used to perform the initial transduction of data 

from the Headwall hyperspectral imager to a digital processing 

workstation. Radiometric correction and reflectance 

normalisation were implemented to reduce sensor-induced 

artefacts. MATLAB, Version R2024b, was subsequently 

employed for processing and analysis of the corrected 

hyperspectral information, and to explore the descriptive 

potential of the data in terms of fruit fat content estimation. 

2.2 Experimental data processing and analysing 

Based on the specialised literature, the SWIR spectrum was 

selected for this preliminary study, from which those bands 

associated to relevant water absorption peaks (1354-1458 nm, 

1797-2090 nm) and low-information wavelengths (>2227 nm) 

were discarded (Saha & Jackson, 2018; Yang et al., 2005).  

First, a region of interest (ROI) consisting of olive fruit 

pixels within the wooden sampling frame shown in Figure 1 

was defined from radiometrically corrected images. Then, for 

each of the 105 sampling points, the average spectral response 
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of ROI pixels was calculated for the 147 selected bands, which 

resulted in a 105 × 147 feature matrix. An outlier analysis 

finally discarded 9 sample points, thus definitely configuring a 

96 × 147 feature matrix. 

2.5 Methodology for Olive Fruit Fat Content Prediction 

The first derivative was calculated on the 147 features for 

the 96 samples in the feature matrix by applying Savitzky-

Golay filtering. The transformed feature vector per sample 

describes and highlights subtle spectral reflectance variations, 

potentially due to biochemical variations in the fruits. 

Next, Partial Least Squares Regression (PLSR) was 

employed to preliminarily explore the potential of the 

processed samples’ spectral profiles to quantitatively estimate 

fat content. To establish statistically coherent training and 

validation datasets for modelling, the 96 feature vectors were 

first clustered using the K-Nearest Neighbours (KNN) 

algorithm, setting the reference fat content per dry matter as 

the clustering variable. The training set was built with 85% of 

samples in the dataset taken from the 10 generated clusters 

according to clusters’ population ratios. The validation dataset 

was compiled with the remaining 15% of samples. 

The optimal number of PLSR components for the predictive 

model was determined through an iterative process, in which 

estimation results for a specified wide range of components 

were monitored. The root-mean-square error (RMSE) and the 

coefficient of determination (R²) were employed as indicators 

to assess model performance. 

3. Results and discussion 

Figure 3 shows the evolution of R² for the training and 

external validation sets as the number of latent variables 

included in the PLSR model increases. As it can be confirmed, 

model’s regression performance on the validation set increases 

until reaching a maximum of 0.64 when 6 latent variables are 

considered. From this point, latent variables increasing involve 

accelerated modelling degradation, what might indicate the 

existence of complex relationships among the spectral 

responses when they are combined to model fat content of 

fruits. This, along with the respectable R² value achieved by 

this simple linear modelling approach, considering the 

complexity of the formulated regression task, encourages to 

explore more sophisticated and non-linear modelling 

frameworks, such as neural networks. Moreover, the addition 

of the second derivative for enriching the model with even 

more subtle transitions, might also have a positive impact in 

modelling performance. These conclusions are consistent to 

those derivable by analysing the model performance in terms 

of estimation capabilities, as RMSE values of 3.39% and 4% 

(both percentage of fat content per dry) were measured for the 

training and validation datasets, respectively, when the 

optimum PLSR configuration with 6 latent variables was 

employed. Table 1 summarises the best achieved results. 

Table 1: Best PLSR modelling performance records (6 latent variables) 

Training set Test set 

R² RMSE (%) R² RMSE (%) 

0.76 3.39 0.64 4 

 

 
Figure 3: results of PLSR in function of the number of components selected 

4. Conclusions 

The intrinsic complexity of the relationship between the 

spectral signatures and the biochemical composition of the 

olive fruit — more especially the fat content—is probably the 

reason for the PLSR limited, although non negligible, 

estimation results. As a linear regression method, PLSR relies 

on the predictor and response variables having a high linear 

correlation. However, non-linearities in the spectral response 

linked to fat content may result from the complex interactions 

of different light absorbing and scattering components within 

the fruit matrix. In this context, the respectable R² and RMSE 

values registered with PLSR, encourages to continue this 

investigation considering more complex non-linear modelling 

approaches. 
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