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Abstract

This work addresses the development and application of a novel approach, called Sparser Relative Bundle Adjustment
(SRBA), which exploits the inherent flexibility of the relative BA (RBA) framework to devise a continuum of strategies,
ranging from RBA with linear graphs to classic BA in global coordinates, where submapping with local maps emerges
as a natural intermediate solution. This method leads to graphs that can be optimized in bounded-time even at loop
closures, regardless of the loop length. Furthermore, it is shown that the pattern in which relative coordinate variables
are defined among keyframes has a significant impact on the graph optimization problem. By using the proposed
scheme, optimization can be done more efficiently than in standard RBA, allowing the optimization of larger local
maps for any given maximum computational cost. The main algorithms involved in the graph management, along
with their complexity analyses, are presented to prove their bounded-time nature. One key advance of the present
work is the demonstration that, under mild assumptions, the spanning trees for every single keyframe in the map
can be incrementally built by a constant-time algorithm, even for arbitrary graph topologies. We validate our proposal
within the scope of visual stereo SLAM by developing a complete system that includes a front-end that seamlessly
integrates several state-of-the-art computer vision techniques such as ORB features and bag-of-words, along with a
decision scheme for keyframe insertion and a SRBA-based back-end that operates as graph optimizer. Finally, a set of
experiments in both indoor and outdoor conditions is presented to test the capabilities of this approach. Open-source
implementations of the SRBA back-end and the stereo front-end have been released online.
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1 Introduction vehicle, a camera or a hand-held sensor) along its trajectory,
called keyframes (KFs). Assuming Gaussian errors for all the
observations and undertaking a least-squares criterion for the

above-mentioned minimization, the process can be shown to

Bundle Adjustment (BA) is a well-known problem in
computer vision (Triggs et al. 2000) that consists in finding

an optimal estimation to the positions of a set of visual
landmarks, the camera poses from where images were
captured and, typically, their calibration parameters too. This
problem, also known as full SLAM (Thrun et al. 2005) or
structure-from-motion, is typically addressed by minimizing
a single cost function that simultaneously reflects the
mismatch between the landmarks observed in the complete
sequence of keyframes and their predictions according to the
camera pose estimates. Traditionally avoided in the mobile
robotics community due to its high computational cost, BA
has recently gained an immense popularity, e.g. (Konolige
and Agrawal 2008; Kaess et al. 2011), due to new advances
in sparse algebra (e.g. sparse Cholesky decomposition
(Davis 2006), inexact Newton type algorithms (Agarwal
et al. 2010)), becoming a promising alternative to filtering
methods extensively employed for SLAM during previous
years (Strasdat et al. 2012).

BA-based SLAM defines a graphical model where nodes
are the unknowns and edges represent constraints between
them. There are two kinds of unknowns: the location of a set
of discrete entities observed by the sensor, called landmarks
(LMs), and a small fraction of all the poses (e.g. of a
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become the maximum likelihood estimator for the problem
(Hartley and Kahl 2007).

Under the general denomination of BA, different
parameterizations have been proposed in the technical
literature leading to the so-called global and relative BA
techniques (Triggs et al. 2000). In short, global BA (GBA)
selects a single KF to be the origin or reference frame for the
coordinates of all subsequent keyframes and landmarks. As
a consequence, a global, self-consistent map is obtained at
the cost of updating all variables at every time-step. On the
other hand, in relative BA (RBA), the problem unknowns are
all relative positions between KFs and LMs. Typically, LM
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coordinates are defined with respect to the KF from where
they were observed for the first time, while the pose of each
KF is defined relative to its predecessor (Sibley 2009). The
latter feature leads to graphical models where KFs form a
(mostly) linear graph, hence the motivation of naming this
strategy linear RBA in the following. Very recently, this
paradigm of relative coordinates has also been extended to
work on continuous-time SLAM (Anderson et al. 2015), with
basis functions used as continuous approximations of the
estimated trajectory instead of relying on a sparse set of KFs.

Despite some advances, like iISAM (Kaess et al. 2008),
any approach to SLAM relying on global coordinates,
such as GBA, exhibits an inherent unbounded growth of
the matrices involved in the graph optimization as the
explored area becomes larger and longer loops are closed.
Therefore, in principle, none of those SLAM methods could
be practical for any robot aimed at life-long exploration.
RBA approaches aim at solving that scalability issue (Sibley,
Matthies and Sukhatme 2010), since they only optimize a
local region of the graph around the latest KF (i.e. the current
camera pose), hence achieving a bounded computational cost
by definition. However, as it will be discussed later, the
information matrices involved in RBA formulation become
less sparse than their GBA counterparts, hence preventing it
to fully exploit sparse algebra techniques and, consequently,
to achieve an optimal performance.

The present work claims and shows that the sparsity level
in such matrices can be controlled by changing the way
in which relative coordinates are defined, which in turn
determines how nodes are linked to each other within the
graph. In particular, the creation of conveniently-connected
submaps leads to sparser matrices than those in standard
RBA approaches, without compromising their scalability
advantages with respect to their global counterpart. This
flexibility allows us to derive a continuum of strategies from
linear RBA to submapping with local maps. This is the
essence of the so-called sparser relative bundle adjustment
(SRBA) method, preliminarily introduced in (Blanco et al.
2013), and now presented here in the context of a complete
SLAM framework, tested with real datasets.

SRBA advocates the creation, within the graph, of relative
submaps whose origin KFs are mostly linearly connected,
thus defining shortcuts between nodes. This introduces
zero-blocks in the matrices involved in the optimization
(i.e. Jacobians and Hessians), hence becoming sparser. By
following the strategy of optimizing only the graph around
the current KF, also found in linear RBA, SRBA ensures
bounded-time graph optimization, even in the event of
closing loops of arbitrary length. However, we claim that
different connection patterns allow for the optimization
of larger map areas for any fixed maximum topological
distance from the current keyframe. Finally, a shortest-path
spanning tree (required by graph search operations during
optimization) is incrementally maintained up to a certain
topological distance using the novel constant time algorithm
which was also introduced in (Blanco et al. 2013).

In summary, the present work extends our preliminary
results on SRBA and presents the following contributions:

e The SRBA bounded-time nature is demonstrated by
providing detailed pseudo-code listings and thorough
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complexity analyses for the most important algorithms
that are performed on the graph.

e We provide an experimental validation, with real
datasets in different conditions, of the SRBA back-end
as graph optimizer, applied to stereo visual SLAM.

e A front-end is developed that seamlessly integrates
several state-of-the-art computer vision techniques,
along with a decision scheme for keyframe insertion.
This includes all the necessary elements to build, along
with our SRBA back-end, a complete stereo visual
SLAM system.

Regarding the latter point, the proposed front-end is
constructed upon the following building blocks. Keypoint
detection and description is accomplished through the ORB
method (Rublee et al. 2011), which provides features
invariant to scale and rotation with associated binary
descriptors. A binary bag of words (Galvez-Lopez and
Tardos 2012) for ORB descriptors is employed to assist
data association by restricting the search area when looking
for loop closures, hence boosting the overall performance.
Ego-motion estimations between consecutive frames are
computed through our visual odometry method proposed in
(Moreno et al. 2013), a fast and reliable outlier detector based
on robust kernels, as an efficient alternative to RANSAC.
Finally, we have devised a decision scheme based on image
similarity and geometrical distance between keyframes to
decide when to add new keyframes to the graph, aiming to
keep it as small as possible.

Our proposal is supported by a set of experimental results
with synthetic and real images recorded in both, indoor and
outdoor conditions. A video of such experiments can be
watched at https://goo.gl/1Ap4p9 and the source
code is available on-line*.

2 Related Work

Bundle adjustment has undergone a rebirth as an attractive
solution to the SLAM problem, thanks to the incorporation
of recent sparse algebra techniques. This has turned it into
a strong alternative to probabilistic filtering, which had
become the standard for real-time vision-based SLAM and
global localization during the last decades, leading to a long
list of works which can be found elsewhere, e.g. (Moreno
et al. 2009; Blanco et al. 2010; Wolf et al. 2002; Civera
et al. 2007). A thorough comparison between filtering and
BA solutions is presented in the works (Strasdat et al. 2010)
and (Strasdat et al. 2012), ultimately advocating for the
application of BA as it outperforms filtering methods in
terms of accuracy per unit of computation time.

Different techniques have been proposed to reduce the
computational burden of general BA solutions, which
quickly increases as the size of the map grows. For instance,
the well-known PTAM method (Klein and Murray 2007)
separates camera tracking and mapping in two parallel
threads and performs KF-based global BA by optimizing
the graph over a subset of the N most recent camera poses,

*The C++ source code for the front-end and back-end can be found
inhttps://github.com/famoreno/srba-stereo—-slamandin
https://github.com/MRPT/srba, respectively.
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in order to achieve real-time performance. However, its
effectiveness is limited to small indoor scenarios and does
not scale well with large environments.

Another notable approach to SLAM is incremental
Smoothing And Mapping (iISAM) (Kaess et al. 2008),
where a factored representation of the approximate Hessian
matrix is exploited to provide easy access to the marginal
covariances needed for data association. This matrix is
incrementally updated and maintained sparse by reordering
the involved variables.

On the other hand, there are several proposals that adopt
a relative formulation, often in combination with other
techniques such as submapping or data marginalization, in
order to reduce the problem complexity and to achieve a
bounded-cost performance that can lead to on-line, real-
time operation, as claimed in several works, e.g. (Eade and
Drummond 2008; Konolige and Agrawal 2008; Sibley 2009;
Sibley et al. 2009; Sibley, Matthies and Sukhatme 2010; Lim
et al. 2011).

A hybrid metrical-topological world representation was
successfully proposed in (Blanco et al. 2008) within a
Bayesian framework, as a natural mechanism to deal with
the map scalability issue. In the context of BA, the work
in (Lim et al. 2011) proposes a hybrid metrical-topological
representation of the map which provides scalability to the
bundle adjustment problem. This proposal benefits from
the topological map properties to allow for instant loop
closures while metric locally consistent maps are maintained
by embedding neighbor keyframes and landmarks into a
single Euclidean space and optimizing over the submap.
The submaps are then treated as rigid bodies in a global
adjustment process that yields a globally consistent map,
although this last step is not performed in real-time.

In (Konolige and Agrawal 2008), a skeleton is built from
the camera and landmark relative poses, in order to represent
areduced system that approximates the full problem, leading
to feasible solutions when dealing with large loop closures.
This skeleton is formed by marginalizing features over
camera poses and subsequently further reducing the latter.

The works in (Sibley 2009; Sibley et al. 2009)
constitute the basis of the RBA approach developed in
this paper, being further extended in (Sibley, Matthies and
Sukhatme 2010), where a sliding window filter (SWF)
based on a delayed state marginalization is proposed. Its
operation ranges from EKF to full SLAM according to the
window size, while performing both landmark and camera
pose marginalization to achieve constant time operation,
demonstrating similar convergence properties to the full
batch solution and outperforming those from standard
visual odometry. Nevertheless, it has been specifically
devised for EDL (Entry, Descent and Landing) applications
for autonomous landing vehicles and there is not any
validation in more general situations as typical indoor
and outdoor urban environments. These scenarios, though,
have been addressed in (Sibley 2009) and specially in
(Sibley, Mei, Reid and Newman 2010), where a large set of
outdoor experiments have been conducted to demonstrate the
scalability potential of relative approaches. Among them, it
can be highlighted the estimation of a 121-km outdoor path
from Oxford to London that includes the use of different
forms of transport such as foot, bikes, trains and some others.
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Recently, in (Mur-Artal et al. 2015) it has been presented
a visual SLAM system which has some similarities with
the present work. It also addresses BA by relying on
ORB features for tracking, mapping and performing place
recognition based on bag-of-words. Since it operates
on monocular images, it is provided with an automatic
procedure for map initialization that includes the parallel
computation of both an essential matrix and a fundamental
matrix to infer the relative pose between two frames,
regardless of the type of scene. Once computed, one of them
is heuristically selected and the pose is derived from it. Our
work does not need such procedure as we employ stereo
images that provide immediate 3D information for the map
initialization. Apart from this, the main difference with our
approach comes from the fact that they optimize a reduced
graph, denoted by Essential Graph, which contains all the
problem keyframes but a reduced number of edges. Our
work, on the contrary, relies on the optimization of the local
area of the graph, which includes the current and nearby
submaps (up to a certain topological distance) and all their
associated edges, building a locally consistent map.

In comparison to the above-mentioned methods, in this
paper we adopt an approach that, instead of being attached to
a single strategy, defines a continuum of solutions that range
from global BA to linear RBA, e.g. (Sibley et al. 2009). This
flexibility is derived from a submapping scheme that allows
us to exploit more thoroughly the inherent sparsity of the
system matrices without performing data marginalization.
The so-called sparser RBA will be explained in Section 5.

3 System Overview

This section describes the proposed system built upon
ORB keypoints and SRBA to perform visual SLAM. It
can be split into a front-end, which is in charge of
extracting and matching features from the input stereo
images, performing visual odometry between consecutive
time-steps and, if needed, finding correspondences between
the current observation and the map, and a back-end that
creates, manages and performs inference on the graphical
representation of all the unknown relative camera poses and
landmark positions as the robot navigates.

At the core of our proposed front-end is the ORB feature
detector (Rublee et al. 2011). Relying on the FAST and
BRIEF methods, ORB is not only a fast and reliable
feature detector but it also provides binary descriptors for
the keypoints, which are efficiently matched by measuring
Hamming distances. Data association is aided by the
management of an image database based on a binary bag
of words (Galvez-Lopez and Tardos 2012). When data
association is needed, the set of descriptors associated to
the keypoints extracted in an image is employed to query
the database looking for the most similar image stored in it,
thus leading to the process of matching features between the
current observation and the stored map.

Regarding the back-end, the proposed SRBA method
models the entities in the SLAM problem as a graph, whose
nodes are KFs and LMs while the edges symbolize the
relative constraints between them. In order to estimate both
the world structure and the KF poses, a nonlinear least-
squares optimization process is carried out, which minimizes
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Figure 1. Scheme of the proposed SRBA-based visual SLAM
system, with the focus on the front-end structure.

the mismatch between all the observed image features and
their predicted positions in the image. Generally, such an
error function is assumed to be quadratic in the image feature
projection errors, though non-quadratic error functions,
sometimes referred as robust kernels, can be chosen to deal
with the presence of outliers in the observations. Huber
kernels are typically used to this end, although recent
quantitative benchmarking has demonstrated that other
kernels achieve superior performance in photogrammetric
and computer vision applications (Concha and Civera 2015).
It must be noted that, by disregarding the estimation of
landmark positions, we can follow a simplified version of
the above optimization process to estimate the camera ego-
motion between consecutive time-steps, i.e. to perform visual
odometry.

Fig. 1 shows the general scheme of the proposed system,
sketching all the stages from the acquisition of the stereo
images to the joint estimation of landmark positions and
robot poses up to the current time-step, carried out by the
back-end. Note that the procedures included in our front-
end have been emphasized in this figure, since they will be
explained next. The back-end, represented here as a shaded
block, is addressed later in section 5.

Notation

Formally, let us define the system state vector as:

s = (p,x), ()

which encompasses the problem unknowns, i.e. the
collection p of P keyframes and the set x of L 3D landmark
positions:

p = {pj,b}jzl...P,be{l.‘.P}\b;éj

X = {Xj7b}j:1...L, be{l...P} " 2

For the KFs, this notation defines j as an identifier for the
keyframe while b indicates the index of the reference frame
which it is referred to. Note that b cannot be the same as j
since it does not make sense to refer a keyframe to its own
reference system. Regarding landmarks, j stands again for an
identifier while b specifies the so-called base KF, which is the
reference frame in which the j-th landmark coordinates are
expressed. It is important to remark that the choice of which
keyframe will be the reference keyframe b represents the
main difference between global and relative approaches: i.e.
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in global SLAM there exists a privileged coordinate frame
that serves as a reference for the entire map.

Let z be the set of IV observations gathered at a certain
time-step, each one assumed to be corrupted by zero-mean
Gaussian noise with information (inverse covariance) matrix
Ajl

Z= {z?}jzl,...,N; o€{l,....P}’ (€)

where j represents the index of the observed landmark, and
o stands for the index of the current KF, which will be called
the observer KF.

In this paper, the observations are represented by 4D
vectors comprising the image coordinates of the 3D
landmark projections in both the left and right images:

T
Z;‘) = (uL7vL7uRavR)j . (4)

Finally, let T, € SE(3) denote a 4 x 4 transformation
matrix that represents the pose of the o-th KF with respect
to the b-th KF, its reference system. Thus, the conversion
of the j-th landmark coordinates, referred to its base KF b,
to its coordinates with respect to a certain observer KF o is
performed through:

x93, = (To0) " Xjp- (5)

In relative formulations, this matrix is built from a chain of
transformations, becoming the main responsible for the loss
of sparsity — we continue this discussion in Section 5.

For the sake of clarity, the subscript and superscript
concerning the base and/or the observer KFs for the
keyframes, the landmarks and/or the observations will be
omitted whenever they are unnecessary.

4 Front-end

This section describes the methods implemented within the
system front-end, from keypoint detection in a pair of stereo
images to the extraction of a set of associated visual features
between the current observation and the stored map.

4.1 ORB keypoints

Due to computational efficiency requirements, feature-based
visual SLAM frameworks tend to rely on efficient methods
to detect keypoints and extract descriptors that are fast to
both compute and match. As a result, binary detectors and
descriptors are becoming a standard. In this paper we employ
the OpenCV (Bradski 2000) implementation of the ORB
(Rublee et al. 2011) keypoint detector and descriptor.

Built upon the FAST detector (Rosten and Drummond
2006) and the BRIEF descriptor (Calonder et al. 2010), ORB
enhances them by providing scale and rotation invariance
to the detected keypoints. Stereo matching is subsequently
performed through the Hamming distance (Hamming 1950)
between ORB descriptors, i.e. counting the number of
different bits between them. We also consider epipolar
restrictions which, in this case, reduce to corresponding
points lying on the same image row. The set of stereo
matches at ¢-th time-step is denoted by c;.

Finally, in order to provide tracking information to later
stages in the system, a unique ID is assigned to every stereo
match in ¢;.
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4.2 Visual odometry

Camera ego-motion between the previous time-step and the
current one is then estimated by the visual odometry method
we formerly presented in (Moreno et al. 2013).

First, inter-frame keypoint correspondences are found
between the current stereo matches and the previous ones
(¢t and c;—1 in Fig. 1, respectively). Following a similar
approach than that for stereo matching, we look for potential
correspondences between the current left image and the
previous one, relying again on descriptor distances and
epipolar restrictions (which, in this case, involves the
computation of the fundamental matrix for the considered
images). For the sake of robustness, this process is repeated
for the right images so that only the matches consistent with
those found in the left ones are kept.

Visual odometry is then computed following the general
approach of iteratively minimizing a certain cost function
which measures at each iteration the mismatch between
the predicted and the observed image projections of
corresponding keypoints at both time-steps:

F(p)=>_ %AZEAZ-AZZ-7 (6)

where p stands for the estimation of the camera pose
change between time-steps ¢ — 1 and ¢ and represents the
only unknown within the system state in Eq. (1) for visual
odometry. In this situation, therefore, the keypoints 3D
coordinates are considered to be fixed, and are computed by
back-projecting their image coordinates at time ¢ — 1.

On the other hand, Az; = z; — z; stands for the error
between the prediction z; of the i-th feature and its
observation z;. The prediction function determines the
coordinates of a keypoint in the current image according
to its 3D position x, and the estimation p at the current
iteration:

h(p,x) =2z = {Z;}i—1,.. N- @)

Finally, A; in Eq. (6) is an appropriate weighting matrix,
proportional to the inverse covariance of the zero-mean
normally distributed noise (with a standard deviation of
op) that affects keypoint locations. Assuming identical error
distributions for all detected features in both u and wv
directions leads to the simplification A; = (1/02) I, Vi.

Typically, the cost function is minimized by computing
small increments Ap that are added to the current estimation
until convergence, yielding a final solution p*. These
increments can be found by solving the well-known Gauss-
Newton equation:

HAp =
(J'AJ)Ap =

-8,
—JTAAz, (8)

where J = Oh,/0p stands for the Jacobian matrix of the
prediction function, and Az is a block-column vector
containing the errors Az; of the individual observations.
However, the quadratic cost function in Eq. (6) is
not robust against the presence of outliers, so that the
minimization process may converge to an invalid solution.
Thus, we follow the ERODE method presented in (Moreno
et al. 2013) which, instead, proposes the use of a robust
cost model based on the pseudo-Huber function (Huber et al.
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1981):
Fy(p) = Z; {2&;2 < 1+ (Z—g) - 1” )

with b being a parameter which tunes the shape of the
function and s; = Az]A;Az;. Using this function also
implies a change in the Gauss-Newton expression shown in
Eq. (8), which becomes:

(JTAJ) Ap = —p'J"AAz, (10)
where p’ = {p.} is a block-column vector with the derivative
of the pseudo-Huber function for each observation:

o 2 (Vo () )] - g
= —|2b 1 — -1 = —.
Pi 0s; +(b) 1—|—;}%

Adopting this procedure, the contribution in the cost
function of the large errors introduced by the outliers is
significantly mitigated. This approach implies that all input
data are considered in the minimization process but, on the
other hand, there is no need to try different hypotheses of the
model (as with RANSAC). With this method, the estimation
process naturally converges towards the true solution and,
after a few iterations, the outliers appear clearly visible in
the vector of residuals so that we can remove them and,
subsequently, refine the estimated solution to achieve higher
accuracy.

It is important to remark that, although visual odometry
is computed at every time-step, we follow the usual practice
in the computer vision and SLAM literature of not creating
keyframes so often, but only when a set of conditions are
fulfilled, as explained next.

Y

4.3 Keyframe Creation Decision

Creating new keyframes is a computationally expensive
process. It implies inserting new variables and constraints
in the graph, then optimizing the whole system or part of
it. This is specially noticeable when working with real data,
since the number of features detected in images may become
considerably large. However, in our previous work (Blanco
et al. 2013) little attention was paid to this issue, since
we focused on synthetic, sparse maps. In this work, on the
contrary, a set of heuristics has been defined to decide when
to create new keyframes, following the common idea of
inserting a new one only when the explored area is becoming
different enough from the last stored keyframe.

Algorithm 1 summarizes our proposed scheme for
deciding when to create keyframes. The process starts from
the visual odometry output, which consists of: (i) a list
comprising the IDs of the tracked keypoints (assigned during
stereo matching) and (ii) the estimation of the pose change
between consecutive time-steps p*. The former is employed
to keep track of the IDs assigned to the keypoints that
have been correctly associated between consecutive time-
steps. The drop of the number n; of tracked keypoints
below a certain threshold indicates that the observed scene
is becoming significantly different. The latter, in turn, is
employed to incrementally build a vector c, that stands
for the transformation between a certain camera pose and
the one at the current time-step. Thus, as the camera



The International Journal of Robotics Research XX(X)

Algorithm 1 New keyframe decision scheme

Input:
IDs = {ID1,...,IDyn,} > IDs of the n; tracked keypoints
p* > Estimated pose change from visual odometry
[ > Accumulated pose change, updated from the last call to this
algorithm

Output:
d > Decision about whether or not create a new keyframe
Cp > New accumulated pose change

I: ¢cp < cp @ p* > Update the current estimated pose change

2: if |cp| > th1 OR ny > tho then

3: IDs <+ 0 > Reset tracked IDs
4: cp < O > Reset to a zero pose change
S: d ¢+ true > Create a new keyframe
6: else

7 d 4+ false > Do not create a new keyframe
8: end if

return {d, ¢, }

moves, ¢, incrementally grows in terms of translation and/or
rotation. When such translation or rotation grow above
some pre-defined thresholds, the camera is considered to
have substantially moved from the previous keyframe and,
therefore, it might be observing a significantly different area.

Any of these two indicators will trigger a data association
process that will ultimately confirm whether or not the
current observation has little in common with the system
knowledge of the environment. In any case, both the
monitored incremental pose c, and the IDs of the tracked
keypoints are reset, as the decision scheme will be started
again from the beginning. Data association is discussed in
Section 4.4.

In this paper, the number of associated visual features
yielded by data association is employed as a measure of the
similarity between the compared keyframes. Thus, if such
number falls below a certain threshold (refer to Fig. 1),
a new keyframe is created with the information extracted
from the current pair of images. Otherwise, the present
observation is considered to still share sufficient information
with the most similar keyframe observed up to the current
time-step, hence discarding the addition of a new keyframe.
Finally, the thresholds employed in the preliminary tests are
adjusted taking into account the number of associated visual
features. Hence, the translation and rotation limits allowed
before triggering a new data association process reduce as
the measured similarity decreases.

4.4 Data Association

One of the key stages in the design of SLAM systems
is the so-called data association. This term stands for the
process of looking for correspondences between the current
observation and the knowledge that the system has about the
environment, i.e. the map. We refer interested readers to a
more in-depth discussion of the problem presented elsewhere
(Blanco et al. 2012). A special situation of paramount
importance arises when the current observation matches
to landmarks stored some time ago, hence implying a re-
observation of an already explored area. This situation is
known as loop closure.
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Figure 2. Scheme of our proposed data association procedure.
Matched ORB keypoints (kps) from the left image are converted
into a vocabulary word w; employed to query (and which is
subsequently inserted into) the image database (DB), retrieving
a list of similar images. Then, current left and right keypoints are
matched against those from the retrieved similar images by
means of the Hamming distance between their descriptors (H
blocks). Fundamental matrices F are finally employed to
discard outliers.

In this work, data association follows the approach of the
above-explained inter-frame matching process and extends it
by introducing a previous stage that selects the most similar
KF to the current one among those already stored in the
graph. This stage aims at detecting loop closures and also
relies on the ORB descriptors computed during keypoint
detection to identify the corresponding observed landmarks,
as depicted in Fig. 2.

We adopt a bag of words approach based on such binary
descriptors to efficiently cope with this problem. The basic
technique underlying a bag of words approach consists in
building a database from the images recorded as the camera
moves, then finding the most similar one within the database
when a new image is captured. Specifically, we employ the
method presented in (Galvez-Lopez and Tardos 2012), which
was initially developed for BRIEF descriptors, but that has
also proven to perform well with ORB descriptors because
of their similarity.

In short, the bag of words technique uses a previously
built visual vocabulary to transform an image to a numerical
vector that is subsequently employed to look up among
the images stored in the database. Since the bag of words
presented in (Galvez-Lopez and Tardos 2012) is hierarchical,
the vocabulary structure becomes a tree.

A schematic view of the different stages carried out in
this paper to perform robust and reliable data association
is shown in Fig. 2. There, it can be seen how, by using
the pre-built word vocabulary, all the ORB descriptors
extracted from an image (we only employ the left image)
are summarized into a single word w; that is subsequently
stored within the database. As new images are captured,
the so-obtained words are employed to query the database,
retrieving this way a small list containing the most similar
images within it. Therefore, the query result restricts the
search for correspondences between individual landmarks to
only those belonging to the most similar images instead of
the whole map.

Once the most similar stereo images are retrieved, their
keypoints and those from the current image pair are matched
following the inter-frame matching process explained in
Section 4.2, yielding a set of associated visual features
which will represent the input of the SRBA-based back-end.
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Finally, in order to consider an association as valid, all the
matched projections of the landmark in the four images must
be consistent with the epipolar geometry and the distance
between their descriptors must fall below a threshold. This
methodology reduces the presence of outliers in the data
association output.

It is important to note that, as the camera explores
unknown areas, the most similar image will be the last
one inserted into the database, but, when visiting already
explored zones, older images will be also retrieved, hence
detecting loop closures.

5 Back-end

As already introduced in previous sections, one can establish
two main variations of Bundle Adjustment (BA) techniques,
also known as smoothing methods (Strasdat et al. 2010),
according to the representation chosen for keyframes and
landmarks: Global BA (GBA) and Relative BA (RBA). The
principal differences between them is that GBA builds a
global map by imposing a privileged KF to be the origin of
coordinates, whilst RBA only estimates relative coordinates
between KFs and LMs.

The main drawback of GBA that motivates the use of
relative approaches to BA lies on the computational burden
that global formulations suffer when dealing with large
graphs, specially during loop closures. In theory, the number
of unknowns that may need to be updated during a loop
closure in GBA is unbounded. Relative methods, on the
other hand, optimize only a small part of the graph, leading
to smaller optimization problems which can be handled
efficiently in bounded time. Though, the matrices associated
with those smaller problems are significantly denser than
their global counterpart due to the need of performing
chains of pose compositions at each observation, since the
coordinates of the stored landmarks (referred to their base-
KF) have to be transformed to the current observer KF.

There exist two important concepts which are unique
features of RBA and do not have a counterpart in GBA or
global SLAM, namely:

e Maximum topological distance (D,,4,) for local map
optimization. This parameter defines how far from the
current KF should we optimize at each time-step, i.e.
it determines the extension of the “active part” of the
map. Implicitly, this parameter also sets the minimum
distance between the base KF of observed landmarks
and its current observer KF for it to be considered a
loop closure.

e Shortest-path spanning trees (STs) for every KF.
These are data structures required to efficiently
find the shortest paths between any pair of KFs
within a distance D,,,,. These paths are needed to
determine the variables involved in the chains of
pose compositions employed to transform landmark
coordinates and to determine what observations
may be considered loop closures. A constant-time
algorithm for incrementally updating STs over time
was proposed in (Blanco et al. 2013) and will be
summarized later.
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Figure 3. Example of a bundle adjustment problem.

As a consequence of optimizing only a part of the
graph, RBA approaches create maps that are only locally
consistent. Nevertheless, we claim that local maps of an
environment, which include a correct representation of its
global topological structure, are perfectly suitable for most
common mobile robot operations, such as autonomous
navigation via path planning and obstacle avoidance.
Regarding the claims made elsewhere (Kaess et al. 2012)
about the unsuitability of relative graphs for finding potential
shortcuts during exploration, we believe that, provided that
errors in the estimated relative poses between local maps
are reasonably reduced, relative coordinates have enough
accuracy to perform such operations. Notice that relative
coordinates for KFs farther than D,,,, can be obtained at
any instant by simply chaining the poses of edges along a
spanning tree rooted at some KF in the area of interest. That
is, any efficient global SLAM method (such as iSAM2 in
(Kaess et al. 2012)) can be used to retrieve the global map
from the relative graph built by RBA, although it would
normally not be required for any robot operation.

Sparser Relative Bundle Adjustment (SRBA) (Blanco
et al. 2013) was proposed as a blended solution in between
GBA and the linearly connected implementation of RBA
described above. By changing the policy about how to create
new edges, SRBA introduced the idea of defining some
KFs as origin KFs, dynamically selected as local reference
systems and effectively creating submaps. Poses of all KFs
within a submap are referred to its origin KF, whereas
landmark coordinates are referred to the KF where they were
observed for the first time, as usual in RBA. The underlying
idea of this submap-based representation is to generate edges
between origin KFs so that paths between KFs become
shorter in average, thus reducing the loss of sparsity that
linear RBA incurs in, while keeping its advantages over
global mapping.

In order to illustrate the differences between the
aforementioned approaches, we refer to the example scenario
represented in Fig. 3. There, a robot follows an arbitrary
path through an environment while gathering a total of
22 observations (shown as red-dashed arrows) of the 6
landmarks present in the scenario (displayed as numbered
stars). In the figure, the observations are labeled following
the notation introduced in Eq. (2). During navigation, 15 KFs
have been defined among the whole set of captured frames.
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Figure 4. Graph representation under a GBA (top), linear RBA (middle) and SRBA (bottom) approaches. Blue-dashed arrows
represent edges between KFs and their origins, while red-solid arrows indicate landmark positions with respect to their base KFs.
For SRBA, the number of KFs within each submap has been set to 5.

In this situation, GBA defines all the KF poses and
landmark positions referred to the global reference system
centered at KF#1, as shown in Fig. 4 (top). Consequently,
all the observations obtained from KFs different from KF#1
imply the transformation of the landmark global coordinates
to the KF local reference system, hence inserting a non-
zero block into the Jacobian matrix corresponding to the
pose of the current observer KF. As a result of the global
representation of KFs, this implies that T} , in Eq. (5) is
composed by only one transformation with b = 1 for all the
observations gathered from KFs different to the first one.

On the other hand, in linear RBA, the global poses
of the keyframes are not the unknowns of the problem,
but, instead, the relative transformations between them are.
Usually, the defined edges link consecutive nodes creating
linearly connected graphs, while landmarks are defined with
their coordinates referred to the keyframe where they were
observed for the first time, as shown in Fig. 4 (middle). In
addition to that, another difference with GBA arises when the
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camera closes the loop, so that the problem structure must be
modified due to the addition of a new unknown: the edge that
joins the current KF and the old, re-visited one (please, refer
to the green-dotted edge in Fig. 4 (middle) joining KF#15
and KF#1).

As a negative side effect, the sparsity level of both the
Jacobian and the Hessian matrices results in fact reduced,
degrading the efficacy of sparse algebra methodologies. This
relative formulation leads to Ty, in Eq. (5) becoming a
chain of pose compositions following the path along the
edges between the observer and the base keyframes, inserting
dense blocks of size L x L in the matrices, with L being the
number of edges between both KFs along the shortest path.

However, the potential of RBA lies on its flexibility, since
it allows the optimization of only a subset of the problem
unknowns, chosen according to the area affected by the
current observation. This area is often called the active region
and it is built through a breadth-first-search starting at current
keyframe where the re-projection errors are computed in
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each keyframe, being added to the active region those with
errors above a defined threshold. Moreover, those landmarks
observed from the current keyframe are also considered to be
part of the active region.

In addition to that, the active region is augmented
by another set of keyframes called the static region,
which is composed by any non-active keyframes that have
measurements of the currently observed landmarks. The
measurements at the static keyframes are included in the
least-squares minimization but their relative positions are not
optimized in the process, hence the term static.

Since only the unknowns involved in the active region
are optimized in RBA, the Jacobian and Hessian matrices
become significantly smaller and, more importantly, the
complexity burden of the solution remains bounded even
in the presence of large loop closures. Fixed and adaptive
versions of the active region can be found in (Sibley 2009)
and (Sibley et al. 2009), respectively.

Regarding SRBA, a possible graph created under this
framework for such scenario is shown in Fig. 4 (bottom).
Note how the graph has been divided in four submaps of size
5 whose origin KFs are those numbered 1, 5, 9 and 13. All
the KFs within the submaps are referred to their origin KF
and, similarly to the RBA case, their pose transformations
with respect to it have been labeled by T'; ;, with j standing
for the KF index and b representing its reference frame
(or origin KF). On the other hand, landmark positions x;
are represented following the same convention as for the
standard RBA approach, with their coordinates referred to
their base b KF. Both the poses of the KFs and the positions
of the landmarks define the system state (i.e. the problem
unknowns), to be determined from the observations, as in any
bundle adjustment problem.

It can be seen in the figure that edges between origin KFs
have been created (e.g. from KF#1 to KF#5) so that when
the coordinates of a landmark have to be transformed from
its base KF b (member of submap s;) to the observer KF o
(member of submap s;), the corresponding chain of poses
only involves the existing edges between the origin KFs of
the traversed submaps (from s; to s;) in addition to those
between KFs b and o and their respective submap origins.
Generally, such path across the graph will be shorter than the
chain of poses stated by standard linearly connected RBA,
being this effect more beneficial for larger submaps. Thus,
this approach may be intuitively understood as a way of
creating shortcuts in the pose graph to shorten paths along
KFs chains, therefore reducing L and leading to sparser
matrices, as shown later.

It is important to note that, by setting up submap sizes
from 1 to infinity, SRBA seamlessly integrates all the
possible KFs configurations ranging from pure linear RBA
to GBA, proving the flexibility of this blended approach.

5.1

As explained in Section 4.3, once the decision to insert a new
keyframe has been taken, the set of visual features obtained
through data association are fed to the SLAM back-end to
maintain and optimize the graph that represents the relative
map of SRBA.

The entry point for the back-end, summarized as
pseudocode in Algorithm 2, takes the set of observations

Back-end implementation
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Table 1. Summary of notation employed in the algorithms

Symbol Description
Doz Maximum depth of maintained S7's
N The order of how many KFs are
R reachable within a range of D, 45
N, Number of observations in a timestep
Minimum number of shared
NEC observations between two submaps to
create a loop-closure edge
Constant representing the expected
7 “sparseness” of local maps
Set of base KFs for all the observations
B .
in a KF
C Set of origin KFs for all submaps of B
qr - Spanning tree: Topological distance
ST-Dli]lj] bStweengKFs i ang J- Sgymmetric table.
Spanning tree: The next edge to follow
ST.NTi][j] | toreach j from ¢ throughout the
shortest path.
.1 | Spanning tree: The set of
ST Reach(i] rezlchabli KFs from ¢ within D,
a1 | Spanning tree: Sequence of all edges
ST Seqli]|j] alr())ng thf shortest(iaath from i to jg

(and their data association) for the current KF, expands the
graph as needed to accommodate the new KF, determines
whether one or more KF-to-KF edges have to be created
(the latter case corresponds to a loop closure) and optimizes
the so-obtained nearby variables to ensure a consistent local
map around the current KF. Subsequent subsections address,
from a top-bottom perspective, each of the sub-algorithms
required to perform all these tasks. Refer to Table 1 for a
summary of the notation employed in all the algorithms.
Worst case computational complexities are summarized
along with the pseudo-code, in order to provide a validation
of the bounded-time nature we claim for SRBA. Please, refer
to (Blanco-Claraco 2013) for further low-level details about
the C++ structures mentioned in these algorithms.

From the computational cost analysis of our method, we
can conclude that each time step has a typical cost that grows
with the cube of Ny (the number of reachable KFs from any
other KF within a maximum topological range of D, ) and
linearly with N, (the number of observed landmarks). Note
that N is bounded, as long as it is the degree of the graph. A
key issue here is modeling the number of edges (not nodes)
within D,,.,. Assuming a constant ratio v between edges
and nodes, we have O (7Ng) edges to optimize in each time-
step (line 8 in Algorithm 2).

To achieve minimal computational cost, Nr should be
as reduced as possible, which involves having a sparsely
connected graph. Nevertheless, the larger Npg is, a larger
amount of keyframes and landmarks of the map are kept
locally consistent. On the other hand, it is also desirable to
decrease L (topological path length between observer KF
and base KF) as much as possible, since it leads to smaller
dense blocks in the approximate Hessian matrix. However
this involves having a dense graph, which is in conflict with
our first desiredatum.

As a trade-off, SRBA proposes a submapping approach.
While linear RBA leads to linear graphs, ours generates a
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Algorithm 2 srba_define_new_keyframe

Worst case: O((YNg)? + No(Dimaz + log Ng))

Input: (20, 0n) = { (zh,04) , o (207,00 ) }
Output: The updated, locally consistent map

// Update keyframes (KFs) data structures
1: n <—number of KFs in the map
2: KF[n] +—empty KF data structure

/I Apply edge-creation policy to decide how to handle loop closures, etc.

> Set of N, new observations z, and their data association of,

> Assign a free ID to the new KF — O(1)
> Insertion at the end of std: :map — O(1)

3: edge_creation_policy (an,n) (See Algorithm 3) > O(|C\N}2% log NR)

// Update symbolic Jacobian structures > O (No(Dmaz +1log Ngr))

4: for each (z,, ) € (zn,an) do > For each of the N, new observations

5: add_observation( z} |, n , o) ) (See Algorithm 6) > O(Dmaz + log Ng)
~ ~~

obs. data ©bserving KF Jandmark ID
6: end for

/I Update SLAM estimation
7: edges_to_optimize < all within a Dy, distance from n
8: non_linear_optimizer(edges_to_optimize)

> O(Nrg)
> O((YNg)?)

hierarchical-like lay out. With this strategy we ensure that
most KFs in the graph have a degree of one, while a large
number of potential observations base KFs are still available
within a short topological distance.

5.2 Edge creation policy: submapping strategy

The edge creation policy for the proposed SRBA formulation
establishes a fixed number of KFs within the submaps so that
when this limit is reached, a new submap is started with the
new keyframe acting as its origin KF.

Algorithm 3 shows the process of deciding which edges
must be created under such a fixed-size submapping
approach. It should be mentioned that our open-source
implementation allows users to redefine such edge creation
policy (ECP) to ease further research.

In any case, a new edge e is always introduced between
the last origin KF 0;,.4; and any new keyframe n which
is not to become the origin of a new submap. Next, we
search for additional edges by checking whether the visual
features produced by the front-end contain a significant
number of associations with landmarks whose base KFs are
more distant to the current KF than D,,,,... In this case, the
system determines that the camera is observing a far, already
explored area, thereby detecting a loop closure and adding
new edges e;. to the graph (lines 25-27 of the pseudocode).
We must note that there are no differences in the way that
edges e and e, are inserted, no matter if they represent
loop closure or simple constraints between origin KFs and
submap members. With each sequential creation of new
edges, the associated shortest-path spanning trees (STs) are
updated to account for the changes introduced in the graph.
Therefore, the order in which potential loop closure edges are
considered (in the loop spanning lines 19-28) is important
since, once an edge to a remote submap is added, other
nearby submaps which were initially too far from the current
KF (and could be interpreted also as loop closures), may
fall within the D,,,, range, hence preventing the creation
of additional edges. Thus, those submaps with the highest
number of shared observations are considered first, since
additional edges to them minimize the length of the pose
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chains from observer and base KFs, leading to more efficient
nonlinear optimization steps.

In the pseudocode, this involves determining the set of
base KFs associated to the current observations, as well
as their multiplicity (i.e. the number of observations that
belongs to each of them). Subsequently, these base KFs are
grouped according to the submaps they are part of, with the
aim of detecting the submaps that are affected by the current
observation. Finally, we measure the distance between the
origins of the involved submaps and the new node n, creating
a new edge between them if such distance is over a certain
value D, ., hence detecting the loop closure scenario.

The overall computational cost for this routine is
O(|C|N%log Ngr), most of which emerges from the
procedure for creating new edges, in Algorithm 4, with a
cost of O(N#% log Ng). Given that both |C| and Np can be
considered to be bounded under mild assumptions, it is clear
that so are these algorithms.

5.3 Shortest-path spanning trees update

Regarding shortest-path spanning trees, the SRBA approach
presented in (Blanco et al. 2013) creates and maintains
STs for the graph up to a maximum topological distance
of Dz, coinciding with the maximum map area that is
also maintained locally consistent. There, the set of STs is
implemented by means of two symbolic tables containing,
for any two KFs ¢ and 7, both the topological distance in the
graph between them, and the next node in the path from one
to the other. Therefore, the shortest chain of poses between
both KFs can be built by traversing these STs.

Although a ST for all the nodes in a graph could be
easily created through classic breadth-first-search algorithms
(Moore 1959), SRBA pursues the incremental build and
update of both the graph and the STs as the environment is
explored. Hence, the original paper proposed an incremental
update algorithm for STs which we summarize next. When
a new node, or keyframe, is added to the graph, a set of
N edges connecting it to other existing keyframes must be
defined (although usually it will be only one). Let n be
the new node in the graph and i; the target node for one
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Algorithm 3 edge_creation_policy (Submapping strategy)

Total: O(|C|N% log Ng)

Input:
an = {ak, ...,
n

Output:
New edges added to the RBA graph

ey

: Olocal < submap_id[n]

2: DLC<_(Dmaz+1)— 2
—_—— ~~
Out of range Extraedges: n <+ 07,cq1. base KF to its origin
/I Get ordered set of base KFs with observations in a.,
3: B+ 2,
Bym <0
4: for each Im_id € o, do
5: base_kf_id +get from all_lms[lm_id]
6: B < B U {base_kf_id}
7: B base kf_id] < Ba[base kf_id] + 1
8: end for
/I Get ordered set of submaps with observations in a,
9: C«+ g,
CM ~—0
10: for each base_kf_id € B do
11: s-id < submap_id[base_k f _id)
12: C + CU {sd}
13: Cm[s-id] < Cm[s-id] + Bm|base_k f_id]
14: end for
15: Cg « sort(C,Cn)
/I Decide which KF-to-KF edges to create
16: if n # 0pcq; then
17: create kf2kf_edge(n <> 0jocqi) (See Algorithm 4)
18: end if
19: for each oremote € Cs such that Cpg[oremote] > NS do
20: if 0remote € ST .Reach[oj,cq1] then
21: d«+ ST-D[Olocal][OTemote]
22: else
23: d < oo
24: end if
25: if d > Dy then
26: create_kf2kf_edge(0jpcal ¢ Oremote) (See Algorithm 4)
27: end if
28: end for

> IDs of all N, observed landmarks (Data association)
> ID of the new KF

> Get ID of the current submap origin — O(1)
> Minimum distance between submap origins for loop closure — O(1)

> Total: O(N, log |B|)

> Initialize set of KF observation bases and their multiplicity — O(1)
> Total : O(N, log |BJ)

> Random access to vector/deque container — O(1)

> Insert in ordered set — O (log |B|)

> Update KF multiplicity — O(log |B|)

> Total: O(|B| log |C|)

> Initialize set of KF submap origins and their multiplicity — O(1
> Total: O(|B]| log |C|

o
> Insert in ordered set — (log |C|

)
)
)
)
> Update multiplicity — O(log |C|)

> Sort submaps by decreasing number of shared observations — O(|C| log |C|)

> Total: O(|C|N?% log Ng)
> If this KF is not the origin of the current submap
> Always connect a KF to the origin KF of its submap — O(NIQ% log NRr)

> O(|CY) iterations. Total: O(|C|N% log Ng)
> Find in a map container — O(log Ng)

> Find in a map container — O (log Nr)

>O0(1)

> Update KF-to-KF edge structures — O (N }23 log NRr)

Algorithm 4 create kf2kf_edge

Total: O(N3 log Ng)

Input:
fit > IDs of the “from” and “to”” KFs
p? (Optional; sensor model dependent) > Initial value of the edge inverse pose
/I Allocate new kf-to-kf edge > Total: O(1)
1: new_id < number of entries in k f2k f _edges > Query size of a deque container — O(1)
2: Append new data structure with <f, t, new_id, psc) at the end of k f2k f _edges > Insert at end of deque container — O(1)
3: Append a reference to the end of k f2k f _edges to incidence lists for KFs f and ¢ > push_back to two containers — O(1)
4: Append new_id-th column to sparse Jacobian Oh/9p > push_back to deque container of a symbolic CCS — O(1)
// Update all nearby symbolic spanning trees
5: update_sym_spanning-trees(f <> t) (See Algorithm 5) > O(N}% log NR)

of the created edges, as shown in Fig. 5. The STs for all
the nodes belonging to the STs of the involved n and iy
nodes must be checked for an update. This is performed
by measuring the topological distance between any node r
within the ST of n and any node s within the ST of iy,
which is determined by summing the distance between r and
n (already stored in the ST of n), the edge n <> 7, and the
distance between the s and iy, (stored again in the ST of ¢1,). If
n and 7, were not already in each other’s ST and the resulting
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distance is D4, or less, both STs are updated to account
for this new relation. Otherwise, if there was already a path
between such nodes, their STs are only updated if the new
path is shorter than the existing one. This process has to be
repeated for all the created new edges, and it is summarized
in Algorithm 5. A careful analysis of its computational cost,
including access and creation of data structures, reveals a
worst case complexity of O(N3 log Ng), with N being the
maximum number of reachable KFs for a given D,,,, and
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Algorithm 5 update_sym_spanning._trees

Worst case: O(N3 log Ng)

Input:
(i <> m) > A new edge
Draz > The maximum desired depth of span. trees
I: STy )+ {Yv/d(v,ik) < Dpmax — 1} >O(Ng)
2 STp, -+ {Vv/d(v,n) < Dimac} > O(NR)
3: foreachr € STf;  do > O(NR) iterations
4:  foreachs € STB“MQz _, do > O(NEg) iterations
S: /I New tentative distance between r and s
6: d + ST .DIn][r] + ST .Dlix][s] + 1 > O(log Ng)
7: if (s € ST.Reach[r] and d < ST.D[r][s]) or (s ¢ ST .Reach|r] and d < D;,q.) then > O(log NR)
8: // Shorter or new path found. Update trees:
9: ST.Dir][s] + d
i r=n
10: .
0 ST-NTIrlis] { STNn] r#n
11: ST .Dls]r] < d > O(log Ng)
. n s =g
12: ST Ns|[r] + { ST Nsllin] s # in
13: end if
14: end for
15: end for
New node Subsequently, we proceed to update the system sparse
New edge

7\
N
e

Distance: ST.D[r][n]
A
Y
pillsla Ls :eouessia

Spanning
tree of n

Spanning
tree of i

Figure 5. Diagram illustrating all the elements considered in
the proposed algorithm for incremental update of STs. The
creation of a new edge between n and i, may become a
shortcut that changes the shortest paths between nodes at
each side of the new edge.

which is reasonable to consider bounded for any large and
complex map, as long as redundant KFs are not continuously
added to the map for the same physical area.

5.4 Observation insertion

Finally, lines from 4 to 6 in Algorithm 2 refer to the insertion
of the current set of observations into the SRBA-based
SLAM system, a process summarized in Algorithm 6.

For each individual observation, the general procedure
involves creating and appending new structures to both the
system observations and landmarks containers (the latter just
in case we are observing a new landmark). This is performed

in O(1).
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Jacobian structure, which is stored in two separate parts: the
Jacobian with respect to the edges (Oh/dp) and with respect
to the landmarks (0h/9x). For the former, we need to update
all the matrix columns associated to the edges in the chain of
poses between the current observer KF and the observation
base KF, by appending a new block to each one of them
(refer to Fig. 6 for an example of a Jacobian matrix). In this
situation, the strategy followed by SRBA reduces the number
of entries that must be updated since the traversed paths
involves fewer edges, hence keeping the Jacobian sparser
than standard RBA approaches. The complexity of updating
this part of the Jacobian is O(P + log M), with P being the
number of edges between the above-mentioned KFs and M
the number of nodes stored in the system ST. In the worst
case we have that M = N and P = D, 4, i.e. the number
of reachable nodes in each ST and the maximum topological
distance allowed for the ST, respectively.

Updating the Jacobian with respect to the landmarks is
much simpler and can be performed in O(1).

5.5 Least-squares optimization

The graph optimization is performed by an iterative
Levenberg-Marquardt algorithm, which is a slight variation
of the Gauss-Newton procedure that minimizes the re-
projection error of the observed landmarks explained in
section 4.2 for the visual odometry method. In this case,
though, minimizing the cost function in Eq. (6) achieves
the joint estimation of both the poses of the cameras p that
captured the images (i.e. the keyframes) and the landmark
positions x. This leads to the following linear equation,
equivalent to Eq. (8) but taking into account the whole
system:

(H+ M) As = —g, (12)
where H and g stand for the approximate Hessian matrix
and the gradient of the prediction function, respectively, As
standing for the incremental change in the system unknowns
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Figure 6. Sparsity pattern of Jacobian and Hessian matrices under the GBA, linear RBA and SRBA approaches for the scenario

shown in Fig. 3. Gray squares represent dense blocks within the matrix.

Algorithm 6 add_observation

Total: O(Daz + log Ng)

Input:

z
kfid
Im_id

/I Observation data housekeeping

. obs_id < overall number of observations in all_obs

2: Append (z, kf_id,Im_id) at the end of all_obs

oo

10:
11:

12:
13:

14:

15:
16:

17:
18:

19:

A A

// Handle new landmarks

s iflm_id ¢ alllms then

all-lms[lm_id] < new kf2im edge data structure
Append column to sparse Jacobian Oh/dx
Update bimap of column indices in 9h/9x <> landmark indices

. end if

: base_id <—get from all Ims[lm_id)
: Append a reference to all_lms[lm_id] to the incidence list for k f_id

// Update symbolic linear system (Oh/dp part)
if base_id # k f_id then

obs_edges < ST.Seq [base_id) [k f-id]
N—— N——
Access in O(1) Access in O (log Ng)
for each k f2k f _edge_id € obs_edges do

col < [0h/0p] .cols [kf2kf_edge_id]
| —

Access to deque in O(1)

col [obs_id] <—reference to observation data and other symbolic data

N——

Insert into map
end for
end if

// Update symbolic linear system (Oh/9x part)
kf2lm_edge_id < bimap from Im_id
col + [0h/0x] .cols [kf2lm_edge_id]
————

Access to deque in O(1)

col [obs_id] <—reference to observation data and other symbolic data

N——

Insert into map

> Observation data
> ID of the observing KF
> ID of the observed landmark

> Query size of a vector/deque container — O(1)
> push_back on vector/deque container — O(1)

> Test for existence flag in a vector/deque container — O(1)
> Create new k f2lm edge — Amortized O(1)

> push_back to deque container of a symbolic CCS — O(1)
> With map_as_vector can be done in O(1)

> Random access to vector/deque container — O(1)

>O0(1)

> Total: O(Dmaz + log Ng)
> Observations from the base KF introduce no blocks to this Jacobian

> Retrieve list of < Dynqq observed kf2kf edges from spanning trees — O(log Ng)

> O(Dmagz) iterations
> Retrieve symbolic sparse column — O(1)

> Typically, an insertion at the end of map — Typ. O(1)

> Total: O(1)
> With map_as_vector can be done in O(1)
> Retrieve symbolic sparse column — O(1)

> Typically, an insertion at the end of map — Typ. O(1)

Prepared using sagej.cls
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Figure 7. (a) Plan and (b) example image of the synthetic
dataset.

s = (p,x) and A\ a scalar parameter of the Levenberg-
Marquardt algorithm. Notice that part of the state vector,
in particular, all the relative poses, has the non-Euclidean
topology of SE(3). Therefore, we have followed the common
practice of formulating Eq. (12) in the error state formulation
(e.g. see Grisetti et al. (2010)), such that increments on se(3)
are obtained from the linear solver, then added as corrections
through the corresponding Lie group exponential map. For
further mathematical details, the interested reader could refer
to the technical report in Blanco (2010).

The sparsity of the Jacobian matrices, and hence
the Hessian, plays here an important role in terms of
computational burden, favoring SRBA by improving its
performance in comparison to the standard, linear RBA
method. Fig. 6 represents the sparsity patterns of such
matrices for the example proposed in Fig. 3 under the GBA,
RBA and SRBA formulations. In comparison to those for
the GBA and standard RBA approaches, it can be noted that
SRBA falls in between both formulations, yielding sparser
matrices than RBA but denser than GBA.

6 Experimental Results

Experiments in both indoor and outdoor environments are
presented in this section in order to validate the proposed
system.

6.1 Synthetic Images Dataset

In our first experiment, we have moved a virtual stereo
camera through a synthetic office-like environment created
with the 3D design software Blender while capturing
stereo images to form a dataset of synthetic images. A
representation of such environment and an example of the
captured images are shown in Fig. 7. The use of a virtual
environment to test our approach is motivated here by the
fact that the camera movement is known beforehand, hence
making a ground truth available for the camera path.

As presented before, the main advantage of our relative
representation is that the time spent in creating and inserting
new keyframes (including the creation of the Hessian
matrix and the subsequent optimization process) remains
bounded, unlike the global approach. This is a consequence
of the smaller matrices employed in our method due to
the existence of submaps and a limit depth for graph
optimization. To test this, we have employed the same dataset
as input for both our SRBA-based approach and a pure global
one (GBA).

In this sense, a performance comparison can be seen in
Fig. 8, where the keyframe creation time (including the graph

Prepared using sagej.cls
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Figure 8. Inserting new keyframe time (including graph
optimization) comparison for SRBA (blue-solid line) and GBA
(red-dashed line) for the synthetic dataset.
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Figure 9. Number of landmarks to optimize with SRBA for the
synthetic dataset.

optimization step) is plotted for every keyframe defined
during the experiment under both approaches. Please, note
that we have not performed any optimization in our code
to pursue efficient performance, hence the mentioned plot
should be understood as a mere relative comparison between
both techniques, disregarding the absolute time values. Fig. 9
also presents the number of landmark positions that are
optimized at each keyframe insertion for the SRBA method,
showing that it remains bounded over time, unlike global
approaches.

Finally, we present in Fig. 10 a comparison between
the estimated camera trajectory and the ground truth. The
path of the camera has been obtained through a final full
optimization of the graph built through our method in order
to determine both keyframe poses and landmark positions
within an unique global reference system whose origin is set
at the first camera position. We also present in Fig. 11 the
errors at the estimated camera positions associated to all the
keyframes.

It has to be noted that, although the creation of an
unique global map can not be considered part of our SRBA
formulation, the presented path comparison and accuracy
results represent indicators about the suitability of our
method to store and manage enough information to create a
global map in case that the application demands it. At the
same time, it allows a more efficient way of estimating a
camera trajectory while creating a map of the environment
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Estimated paths with SRBA and GBA against ground truth
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Figure 10. Estimated paths for the synthetic dataset with
SRBA (blue-solid line) and GBA (red-dashed line). Ground truth
is also represented (black dashed-dotted line).
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Figure 11. Absolute error and histogram of errors for our
SRBA-based method with respect to the ground truth for the
synthetic dataset.

which is locally consistent and useful enough for many
applications.

Finally, aiming at comparing the performance of standard
RBA and our approach, we present another experiment
with a synthetic dataset generated with the freely available
Recursive World Toolkit (RWT)T. In this case, we simulate
the observations of a stereo camera moving along a corridor-
like environment, which is populated with randomly-
distributed 3D landmarks, and includes several loops, as
shown in Fig. 12. We subsequently compare the sparsity
of the Hessian matrix sy at every keyframe insertion (and
graph optimization), defined, in this experiment, as the ratio
between the non-zero entries of the matrix and the total
number of elements. This comparison, together with the time
spent in the graph optimization for both methods, can be
seen in Fig. 13. Note the higher matrix sparsity in the SRBA
approach, leading to smaller computational times including
at loop closures.

Moreover, we present in Fig. 14 the number of keyframes
and landmarks that are updated in each keyframe insertion
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Figure 12. Path followed by the robot in the synthetic dataset
used to compare SRBA with linear RBA. Observed visual
landmarks are represented as blue dots.
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Figure 13. Performance comparison for classic (linear) RBA
(dashed-red line) and SRBA (solid-blue line). (Top) Hessian
matrix sparsity as the ratio of non-zero matrix blocks and
(bottom) time spent in optimizing the graph for each KF
insertion (y-axis is logarithmic). In both graphs, smaller is better.

for both approaches, as a measure of the size of the local map
that is updated, and hence maintained consistent, after each
graph optimization. Notice that, overall, our proposal keeps
consistency for larger local maps than linear RBA.

6.2 Real Indoors Dataset

In this second experiment we have tested our method against
a real image dataset gathered with Sancho (Gonzalez et al.
2009), one of our mobile robots, while navigating through

Thttps://github.com/jIblancoc/recursive-world-toolkit
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Figure 14. Number of (top) keyframes and (bottom) landmarks
that are updated at each keyframe insertion (involving graph
optimization) for standard RBA (dashed-red line) and SRBA
(solid-blue line). In both graphs, larger is better.

our laboratory following a trajectory that includes a loop.
Unfortunately no ground truth could be provided for this
experiment since no other sensors where available on the
robot at that time. Therefore both the obtained map and
the robot path can only be validated by means of visual
inspection.

Fig. 15 presents the timing comparison when creating
new keyframes under both our SRBA-based approach and
a global one. It can be noted a spike in SRBA insertion time
around KF #360 due the detection of loop closure. At that
time, the number of KFs included into the graph optimization
increases significantly, since the old submaps involved in
the closure are also included together with the most recent
ones. Finally, regarding the time absolute values, similar
considerations to those mentioned in the previous experiment
must be taken into account here. An example of the images
employed in this experiment can be found in Fig. 16 while
Fig. 17 shows the estimated trajectory of the camera for both
methods.

6.3 Real Outdoors Dataset

Finally, we have employed two outdoor datasets to test our
method under more challenging conditions. In concrete we
use one of our published stereo datasets (Blanco-Claraco
et al. 2014) (referred as MAPIR dataset from now on), and
one of the road datasets from the KITTI Vision Benchmark
Suite (Geiger et al. 2012; Fritsch et al. 2013).

First, we have chosen the fragment number 7 of the
MAPIR outdoors dataset, which contains a ~0.7 km long
loop within an urban scenario gathered by an on-board stereo
camera placed on a standard car. The positioning information
provided by a standard differential GPS device is considered
the ground truth for this experiment.
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Figure 15. Inserting new keyframe time (including graph
optimization) comparison for SRBA (blue-solid line) and GBA
(red-dashed line) for the real indoors dataset.

Figure 16. Example images for the real indoors dataset.
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Figure 17. Estimated paths for the real indoors dataset with
SRBA (blue-solid line) and GBA (red-dashed line).

The timing comparison when creating new keyframes for
this experiment is shown in Fig. 18. Note that due to the size
of the resulting map, with a total amount of more than 110k
landmarks, the time spent when inserting keyframes by our
GBA implementation rapidly becomes excessive. Therefore,
beyond the insertion of keyframe #250, GBA time values are
no longer shown in the plot. The small peak that appears
around the keyframe #630 for the SRBA-method is due to
the loop closure detection.
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Figure 18. Inserting new keyframe time (including graph
optimization) comparison for SRBA (blue-solid line) and GBA
(red-dashed line) for the real outdoors dataset.
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Figure 19. Estimated paths for the real outdoors dataset with
SRBA (blue-solid line) and GBA (red-dashed line). Ground truth
is also represented (black dashed-dotted line).

One of the main drawbacks of this dataset stands on the
relatively small baseline of the employed stereo camera (~12
cm), which makes difficult the estimation of distant points’
3D position. Still, the achieved results can be considered to
be promising. A comparison between the estimated camera
paths and the GPS-based ground truth is shown in Fig. 19
while the errors between both trajectories are presented in
Fig. 20. The camera path estimated by the GBA method is
only depicted up to keyframe #250.

Moreover, it has to be noted that, in some areas of this
dataset, the environment is not static due to the presence
of moving cars and/or pedestrians. Since our system works
under the assumption of a non-dynamic environment, this
leads to large inaccuracies in the camera path estimation.
Hence, manual assistance has been required in such areas.
In particular, a car approaching the roundabout marked as
A’ in Fig. 19 and the presence of some cars entering and
leaving the roundabout marked as B’ in the same figure
(nearly the end of the trajectory) are the specific areas where
capturing keypoints on moving objects has been avoided.
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Figure 20. Absolute error and histogram of errors for the SRBA
method with respect to the ground truth for the real outdoors
dataset.
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Figure 21. Example of problematic images for the real
outdoors dataset. (a) A car entering a roundabout and (b) image
artifact and moving cars at a roundabout.

Figure 22. Example image for the KITTI outdoors dataset.

Example images of these situations are shown in Fig. 21.
Finally, the presence of image artifacts due to direct sunlight
(refer to Fig. 21(b)) has also been managed in a similar way
at the very end of the dataset.

Finally, we have also taken segment 7 from the KITTI’s
road datasets to test our approach. This segment contains
a set of 1100 stereo images of size 1226x370 px. (refer
to Fig. 22 for an example image) captured by a car while
moving along a ~0.7 km long trajectory and performing a
loop. In this case, the stereo camera baseline is significantly
wider than the dataset employed in the previous experiment
and, similarly to it, ground truth is available for this dataset.

Again, we have measured the insertion time for new
keyframes (including graph optimization) for both the GBA
and the SRBA approaches, presenting the results in Fig. 23.
Note that, similarly to the previous experiment, the high
number of landmarks in the map prevent the process of
inserting new keyframes for our GBA implementation to
perform in reasonable time. Loop closure detection is
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Figure 23. Inserting new keyframe time (including graph
optimization) comparison for SRBA (blue-solid line) and GBA
(red-dashed line) for the KITTI real outdoors dataset.
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Figure 24. Estimated paths for the KITTI real outdoors dataset
with SRBA (blue-solid line) and GBA (red-dashed line). Ground
truth is also represented (black dashed-dotted line).

achieved near to KF#400 for the SRBA approach, hence the
small peak shown in the figure at that point.

The paths estimated by both methods are compared
against the provided ground truth as shown in Fig. 24.
The graph built contained ~400 keyframes for the whole
trajectory and the resulting map was composed by more
than 36k landmarks. Finally, the evolution and the histogram
of the errors committed by the SRBA method with respect
to the ground truth are presented in Fig. 25. A video
showing SRBA operation for this experiment can be found
inhttps://goo.gl/1Ap4p9.

7 Conclusion

This paper has addressed the development of a blended
relative-global approach to Bundle Adjustment, coined
Sparser Relative Bundle Adjustment (SRBA), which allows
for a continuum of strategies ranging from classic linear
RBA to hybrid submapping with local maps. This flexibility
leads to graphs than can be optimized more efficiently than
those built as previously reported in the literature, ensuring
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Figure 25. Absolute error and histogram of errors for the SRBA
method with respect to the ground truth for the KITTI real
outdoors dataset.

a bounded-time operation even in the presence of loop
closures, regardless their size.

In this work we have extended the preliminary description
of SRBA in (Blanco et al. 2013), proven its constant-time
nature by providing in-depth listings for the most important
algorithms, and validated its performance in the context of
stereo visual SLAM. For that, we have developed a complete
system combining a front-end that integrates several state-
of-the-art computer vision techniques and an SRBA-based
back-end that operates as graph optimizer. The presented
front-end relies on ORB features as image keypoints and
computes camera ego-motion through a visual odometry
method which is robust against the presence of outliers. Data
association, in turn, is assisted by a bag of words built upon
ORB binary descriptors that restricts the search area when
looking for loop closures.

A set of experiments in both indoor and outdoor conditions
is presented to demonstrate the capabilities of our method
when tackling with visual SLAM in comparison with other
BA approaches in terms of accuracy and efficiency. Future
works include introducing further optimizations in our
SRBA implementation, as well as analyzing and introducing
more graph maintenance operations to improve its suitability
as a long-term SLAM solution.

Acknowledgment

This work has been partially funded by the Spanish
Ministerio de Ciencia e Innovacion under the projects
"TAROTH: New developments toward a Robot at Home”
(Contract DPI 2011-25483) and "PROMOVE: Advances in
mobile robotics for promoting independent life of elders”
(Contract DPI 2014-55826-R). Both projects are co-founded
by Fondo Europeo de Desarrollo Regional — FEDER.

References

Agarwal, S., Snavely, N., Seitz, S. M. and Szeliski, R. (2010),
Bundle adjustment in the large, in ‘European Conference on
Computer Vision (ECCV)’, Springer, pp. 29-42.



Moreno, Blanco and Gonzalez-Jimenez

19

Anderson, S., MacTavish, K. and Barfoot, T. D. (2015), ‘Relative
continuous-time slam’, The International Journal of Robotics
Research 34(12), 1453-1479.

Blanco-Claraco, J.-L. (2013), ‘User guide for 1ibmrpt—-srba: A
generic c++ framework for relative bundle adjustment (rba)’,
http://www.mrpt.org/srba.

E-A.
Jiménez, J. (2014), ‘The mélaga urban dataset: High-rate stereo
and lidar in a realistic urban scenario’, The International
Journal of Robotics Research 33(2), 207-214.

Blanco, J., Fernandez-Madrigal, J. and Gonzalez, J. (2008),
‘Towards a Unified Bayesian Approach to Hybrid Metric-
Topological SLAM’, [EEE Transactions
24(2), 259-270.

Blanco, J., Gonzélez, J. and Ferndndez-Madrigal, J.-A. (2010),
‘Optimal filtering for non-parametric observation models:
applications to localization and slam’, The International
Journal of Robotics Research 29(14), 1726—-1742.

J.-L. (2010), A tutorial

parameterizations and on-manifold optimization, Technical

Blanco-Claraco, J.-L., Moreno-Dueinas, and Gonzélez-

on Robotics

Blanco, on SE(3) transformation
report, University of Malaga.

Blanco, J.-L., Gonzalez-Jiménez, J. and Fernandez-Madrigal, J.-
A. (2012), ‘An alternative to the mahalanobis distance for
determining optimal correspondences in data association’,
IEEE Transactions on Robotics (T-RO) 28(4), 980-986.

Blanco, J.-L., Gonzilez-Jiménez, J. and Ferndndez-Madrigal, J.-
A. (2013), Sparser relative bundle adjustment (srba): constant-
time maintenance and local optimization of arbitrarily large
maps, in ‘IEEE International Conference on Robotics and
Automation (ICRA)’, IEEE, pp. 70-77.

Bradski, G. (2000), ‘The OpenCV Library’, Dr. Dobb’s Journal of
Software Tools .

Calonder, M., Lepetit, V., Strecha, C. and Fua, P. (2010), Brief:
Binary robust independent elementary features, in ‘IEEE
European Conference on Computer Vision (ECCV)’, Springer,
pp- 778-792.

Civera, J., Davison, A. and Montiel, J. (2007), Inverse depth to
depth conversion for monocular slam, in ‘IEEE International
Conference on Robotics and Automation (ICRA)’, IEEE,
pp. 2778-2783.

Concha, A. and Civera, J. (2015), An evaluation of robust cost
functions for rgb direct mapping, in ‘European conference on
mobile robotics (ECMR15)’.

Davis, T. A. (2006), Direct methods for sparse linear systems,
Vol. 2, Society for Industrial and Applied Mathematics (Siam).

Eade, E. and Drummond, T. (2008), Unified loop closing and
recovery for real time monocular slam, in ‘Proceedings of the
British Machine Vision Conference’, BMVA Press, pp. 6.1
6.10. doi:10.5244/C.22.6.

Fritsch, J., Kuehnl, T. and Geiger, A. (2013), A new performance
measure and evaluation benchmark for road detection algo-
rithms, in ‘International Conference on Intelligent Transporta-
tion Systems (ITSC)’, IEEE, pp. 1693-1700.

Galvez-Lopez, D. and Tardos, J. D. (2012), ‘Bags of binary
words for fast place recognition in image sequences’, /[EEE
Transactions on Robotics 28(5), 1188-1197.

Geiger, A., Lenz, P. and Urtasun, R. (2012), Are we ready for
autonomous driving? the kitti vision benchmark suite, in ‘IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR)Y’, IEEE, pp. 3354-3361.

Prepared using sagej.cls

Gonzalez, J., Galindo, C., Blanco, J., Fernandez-Madrigal, J.,
Arevalo, V. and Moreno, F. (2009), Sancho, a fair host
robot. a description, in ‘IEEE International Conference on
Mechatronics (ICM)’, pp. 1-6.

Grisetti, G., Kummerle, R., Stachniss, C., Frese, U. and Hertzberg,
C. (2010), Hierarchical optimization on manifolds for online 2d
and 3d mapping, in ‘Robotics and Automation (ICRA), 2010
IEEE International Conference on’, IEEE, pp. 273-278.

Hamming, R. W. (1950), ‘Error detecting and error correcting
codes’, Bell System technical journal 29(2), 147-160.

Hartley, R. and Kahl, F. (2007), Optimal algorithms in multiview
geometry, in Y. Yagi, S. Kang, I. Kweon and H. Zha, eds,
‘Computer Vision — ACCV’, Vol. 4843 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, pp. 13-34.

Huber, P., Ronchetti, E. and MyiLibrary (1981), Robust statistics,
Vol. 1, Wiley Online Library.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J.
and Dellaert, F. (2012), ‘iISAM2: Incremental smoothing and
mapping using the Bayes tree’, Intl. J. of Robotics Research,
IJRR 31(2), 217-236.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J.
and Dellaert, F. (2011), ‘isam2: Incremental smoothing and
mapping using the bayes tree’, The International Journal of
Robotics Research 31(2), 216-235.

Kaess, M., Ranganathan, A. and Dellaert, F. (2008), ‘isam:
Incremental smoothing and mapping’, /IEEE Transactions on
Robotics 24(6), 1365-1378.

Klein, G. and Murray, D. (2007), Parallel tracking and mapping for
small ar workspaces, in ‘IEEE/ACM International Symposium
on Mixed and Augmented Reality (ISMAR)’, IEEE, pp. 225—
234,

Konolige, K. and Agrawal, M. (2008), ‘Frameslam: From bundle
adjustment to real-time visual mapping’, IEEE Transactions on
Robotics 24(5), 1066-1077.

Lim, J., Frahm, J.-M. and Pollefeys, M. (2011), Online environment
mapping, in ‘IEEE Conference on Computer Vision and Pattern
Recognition (CVPR)’, IEEE, pp. 3489-3496.

Moore, E. E. (1959), The shortest path through a maze, Bell
Telephone System.

Moreno, F. A., Blanco, J.-L. and Gonzalez, J. (2009), ‘Stereo vision
specific models for particle filter-based slam’, Robotics and
Autonomous Systems 57(9), 955-970.

Moreno, F.-A., Blanco, J.-L. and Gonzélez-Jiménez, J. (2013),
Erode:
application to stereovisual odometry, in ‘IEEE International
Conference on Robotics and Automation (ICRA)’, IEEE,
pp. 4691-4697.

Mur-Artal, R., Montiel, J. and Tardos, J. D. (2015), ‘Orb-slam: a
versatile and accurate monocular slam system’, arXiv preprint
arXiv:1502.00956 .

Rosten, E. and Drummond, T. (2006), Machine learning for high-
speed corner detection, in ‘European Conference on Computer
Vision (ECCV)’, Springer Berlin Heidelberg, pp. 430—443.

Rublee, E., Rabaud, V., Konolige, K. and Bradski, G. (2011), Orb:
an efficient alternative to sift or surf, in ‘IEEE International
Conference on Computer Vision (ICCV)’, IEEE, pp. 2564—
2571.

Sibley, D., Mei, C., Reid, I. and Newman, P. (2009), Adaptive
relative bundle adjustment., in ‘Robotics: science and systems’,

An efficient and robust outlier detector and its



20

The International Journal of Robotics Research XX(X)

Vol. 32, MIT Press, pp. 33-40.

Sibley, G. (2009), ‘Relative bundle adjustment’, Department of
Engineering Science, Oxford University, Tech. Rep 2307(09).

Sibley, G., Matthies, L. and Sukhatme, G. (2010), ‘Sliding window
filter with application to planetary landing’, Journal of Field
Robotics 27(5), 587-608.

Sibley, G., Mei, C., Reid, I. and Newman, P. (2010), ‘Vast-scale
outdoor navigation using adaptive relative bundle adjustment’,
The International Journal of Robotics Research 29(8), 958—
980.

Strasdat, H., Montiel, J. and Davison, A. J. (2010), Real-
time monocular slam: Why filter?, in ‘IEEE International
Conference on Robotics and Automation (ICRA)’, IEEE,
pp. 2657-2664.

Strasdat, H., Montiel, J. M. and Davison, A. J. (2012), ‘Visual slam:
why filter?’, Image and Vision Computing 30(2), 65-77.

Thrun, S., Burgard, W. and Fox, D. (2005), Probabilistic Robotics,
The MIT Press.

Triggs, B., McLauchlan, P. F., Hartley, R. I. and Fitzgibbon,
A. W. (2000), Bundle adjustmenta modern synthesis, in ‘Vision
algorithms: theory and practice’, Springer, pp. 298-372.

Wolf, J., Burgard, W. and Burkhardt, H. (2002), Robust
vision-based localization for mobile robots using an image
retrieval system based on invariant features, in ‘Proceed-
ings of the IEEE International Conference on Robotics
and Automation (ICRA)’, Vol. 1, IEE, pp. 359-365.
doi:10.1109/ROBOT.2002.1013387.

Prepared using sagej.cls





