
A proposed software framework aimed at
energy-efficient autonomous driving

of electric vehicles

Jose-Luis Torres1, Jose-Luis Blanco1,?, Mauro Bellone2,
Francisco Rodŕıguez3, Antonio Giménez1, and Giulio Reina2

1 Dept. of Engineering, Universidad of Almeŕıa, E-04120 Almeŕıa, Spain
2 Dept. of Engineering for Innovation, Universitá del Salento, I-73100 Lecce, Italy
3 Dept. of Computer Sciences, Universidad of Almeŕıa, E-04120 Almeŕıa, Spain

Abstract. This paper describes the development of an electric car pro-
totype, aimed at autonomous, energy-efficient driving. Starting with an
urban electric car, we describe the mechanical and mechatronics add-ons
required to automate its driving. In addition, a variety of exteroceptive
and proprioceptive sensors have been installed in order to obtain accu-
rate measurements for datasets aimed at characterizing dynamic models
of the vehicle, including the complex problem of wheel-soil slippage. Cur-
rent and voltage are also monitored at key points of the electric power
circuits in order to obtain an accurate model of power consumption, with
the goal of allowing predictive path planners to trace routes as a trade-off
between path length and overall power consumption. In order to handle
the required variety of sensors involved in the vehicle, a MOOS-based
software architecture has been developed based on distributed nodes that
communicate over an onboard local area network. We provide experimen-
tal results describing the current stage of development of this platform,
where a number of datasets have been already grabbed successfully and
initial work on dynamics modeling is being carried on.

Keywords: Autonomous vehicles, Mobile robotics, Software architecture

1 Introduction

While autonomous driving in realistic situations remains a challenging problem,
the DARPA challenge [1] and the Urban Challenge in 2004 and 2007 [2] have
clearly shown that such a challenge could reasonably be addressed according to
the recent progresses in the field of perception and autonomous navigation for
unmanned vehicles. The Carnegie Mellon University Tartan Racing team won
the urban challenge in 2007 using a hierarchical control system for planning and
sensing [3]. The keystone of their winning approach is the convenient combi-
nation between on-board mechatronic system and software architecture. Their

? Corresponding author, email: jlblanco@ual.es

Jose Luis
Typewritten Text
Draft version: To appear in 2014 International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2014). The final publication is available at Springer website.

Jose Luis
Typewritten Text

Jose Luis
Typewritten Text

Jose Luis
Typewritten Text

Jose Luis
Typewritten Text

Jose Luis
Typewritten Text

vehicle incorporates a variety of lidar, radar and visual sensors to safely navi-
gate urban environments, as well as a software architecture decomposed into five
broad areas: mission planning, motion planning, behavior generation, perception
and world modeling. Another team, the VisLab group, achieved 15, 926 km of
autonomous driving in 2010, driving from Parma (Italy) to Shangai (China) us-
ing a Piaggio Porter Electric Power van [4, 5]. The sophisticated vision system
that equips the VisLab’s van including cameras and laser scanners allowed the
autonomous driving even in critical scenarios and challenging roads [6].

Although autonomous vehicle technology is not completely mature yet, it has
been attracting economic and industrial interest for years, and commercial cars
include increasing levels of autonomy year after year. On one hand, social impli-
cations of such a huge revolution will change our way to see the transportation
systems increasing the quality of our life. On the other hand, vehicles will have
to be equipped with a large number of sensors that are still expensive and, most
importantly, safety and reliability are mandatory, still open requirements.

Current experimental autonomous vehicles require sophisticated control al-
gorithms as well as a large number of sensors, hence the need to employ a number
of embedded computers and specific software architectures aimed at distributed
sensing and processing capable of real-time performance. A variety of such ar-
chitectures can be found in the literature and the industry. For example, the
MIT DARPA Urban Challenge Team developed a set of libraries and tools for
message passing and data marshalling called Lightweight Communications and
Marshalling (LMC) [7]. Their work was targeted at real-time systems such as
the experimental vehicle employed for the challenge. In such situations, high-
bandwidth and low latency are critical issues. Recently, the Robotics Operative
System (ROS) [8], a new software architecture for mobile robotics, is getting
increasingly popular among research labs and industries. ROS provides both, a
middleware for structured communications between processing nodes and a set
of ready-to-use software nodes for many specific tasks usually found in robotics.

Our electric car architecture is based on Open Mobile Robot Arquitecture
(OpenMORA) [9], originally developed by MAPIR lab, University of Málaga,
and at present also co-maintaned by the authors of this work. OpenMORA relies
on two open-source frameworks: MOOS [10], and Mobile Robot Programming
Toolkit (MRPT) [11]. MOOS is a middleware for distributed robotic architec-
tures based on the publish-subscribe (pub/sub) pattern. It comprises a core C++
library and a set of tools for managing and monitoring so-called communities
of distributed modules. Key advantages of MOOS against other alternatives are
its simplicity and its suitability to attain sub-millisecond round-trip message
passing. At the core of MOOS is the idea of a minimalist data-type middleware
(i.e. only double numbers and text strings are allowed to be exchanged between
modules), hence that transmitting complex data types (e.g. laser scans or im-
ages) over MOOS implies custom implementations of data marshalling. For that
purpose we use MRPT, which provides data structures for the most common
autonomous vehicle sensors along with efficient serialization and deserialization
mechanisms. MRPT is also employed for low-level interfacing with most sensors,

(a)

1

3
2 2

5

6 7

8 9

4

(b)

Fig. 1. (a) Autonomous car prototype, with visible sensors marked in red, and (b)
close-ups of the rest of sensors. Labeled devices are: (1) Sick LMS-200, (2) PGR Flea3
USB3 cameras, (3) GPS antenna, (4) embedded computers in the car trunk, (5) IMU
system, (6) steering-wheel actuator and encoder, (7) rear wheels encoders, (8) voltage
and (9) current sensors.

performing sequential Monte-Carlo (SMC) vehicle localization [12] and provid-
ing autonomous reactive navigation control [13]. Together, MOOS and MRPT
have a small footprint and allow modules to be written in C++ and run in a
number of platforms and operative systems (i.e. Windows, OSX, GNU/Linux,
GNU/kFreeBSD).

The rest of the paper is organized as follows. Section 2 describes our custom
autonomous car prototype including its sensors system, then section 3 introduces
the proposed software architecture. We finalize with Section 4 providing on-road
experiments and drawing some conclusions.

2 Prototype description

An electric car prototype has been developed at the Automatic, Robotics and
Mechatronics (ARM) research group at University of Almeŕıa with the ultimate
scientific objective of studying novel localization, mapping and energy-efficient
path planning techniques. The prototype, presented in Figure 1, consists of a
urban electric car that has been adapted for automated control. Table 1 provides
a summary of its most relevant mechanical and electric characteristics. The
prototype features a 48 volt DC-motor and 8 gel-batteries, selected thinking
of the future requirements of energy efficiency. Its batteries system ensures an
autonomy of 90 km at a maximum travel speed of about 45 km/h. In its current
form, the prototype features both: full manual control, or autonomous mode. For

Table 1. Summary of vehicle mechanical and electrical characteristics

Mechanic characteristics Value

length × width × height 2680 × 1525 × 1780 mm
Track 1830 mm
Front/rear wheelbase 1285/1260 mm
Weight without/with batteries 472/700 kg

Electric characteristics Value

DC motor XQ 4.3 4.3 kW
Batteries (gel technology) 8 × 6 V −210 Ah
Autonomy 90 km

the implementation of such automatic control, the car required the installation
of a large number of sensors and actuators as well as a computer architecture
capable of properly handling all the dataflow in real time (refer to section 3).
Figure 2 shows an illustrative scheme of the embedded computers and sensors
architecture. Two embedded computers PC1 and PC2 constitute the processing
core of the vehicle, gathering information from each sensor and giving control
commands to each actuator.

During the prototype construction, the first task carried out was the au-
tomation of typically human-actuated signals, namely: steering and throttling.
The former was addressed by implementing a so-called steering-by-wire system,
which consists of a 12 volt DC-motor coupled to the steering column by means of
an electromagnetic clutch. Such system is governed by a custom microcontroller-
based steering controller which controls the motor by means of a PWM signal.
Furthermore, the controller reads back the angular position of the steering col-
umn by means of an incremental optical encoder attached to it. In order to allow
recovering the manual steering mode, the controller is capable of uncoupling the
motor and the steering column by actuating over the electromechanical clutch.

Regarding the automatic propulsion, we generate a throttle signal equivalent
to that one generated at the gas pedal. This is easily achieved by actuating on
the propulsion DC-motor controller via an analog signal from the NI-DAQ board
connected to PC2. As a way to watch and characterize the power supplied by
this motor, we monitor the current and voltages at the rotor, the stator and the
main battery terminals. The motor controller allowed manual selecting between
forward and reverse drive and also between two working regimes (dubbed ”sport”
and ”economy”) by means of switches in the front panel of the vehicle. Now those
connections have been replaced by electronics which is controlled via digital
outputs from the DAQ system.

Once the problem of automating the vehicle controls is overcome, the rest of
sensors aim to different control strategies, state observers, fault-tolerance sys-
tems or supervisory tasks. Among the kind of the control tasks which can be
performed on the prototype, one can distinguish between low and high level
controllers. The mission oriented philosophy of the implemented architecture
makes possible to reuse some low-level controllers for higher supervisory tasks

as path planning or obstacle avoidance. Some examples of these low-level con-
trollers comprise the cruise control system or the low-level steering controller
running on the custom microcontroller-based platform.

Fig. 2. Hardware equipment lay-out.

A description of sensors layout can be found in Figure 2 while their proper-
ties are summarized in Table 2. Next, we give further details on the hardware
components installed in our prototype:

Computers: PC1 is the host computer, it features a quad core 2 GHz processor
running a 64bit Ubuntu operating system. Its tasks comprise the execution of
MOOS core and the acquisition of wheel encoders, the communication with the
low-level steering controller and cameras images processing. PC2 runs Windows
7 operating system and acquires current/voltage signals as well as actuates over
the throttle setpoint via a NI-DAQ board as well as the throttling signals. More-
over, this computer is responsible for the management of the GPS device and
the IMU.

The single board computer (SBC) PC3 is a Raspberry Pi connected to the
rest of computers in the architecture via Ethernet protocol. It has been prepared
to execute several algorithms of control and state observers. Moreover, due to
its emplacement in the front part, this is the computer which is connected to
the laser scanner. The choice of a SBC for these task is based on the principle of
delegating each process to the cheapest (in terms of both, economy and power
consumption) hardware platform capable of executing it in a reliable way.

Table 2. List of sensors, I/O devices and computers

Label Type Model

IMU Inertial sensor Xsens MTI 300
GPS GPS Hemisphere R100
ENC1,2 Wheel encoders 2 × Phidgets Optical Rotary Encoder ISC3004
ENC3 Steering-wheel encoder SICK Optical Rotary Encoder DFS61
CR,L stereo camera 2 × Flea3 FL3-U3-13E4C-C
Laser Laser Range Finder SICK LMS 200
A1,2,3, 3’ Current transducer 4 × Hall-effect LEM sensors
V1,2,3 Voltage transducer 3 × Phoenix Contact

DAQ1 I/O device NI-USB-6211
DAQ2 I/O device Phidgets Encoder High-Speed
ST Controller Prototype

PC1 Ubuntu O.S. Adapted PC
PC2 Windows 7 O.S. Industrial PC
PC3 Raspbian Raspberry Pi

Since we mostly use open source software for the cameras and vision systems,
whereas the pre-existing sensors were acquired on the NI-DAQ board, we have
chosen to preserve past architecture and, at the same time, add new features on
the car as an independent architecture. This allows also to change every module
independently at every advance of our research. The usage of the Windows OS
in one of the computers comes after carefully evaluating the support of NI-
DAQ C++ libraries under different driver versions and GNU/Linux distributions
without finding any with an acceptable level of functionality and reliability.

Sensors: The Xsens MTI-300 IMU is connected to PC2 via USB, and collects
the vehicle angular position and velocity along with its acceleration on x,y,z
axes at a frequency up to 2 kHz. The differential GPS R100 by Hemisphere
ensures the localization of the vehicle within a tolerance of 2 cm thanks to RTK
correction techniques. It is connected to PC2 through two RS-232 ports, for both
data communication and correction via 3G Internet access. The SICK LMS Laser
attached to the front part of the vehicle scans up to 180 degrees at a frequency of
18 Hz and a range of 81 m. A specifically developed controller converts the RS-
432 signal to USB aimed to the communications with the PC3. The ENC1 and
ENC2 Phidgets Optical Rotary Encoder ISC3004 mounted at the rear wheels
offer a resolution of 360 pules per revolution (ppr) which allows to implement a
low-cost efficient odometry system. However, the ENC3 encoder attached to the
steering column consists of the SICK DFS61 model with a resolution of 10000
ppr since the requirements of precision of the steering angle determination. The
CL and CR PGR Flea3 USB3 cameras attached to the upper front left and right
part of the vehicle respectively comprises the computer vision system controlled
by PC1 at a frequency up to 80 kHz. Regarding the power consumption of the
vehicle, three voltmeters (V1, V2 and V3) and ampere-meters (A1, A2 and
A3) measure the voltage and current in the rotor, the field and the batteries.

Additionally, the ampere-meter A3’ detects the sense of the current from the
batteries in order to identify when the regenerative braking system is actuating.

I/O Devices: DAQ1 is a National Instrument USB-6211 acquisition board
with 16 analog inputs (16-bit, 250 kS/s), 2 analog outputs (16-bit, 250 kS/s),
4 digital inputs and 4 digital outputs and 2 32-bit counters. It is connected to
PC1. On the other hand, DAQ2 is a Phidgets Encoder HighSpeed 4-Input board
which acquires the signals from the encoder of the rear wheels and communicates
with the PC2 via USB. Finally, the ST device refers to the steering controller
box which is connected to the PC1 via USB.

3 The MOOS-based software architecture

This section introduces the MOOS-based [10] distributed software architecture
that has been developed for interfacing all vehicle’s sensors and actuators. The
fundamental processing element in MOOS is a module, an independent process
that publishes and subscribes to variables. Several modules typically subscribe
to the same variable whereas one normally finds only one publisher for each vari-
able (although the latter is not a strict rule and the opposite makes sense in some
situations), forming processing pipelines. A central hub called MOOSDB is in
charge of assuring that all publishers reach all subscribers, which may be running
on different computers across the local network. At present our distributed sys-
tem comprises two embedded computers and one single-board-computer (SBC)
(Raspberry PI-B), all of them interconnected through 1000Mbs Ethernet. Sub-
millisecond communication delays and the usage of a local Network Time Pro-
tocol (NTP) server assures the accurate synchronization between timestamps of
data gathered in different computers, a crucial issue for either grabbing datasets
for offline processing or for closing control loops online.

Upon this MOOS middleware, we have designed a set of C++ modules
which communicate to each other uniquely by means of message-passing un-
der a pub/sub pattern. As customary in software engineering, our approach
comprises a layered structure, beginning at the lowest level where modules di-
rectly interface hardware, and up to the higher levels where modules become
more platform-independent. In fact, our guiding idea is allowing the transpar-
ent replacement of all the modules that interface the real vehicle with a physics
(multibody dynamics) simulator, thus easing and boosting development of high-
level algorithms and controller prototypes. At present such simulator is under
development, thus in the following we focus on the specific modules designed for
the vehicle prototype.

A sketch of the lower layers of our architecture is provided in Figure 3.
Starting our description from the bottom up, we find a first layer containing
all physical devices (labeled ”hardware” in the figure). Next, we have the two
lower layers of the software architecture itself, namely: (i) Drivers layer and
(ii) the vehicle-abstraction layer (VAL). In the former layer we find software
modules, each one in charge of interfacing a specific device. Modules in this

VAL
U_THROTTLE

NIDAQ

R_STEER_ANG

SteerController

LowLevel

eCARM

fwd/rev

pedal fwd/rev sport/eco

eCar

Odometry

P
H

Y
S

IC
A

L
 C

O
M

M
U

N
IC

A
T

IO
N

CONTROL LAYER

Phidgets

Encoders

ODOMETRY

LIN_SPEED

Fig. 3. Layered structure of the proposed software architecture. Refer to section 3 for
details.

layer are generic and reusable, in the sense of being agnostic about the semantic
or relevance of each sensed or output signal. In our present implementation this
layer contains: (i) a module to read from the XSens MT4 Inertial Measuring
Unit (IMU) placed at the vehicle center of mass, whose more relevant output for
this work is the instantaneous rate of change in yaw (ωz); (ii) an interface to the
two rear wheels quadrature encoders, which ultimately provide wheel odometry
(dead reckoning) and the linear and angular velocities of the vehicle (disregarding
slippage); and (iii) the interface to a National Instruments DAQ providing several
analog and digital inputs and output, from which only the outputs directly
related to throttle control are displayed in Figure 3 for conciseness.

Upwards in the architecture we reach the VAL. The goal of this layer is pro-
viding a uniform interface (i.e. set of MOOS variables) that isolate the specific
vehicle being used from high-level controllers. Therefore, we find two kinds of

0 50 100 150 200 250 300 350 400

-50

0

50

100

150

200

Trajectory GPS (m)

Fig. 4. GPS registered signal

modules in this layer: (i) non-generic hardware drivers (e.g. the ”SteerController”
module which interfaces our custom microcontroller-based steering wheel con-
troller), whose output have a semantic closely related to the robotic platform,
and (ii) converters between generic sensor signals and meaningful variables (e.g.
from encoder velocity in ticks per second to vehicle linear velocity).

We decided that the following variables are sufficient for modeling and con-
trolling an Ackermann-like vehicle:

– R STEER ANG (Input): Desired reference or setpoint for the steering angle.
– U THROTTLE (Input): Desired normalized throttle in the range [−1, 1], with

negative values implying reverse gear.
– DELTA S (Output): The actual instantaneous steering angle.
– OMEGA Z (Output): Instantaneous yaw rate of the vehicle, as measured by

the IMU.
– ODOMETRY LIN SPEED (Output): Current linear speed of the vehicle, accord-

ing to rear wheels encoders.

Upon these layers there also exist other high-level modules in charge of, for
example, robust vehicle localization and reactive navigation, which lie outside of
the scope of the present paper.

4 Preliminary experimental results and discussion

So far, experiments carried out with the proposed prototype consist of grabbing
datasets as the car is driven along fixed paths. As an example of such datasets,

0 20 40 60 80 100 120 140
5

0

5

s
te

e
ri
n
g
 a

n
g
le

 [
d
e
g
]

time (s)

(a) Steering angle

0 20 40 60 80 100 120 140

(b) Vehicle yaw position

0 20 40 60 80 100 120 140
30

20

10

0

10

20

30

time (s)

y
a
w

 r
a
te

 [
d
e
g
/s

]

(c) Vehicle yaw rate

0 20 40 60 80 100 120 140
2

0

2

4
mot

bat

fie

P
o
w

e
r
[k

W
]

time (s)

(d) Power consumption/regeneration

Fig. 5. Experimental results

Figure 4 shows the GPS signal regarding one of the paths followed in a particular
experiment. This experiment consisted in the drive of the vehicle through a
straight road of about 500 m, car speed ranges between 0 and of 10 m/s. The
first part of the experiment consists of a straight line maneuver. The vehicle
accelerated from a state of repose, and then was stopped again. The second part
belongs to a double lane change, which reproduces typical real driving conditions.
Finally, a slalom maneuver is performed in the last part of the experiment. Figure
5(a) represents the steering angle as the manual input signal as long as Figures
5(b)-(c) show the vehicle response in terms of its yaw angle and rate respectively.
As can be seen, even when the steering angle attends to severe driving conditions
as those of the third part of the experiment, the signals from the IMU fit perfectly
to such a fast transient response. Regarding the power consumptions Figure 5(d)
represents the energy consumption of rotor and field of the motor as well as the
power supplied by the batteries. It can be seen the high requirements when
the vehicle accelerates from an initial state of repose, whereas some part of the
kinetic energy is returned to the batteries when the vehicle decelerates.

To conclude, the experience gained with this work demonstrates that the
middleware MOOS, together with the proposed architecture built upon it, per-
fectly fits the demanding requirements of a distributed control architecture for
an electric vehicle. To end this section, a word is in order regarding the several
lines of work that remain open at present. One of them consists of contrasting
theoretical models for slippage with experimental results, given different kinds of
terrain and driving conditions. Another open challenge is exploring robust data
fusion techniques to achieve a ground-truth 6D vehicle localization (position and
attitude) as it moves at high speed. We are experimenting with fusion of stereo
visual odometry, inertial data from the IMU and the wheels encoders. Finally,
estimating the state of charge of the vehicle batteries is also a goal related to
energy-efficient driving, a process that will require grabbing datasets that in-
clude currents, voltages and temperature measurements for the gel batteries. It
is clear that all these open fronts deserve much future work after the design and
construction of the presented vehicle prototype.

ACKNOWLEDGMENT

This work has been partially funded by the Spanish ”Ministerio de Ciencia e
Innovación” under the contract ”DAVARBOT” (DPI 2011-22513) and the grant
program JDC-MICINN 2011, as well as by the Andalusian Regional Government
grant programs FPDU 2008 and FPDU 2009, co-funded by the European Union
through the European Regional Development Fund (ERDF).

References

1. Buehler, M., Iagnemma, K., Singh, S.: The 2005 darpa grand challenge. Springer
Tracts in Advanced Robotics 36(5) (2007) 1–43

2. Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., Fletcher, L.,
Frazzoli, E., Huang, A., Karaman, S., et al.: The darpa urban challenge (2009)

3. Urmson, C., Bagnell, J.A., Baker, C.R., Hebert, M., Kelly, A., Rajkumar, R.,
Rybski, P.E., Scherer, S., Simmons, R., Singh, S., et al.: Tartan racing: A multi-
modal approach to the darpa urban challenge. Technical Report 967, Robotics
Institute (2007)

4. Bertozzi, M., Broggi, A., Cardarelli, E., Fedriga, R.I., Mazzei, L., Porta, P.P.: VIAC
Expedition Toward Autonomous Mobility. Robotics and Automation Magazine
18(3) (September 2011) 120–124 ISSN: 1070-9932.

5. Broggi, A., Medici, P., Zani, P., Coati, A., Panciroli, M.: Autonomous vehicles
control in the VisLab Intercontinental Autonomous Challenge. Annual Reviews in
Control 36(1) (2012) 161–171 ISSN: 1367-5788.

6. Broggi, A., Buzzoni, M., Felisa, M., Zani, P.: Stereo obstacle detection in chal-
lenging environments: the VIAC experience. In: Procs. IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems, San Francisco, California, USA (September 2011)
1599–1604

7. Huang, A., Olson, E., Moore, D.: LCM: Lightweight communications and mar-
shalling. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). (October 2010)

8. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on
Open Source Software. (2009)

9. MAPIR lab (University of Málaga), ARM group (University
of Almeŕıa): Open Mobile Robot Arquitecture (OpenMORA).
http://sourceforge.net/projects/openmora (June 2014)

10. Newman, P.M.: MOOS-mission orientated operating suite. Technical Report 2299,
Massachusetts Institute of Technology (2008)

11. Blanco, J.L., et al.: Mobile Robot Programming Toolkit (MRPT).
http://www.mrpt.org/

12. Blanco, J.L., González, J., Fernández-Madrigal, J.A.: Optimal filtering for non-
parametric observation models: applications to localization and slam. The Inter-
national Journal of Robotics Research 29(14) (2010) 1726–1742

13. Blanco, J.L., González-Jiménez, J., Fernández-Madrigal, J.A.: Extending obsta-
cle avoidance methods through multiple parameter-space transformations. Au-
tonomous Robots 24(1) (2008)

	A proposed software framework aimed at energy-efficient autonomous driving of electric vehicles

