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Abstract

This work addresses the SLAM problem for stereo vision systems under the unified formulation of particle filter methods. In contrast
to most existing approaches to visual SLAM, the present method does not rely on restrictive smooth camera motion models, but
on computing incremental 6D pose differences from the image flow through a probabilistic visual odometry method. Moreover,
our observation model, which considers both the 3D positions and the SIFT descriptors of the landmarks, avoids explicit data
association between the observations and the map by marginalizing the observation likelihood over all the possible associations.
We have experimentally validated our research with two experiments in indoor scenarios.
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1. Introduction

Vision systems have acquired growing importance in mo-
bile robotics during the last years due to their low cost
and the rich information that cameras provide in compar-
ison with traditional robotic sensors, like laser scanners or
sonars. Vision-based systems are employed in a wide range
of robotic applications such as object recognition [4,5,28],
obstacle avoidance [20,33,44], navigation [38,39], topologi-
cal global localization [25,52] and, more recently, in simulta-
neous localization and mapping (SLAM) [10,41,48], which
has become a prominent research area in mobile robotics
since the early nineties.

SLAM is one of the most challenging open problems for
developing truly autonomous robots. It can be stated as
the problem of a robot building a map of an unknown en-
vironment while simultaneously tracking its position using
the partially built map. Most of the approaches to SLAM
have been proposed for two kind of sensory data: raw range
scans [30,15], and features (or landmarks) either extracted
from scans [12,36] or from images, having in this case the
so-called visual SLAM [8,10,27,41,46,48].

In visual SLAM, the inherent errors in the formation of
images and in the detection of features introduce uncer-
tainty in the observed landmarks, which must be properly
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managed by means of probabilistic Bayesian filtering, ex-
tensively discussed elsewhere [35,51]. The underlying prin-
ciple of those filters is the Bayes’ rule, which states how to
update a prior belief about a variable x given a new obser-
vation z and an observation model:

p (x| z)︸ ︷︷ ︸
posterior

∝ p (x)︸︷︷︸
prior

p (z|x)︸ ︷︷ ︸
obs.model

(1)

This filter can be implemented for on-line operation by
iteratively executing prediction and update steps. In the
prediction, the system state (comprising the robot pose)
is propagated in time according to some given transition
model (the motion model), leading to the prior distribution
of the system state. In the update step, this prior is refined
according to a given observation model, obtaining the pos-
terior probability density, which already includes the infor-
mation available up to some given time step. The choice
of suitable motion and observation models means a cor-
nerstone in the development of robust probabilistic SLAM
approaches.

Two widely employed implementations of Bayesian fil-
ters are the Extended Kalman Filter (EKF) [22], and the
family of sequential Monte Carlo (SMC) methods, or par-
ticle filters (PFs) [1]. EKF is the mainstream approach for
SLAM [9,12], but it is limited by the assumption of Gaus-
sianity in the state and observations. This makes EKF spe-
cially inappropriate for global localization. On the other
hand, PFs can cope with complex, non-parametric and
even multi-modal distributions. With the introduction of
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the Rao-Blackwellised Particle Filters (RBPFs) [37], SMC
methods have become a unified framework for SLAM and
global localization.

This article addresses the problems of SLAM and global
localization for stereo vision systems. Our contribution con-
sists in providing appropriate probabilistic models for the
motion and observations of a stereo camera, both suitable
for PF methods. Our proposal takes a sequence of stereo
images as the only input, and does neither rely on any other
sensory data (odometers, IMU, etc) nor assume a priori
knowledge about the camera movement. More concretely,
the novelties with regard to each of these models are:
– The robot ego-motion estimation is addressed by per-

forming 6D visual odometry through a reliable 3D land-
mark registration method which models the uncertainty
in the pose increment estimation as a Gaussian. This mo-
tion model provides three main advantages in relation to
other proposals: i) it is applicable to either, wheeled and
not-wheeled robots that navigate on any type of surface
(even flying robots), ii) it does not suffer from system-
atic errors, and iii) it overcomes the divergence and local-
minima problems which suffer the iterative approaches
to visual odometry, as well as the need for an initial es-
timation. Moreover, the method is efficient and it may
be applied between small incremental poses, hence the
Gaussianity assumption justifies.

– The observation model avoids explicit data association
by applying marginalization over all the possible asso-
ciations, thus discarding the possibility of incorrect cor-
respondences between the observed landmarks and the
map.
Our approach has been validated by experiments with

a real robot that has been driven within an office-like sce-
nario where it builds a map of the environment and tracks
its position simultaneously. To test the performance of our
method, the estimated path has been compared with that
computed from a ICP approach which employs as input
the data provided by a scanner laser. In addition, a visual
SLAM experiment with a camera describing fully uncon-
strained 6 DoF movements is also presented.

Next we present a survey on works related to the topic
of visual SLAM. In section 3 we state the SLAM problem,
while the notation and the landmark extraction process
employed in this work are introduced in section 4. Then,
we present a visual odometry approach for the probabilistic
motion model. Section 6 describes our proposal for the ob-
servation model. Some experimental results are presented
in section 7 and, finally, we provide some conclusions and
future work.

2. Related Research

A number of works in the technical literature have ad-
dressed robot localization and SLAM using vision sensors,
including omnidirectional, monocular, stereo, and trinocu-
lar cameras.

In [32] an omnidirectional camera is used to estimate the
distance of the closest color transition in the environment,
mimicking laser rangefinders performance. These measure-
ments are introduced into a particle filter to determine the
position of the robot within a previously constructed map.
Tamini et al. [50] also present an omnidirectional camera-
based global localization approach for mobile robots using
a modified version of the SIFT features that decreases the
number of detected points and, therefore, the computation
time of the localization process. The work in [11] presents a
vision-based robot localization approach with just one cam-
era which obtains a visual map of the ceiling and localizes
the robot using a simple scalar brightness measurements as
input. The robot localization within the map is carried out
by a particle filter-based algorithm. In [54], an image re-
trieval system based on invariant features is combined with
particle filter-based localization. These approaches only ad-
dress global localization and do not deal with SLAM.

The SLAM problem is tackled in the paper series [8–10]
using a single camera (called MonoSLAM). The proposed
method, which performs in real time, extracts a reduced
but enough number of salient image features through the
operator of Shi and Tomasi [47], which are identified by
their associated image patches. The scale factor, which rep-
resents one of the main limitations of monocular SLAM, is
resolved by initializing the system looking at a pattern of
known size. Other monocular SLAM approaches [6] intro-
duce the inverse depth parametrization for the undelayed
initialization of features. Similarly, the work in [42] adds
an Inertial Measurement Unit (IMU) to an implementation
of the inverse depth-based monocular SLAM, reporting an
improved accuracy in the estimation of the scale factor of
the map. A RBPF-based method for performing monocu-
lar SLAM is reported in [27], which extracts SIFT features
from the images and applies an Unscented Kalman Filter
(UKF) within the robot localization algorithm to sample
new particles poses as well as to update the observed land-
marks. Typically, monocular approaches to SLAM employ
motion models which assume smooth paths for the camera
by restricting its velocities and accelerations. In addition,
they suffer from ambiguity when estimating small displace-
ments and rotations of the camera.

Stereo and trinocular systems elude the above-mentioned
problems by exploiting the special characteristics of the
epipolar geometry to directly extract 3D information from
the detected features in the images. Hence, these camera
configurations are widely extended in vision-based systems
for robot localization and SLAM [7,14,46,48,49].

A trinocular camera is employed in [46] to address SLAM
by tracking SIFT visual features [29] in unmodified envi-
ronments. The ego-motion estimation is computed from
the robot odometry (as an initial estimation) and a least-
squares procedure that finds the camera movement with
the best alignment between the observed and the predicted
image coordinates of the 3D landmarks in the map. The
iterative nature of this method contrasts with our closed-
form solution to perform visual odometry, while the usage
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of the encoder-based robot odometry as initial estimation
restricts their method to wheeled robots. The spatial uncer-
tainty of the landmarks in the map is modeled by a Kalman
filter.

In [7] it is also proposed a trinocular SLAM system which
uses 3D line segments as the elements of the map (instead
of point features). They approximate the distribution of the
robot pose with a particle filter and model the uncertainty
in the 3D segments of the map with a Gaussian distribution
which is updated over time with an EKF. An experiment in
a simulated environment is presented to validate the results
of this approach. Although it is an interesting variation
of the traditional approaches, its application is limited to
environments where straight lines can be easily found. Since
these approaches employ the information provided by three
images at each time step, there exists an improvement in
the robustness of the matching process, but, on the other
hand, the computational burden of the method increases,
which becomes a significant problem in visual SLAM.

The works in [48] and [49] extract SIFT features from
stereo images and compute their 3D correspondent points
in space, which are taken as landmarks for a map built
through a RBPF. In their approach, the weights of the
particles are computed from the distance between the po-
sitions of the observed landmarks and the predicted po-
sitions (based on the particles pose) of their correspond-
ing landmarks in the map. The matches are determined by
computing the Euclidean distance between a reduced 36-D
version of SIFT descriptors of the 3D landmarks. In that
work, the motion model is based on an iterative Levenberg-
Marquardt non-linear optimization algorithm which mini-
mizes the re-projection error of the 3D coordinates of the
landmarks on the images. Similarly, another RBPF ap-
proach which also employs SIFT features is presented in
[14] as a vision-based solution to SLAM. In this case, the
motion model relies on the robot odometry, while the obser-
vation model is derived from the Mahalanobis distance be-
tween the positions of the observed and mapped landmarks.
Data association is determined from the Mahalanobis dis-
tance between the SIFT descriptors of the 3D landmarks
assuming independence between the elements of the 128D
SIFT vector.

A key issue of trinocular and stereo vision-based propos-
als is solving correspondences between features in the map
and those being observed by the robot. Compared to these
approaches, the present work avoids explicit data associ-
ation by marginalizing the observation model over all the
possible associations, hence avoiding potential incorrect as-
sociations between mapped and observed landmarks. Fur-
thermore, unlike encoder-based odometry and unlike itera-
tive algorithms for visual odometry [46,48,49], we propose
a motion model based on a closed-form visual odometry al-
gorithm which performs in 6D and relies only on the stereo
images gathered by the camera.

3. The Particle Filter Approach to SLAM

Let xt, ut and zt be the robot pose, the action, and the
observation at time step t, respectively, and let m be the
map of the environment. The aim of the full SLAM prob-
lem [51] is to estimate the joint distribution of both the
robot path and the map, i.e. to compute p (x1:t,m|z1:t, u1:t)
where z1:t = {z1, . . . , zt}, u1:t = {u1, . . . , ut} and x1:t =
{x1, . . . , xt}. In this work, ut represents the robot pose
change between time steps t−1 and t, which, in our case, is
unknown and will be estimated by means of visual odome-
try.

A way of efficiently dealing with the high dimension-
ality of the system state in SLAM, is to employ a Rao-
Blackwellized particle filter, which reduces the complexity
of the estimation problem by sampling over a subset of the
state variables. Thus, by factoring p (x1:t,m|z1:t, u1:t) we
can sample the distribution of the possible robot paths and
compute the map distribution from those samples [13,51]:

p (x1:t,m|z1:t, u1:t) =

p (x1:t|z1:t, u1:t)︸ ︷︷ ︸
robot path

p (m|x1:t, z1:t, u1:t)︸ ︷︷ ︸
map

(2)

According to this approach, there is a map distribution
associated to each sample of the robot path.

Notice that u1:t can be eliminated from the second term
in (2) since the robot path x1:t d-separates the map m and
the actions, hence they become conditionally independent
(please, refer to [43] for an extensive explanation). More-
over, the term regarding the map in (2) can be further
factored due to the conditional independence between the
landmarks in the map, given a robot path hypothesis:

p (m|x1:t, z1:t) =
M∏
j=1

p (mj |x1:t, z1:t) (3)

The above expressions state that the joint probability
density of the robot path and the map, given the set of
measurements, can be computed using one estimator for
the robot path and M for the landmarks in the map for
each of the P particles. In this work, we use a particle filter
to estimate p (x1:t|z1:t), and a Kalman filter (KF) to update
the positions of the landmarks at each time step.

Regarding the robot path estimation, it is updated at
each time step by appending the latest robot pose, which
is computed from:

p (xt|z1:t, u1:t)︸ ︷︷ ︸
pose estimation

at time t

∝ p (zt|xt)︸ ︷︷ ︸
observation model

·

pose prior estimation︷ ︸︸ ︷∫
p (xt|xt−1, ut)︸ ︷︷ ︸
transition model

p (xt−1|z1:t−1, u1:t−1)︸ ︷︷ ︸
pose estimation
at time t - 1

dxt−1 (4)
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where p (xt|z1:t) is approximated by a set of particles,
each of them representing a possible robot pose. In
short, the Rao-Blackwellized Particle Filter that estimates
p (xt,m|z1:t, u1:t) evolves as follows:

(i) The robot path particles are propagated according
to the transition model which, for our case, is the
mobile robot motion model. In this work we estimate
the motion between consecutive time steps through
a visual odometry algorithm, explained in detail in
section 5.

(ii) These particles are subsequently weighted according
to the observation model which estimates the likeli-
hood of obtaining the current observation from the
pose hypothesis hold by each particle. The observa-
tion model, based on 3D landmarks with SIFT de-
scriptors, will be exposed in section 6.

(iii) Next, a resampling stage is performed (if necessary)
over the particles. The probability of surviving for
each particle is proportional to its importance weight.

(iv) Finally, update the map associated to each particle.

4. Map and Observations

This section presents the process for obtaining 3D visual
landmarks from the environment and the associated no-
tation. These landmarks will be the elements of both the
observations and the map.

4.1. Notation and Definitions

In this work, an observation zt and the mapm are defined
as sets of 3D landmarks:

zt =
{
zit
}
i={1,...,N} where zit =

〈
Xi
t,F

i
t

〉
m =

{
mj
}
j={1,...,M} where mj =

〈
Xj
m,F

j
m

〉 (5)

Each landmark, either of an observation or in the map,
comprises a 3D location X, and an associated SIFT de-
scriptor F [29]. The uncertainty in the 3D positions of the
landmarks is modeled by normal distributions with mean
μ and a 3 × 3 covariance matrix Σ:

Xi
t ∼ N

(
μit,Σ

i
t

)
Xj
m ∼ N

(
μjm,Σ

j
m

)
(6)

The SIFT descriptor F of each landmark is also assumed
to be normally distributed with a diagonal covariance ma-
trix containing a constant value for each dimension, say(
σ2

S1, . . . , σ
2
S128

)
.

Fit ∼ N
(
μFit

,ΣFit

)
Fjm ∼ N

(
μFjm

,ΣFjm

)
(7)

Summarizing, we define a generic 3D landmark li as a
normally distributed random variable with the following
statistics:

li ∼N

⎛
⎝〈μiX, μiF〉 ,

⎛
⎝ΣiX 0

0T ΣiF

⎞
⎠
⎞
⎠ (8)

= N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈⎛⎜⎜⎜⎝
Xi

Y i

Zi

⎞
⎟⎟⎟⎠,
⎛
⎜⎜⎜⎝

di1

...

di128

⎞
⎟⎟⎟⎠
〉
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
X σXY σXZ

σYX σ2
Y σY Z

σZX σZY σ2
Z

0

0T

σ2
S1 ... 0

...
. ..

...

0 ... σ2
S128

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where 0 is a 3 × 128 null matrix, μiX stands for the
mean of the 3D landmark position, μiF denotes the mean
of the 128D SIFT descriptor, and ΣiX and ΣiF are their
associated covariance matrices, respectively. The parame-
ters

(
σ2

S1, . . . , σ
2
S128

)
stand for the variance in each of the

dimensions of the SIFT descriptor, and model the uncer-
tainty when computing the descriptor of the same feature
from different points of view. Their values have been deter-
mined empirically from an independent experiment which
tracks a set of 576 features in a sequence of 50 images while
computing their SIFT descriptors at each time step. In this
experiment, a feature is visible and tracked in an average
of 26 images. The standard deviation of their descriptors
as they vary with time in each of the descriptor dimensions
are taken as the values of (σS1, . . . , σS128) (see Figure 1).

Once the landmark notation has been introduced, we
address the process of obtaining those landmarks from the
stereo images.

4.2. Extraction of Reliable Observation Landmarks

To obtain a set of 3D landmarks from a pair of stereo
images we need to find feature points in both images, to
match them, and to estimate their corresponding 3D loca-
tions. Next we describe the whole process in more detail.

Several methods have been proposed in the literature for
extracting interest points from images, as the well-known
detectors of Kitchen & Rosenfeld [24] and Harris [16], based
on the first and the second-order derivatives of images, re-
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Fig. 1. Estimation of the standard deviation for each dimension of
the SIFT descriptor.
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spectively. More recently, the SIFT detector proposed by
Lowe [29] deals with the detection process by identifying lo-
cal extrema in a pyramid of Difference of Gaussians (DoG).
It also provides the detected features with a descriptor that
exhibits invariance to rotation and scale, and partial invari-
ance to lighting changes and affine distortions. The evalua-
tions performed in [2] and [34] reveal the SIFT descriptor as
one of the best methods for identifying features. However,
the SIFT detector is outperformed by the Harris-based ones
when extracting and tracking features through a sequence
of images, since its repeatability is not high enough [3].
These papers present the SIFT approach as one of the best
descriptors but not as the best detector for visual SLAM.
In our work, the detection of interest points in the images
is carried out by the method proposed by Shi and Tomasi
[47], which is strongly based on the Harris approach. It
searches for points in the image with special characteristics
that make them easy to be tracked in subsequent images,
which is one of the cornerstones of our visual odometry ap-
proach stated in section 5. In short, this method computes
the eigenvalues of the local autocorrelation matrix around
the image points, and compares them with a predefined
threshold to detect interest points. Once they are detected,
their corresponding 128D SIFT descriptor is also computed
to make them sufficiently distinguishable and to improve
the robustness of the stereo matching process. Since the Shi
and Tomasi detector does not provide any scale information
for the detected points, the SIFT descriptor computation
is accomplished in one scale only (i.e. the original image)
losing, therefore, the scale invariance. However, the result-
ing SIFT descriptor has been proved to be distinguishable
enough for performing stereo matching and for measuring
the similarity between the projected landmarks when de-
tected from different points of view in indoor navigation.
Although a shorter key vector may be employed for stereo
matching with good results, in [29] it is suggested the us-
age of a 128D to achieve the best matching performance,
which is specially interesting to perform the loop closure in
SLAM, that is, when the robot realizes that it has reached
an already visited area.

After detecting the set of keypoints in each image, they
are matched according to both the similarity of their de-
scriptors and the restriction imposed by the epipolar geom-
etry. In concrete, for each keypoint in the left image, the
Euclidean distance between its descriptor and those of the
keypoints in the right image is computed. For a pair of con-
jugate keypoints to be considered a candidate match, both
the minimum distance must be below a fixed threshold and
the second lowest distance must be sufficiently apart from
the minimum (see Figure 2(b)). This method differs from
the one proposed by Lowe in [29], which imposes that the
ratio of the two minimum distances between descriptors is
below a certain threshold. Although this criterion is effec-
tive for stereo matching, it may establish correspondences
between descriptors that have different levels of distinctive-
ness, and, therefore, not easily identifiable. In our method,
the lower threshold ensures that matched points have very
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Fig. 2. (a) Configuration of a stereo vision system and schematic
representation of the uncertainty in the localization of a 3D land-
mark. (b) Euclidean distance between the descriptors of a feature in
the left image and all the features in the right one.

distinctive descriptors (which leads to very low absolute
Euclidean distance) while the second threshold is set to
avoid ambiguous correspondences.

In addition, the points must fulfill the epipolar con-
straint, i.e. they have to lay on their conjugate epipolar
lines. In a stereo vision system with parallel optical axis
as the one shown in Figure 2(a), epipolar lines are parallel
and horizontal, thus, the epipolar constraint reduces to
check that both features are in the same row of the image.

Once the matching has been established, the most likely
3D coordinates of the landmark is estimated by projecting
them back to space [17,45]. We also consider here the un-
certainty in the 3D landmark position due to errors in the
image quantization and in the feature detection process.
Assuming a stereo system with parallel optical axes and
a pinhole camera model (see Figure 2(a)), the 3D coordi-
nates (X,Y, Z) of a landmark can be computed from two
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matched points in the left and right images by [45]:

X = (c− c0)
b

d
; Y = (r − r0)

b

d
; Z = f

b

d
(9)

where (r, c) are the coordinates of the interest point in the
reference image (say, the left one), (r0, c0) represents the
coordinates of the principal point in the reference image,
and b, d and f stands for the baseline, the disparity, and
the focal length of the stereo rig, respectively (please, refer
to Figure 2(a)).

Errors in the variables r, c, and d, are usually modelled
as uncorrelated zero-mean Gaussian random variables [31].
Using a first-order error propagation to approximate the
distribution of the variables in (9) as multivariate Gaus-
sians, we obtain the following covariance matrix for the X ,
Y and Z coordinates:

ΣX ≈ J diag
(
σ2
c , σ

2
r , σ

2
d

)
JT (10)

where J stands for the Jacobian matrix of the functions in
(9), and σ2

c , σ
2
r and σ2

d are the variances of the correspond-
ing variables. Expanding (10) we come to the following ex-
pression for ΣX:

ΣX =
(
b

d

)2

· (11)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
c +

σ2
d (c− c0)

2

d2

σ2
d (c− c0) (r − r0)

d2

σ2
d (c− c0) f

d2

σ2
d (c− c0) (r − r0)

d2
σ2
r +

σ2
d (r − r0)

2

d2

σ2
d (r − r0) f

d2

σ2
d (c− c0) f

d2

σ2
d (r − r0) f

d2

σ2
df

2

d2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which models the uncertainty in the 3D coordinates of land-
marks computed from the noisy measurements of the stereo
system.

Please, note that the uncertainties of the camera intrinsic
parameters, i.e. the baseline, the focal length and the prin-
cipal point coordinates, are not taken into account, since
the camera employed in our experiments is supposed to be
accurately calibrated by the manufacturer and, therefore,
the errors in these parameters may be considered negligi-
ble, as is common in the literature. However, they could be
easily introduced by linear uncertainty propagation using
the equations in (9).

In order to validate this error model, we have performed
an experiment where the real density of the landmark lo-
cation (derived from a Monte-Carlo simulation) has been
compared with the approximated density from the lin-
earized model. For that purpose, we have chosen by hand
a set of matches in a pair of stereo images and computed
their disparity, having in this way the values of r, c and d in
equations (9) and (11). For each stereo match, the Monte-
Carlo simulation has been performed by drawing a set of
10.000 samples from the Gaussians distributions of r, c and
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Fig. 3. Planar projections of the uncertainty ellipses associated to
both Monte-Carlo simulation (black-thick line) and linearized error
model estimations (blue-dotted line).

d (assuming a variance of σ2
r = σ2

c = 1 and σ2
d = 2 pixels,

respectively), and by projecting them through equations
(9), to yield a set of 10.000 samples of the landmark 3D
position. These samples accurately model the real density
and allow the estimation of the real means and covariances.
Figure 3 shows the planar projections of the 3D uncer-
tainty ellipses associated to both estimations for one of the
landmarks, where the black-thick one corresponds to the
Monte-Carlo method and the blue-dotted one corresponds
to the linearized model.

To measure the similarity between these two density dis-
tributions, we have employed the Kullback-Leibler diver-
gence (DKL) [26], widely employed in statistics for that
purpose. We must remark that, since the involved distri-
butions are Gaussians, DKL can be computed through a
closed-form solution [18]; this measure yields an average
value of 0.36, which is similar to that obtained from two nor-
malized one-dimensional Gaussians with an offset of about
0.8σ in their means.

We have checked other ways of obtaining the covariance
matrix ΣX like the Unscented Transformation (UT) [53]
and the scaled UT [21]. We have contrasted them to the real
density and, since the comparison of the results achieved by
the three aforementioned methods (linear, UT and scaled
UT) shows similar performance, we have opted for the lin-
ear approach (summarized by equations (9) and (11)) be-
cause of its efficiency.

Finally, each 3D landmark is assigned a 128D SIFT de-
scriptor which is simply computed as the average value of

6



the descriptors (f and f ′) from each image:F = (f + f ′) /2.
The so-computed 3D landmarks are the elements of both

the observations and the map, and constitute the basis of
the probabilistic SLAM method proposed in this work.

4.3. Map Initialization and Update

This section addresses the management of the map built
during the SLAM process, which entails the insertion, up-
date and deletion of landmarks.

In short, the map management can be summarized by
this sequence of steps, which will be further explained next:

(i) In each iteration, it is performed a data association
procedure to obtain a set of correspondences between
the observed landmarks and those in the map.
(a) The positions of the landmarks in the map with

a correspondence are updated.
(b) The landmarks in the map without a correspon-

dence are not modified.
(c) The observed landmarks with no correspon-

dences are introduced into the map.
(ii) Landmarks which have not been observed a signifi-

cant number of times are deleted from the map, since
they are considered as non-stable.

Every landmark in the map has two associated attributes
indicating the number of times and the last time step it has
been observed, respectively.

At the beginning of the SLAM process, all the landmarks
which are detected in the first observation are introduced
into an initially empty map, and their associated counters
are initialized accordingly. Then, as new observations are
gathered, the detected landmarks at each time step are
compared with those in the map in order to obtain a set of
matches. To that purpose, their probability of being in cor-
respondence is evaluated from the distance between both
their 3D positions and their SIFT descriptors, whereas the
matching decision is taken according to a certain threshold.
This correspondence measure is computed from the same
expression which is proposed for our observation model (to
be described in section 6).

Once the correspondences have been established, the 3D
positions of the landmarks with positive matches are up-
dated through the Kalman Filter equations [23], which, ac-
cording to our observation model, come to:

μm = Σm
(
Σ−1
m̃ μm̃ + Σ−1

t μt
)

Σm =
(
Σ−1
m̃ + Σ−1

t

)−1
(12)

where (μm̃,Σm̃) and (μm,Σm) represent the distributions
of the landmark position before and after the update pro-
cess, respectively, while (μt,Σt) stands for the observed
position of the landmark at time step t. Please, refer to
appendix B for a complete derivation of these expressions
from the Kalman Filter equations.

Finally, we update the counters of all the landmarks in
the map, and delete those which are considered to be non-

stable, i.e. those landmarks which have not been detected
neither in recent iterations nor a suficient number of times.

5. Motion Model: Visual Odometry

Typically, in robot localization and SLAM, the motion
model is given by a probabilistic characterization of the
robot displacement obtained from encoder-based odome-
try. In this section we describe a motion model which does
not rely on the robot odometry but is based on matching
3D landmarks between two consecutive robot poses. This
motion model is not restricted to planar robot motion since
it estimates the incremental change in 6D: x, y, z, yaw,
pitch, and roll. The algorithm takes as inputs two sets of 3D
points computed at different time steps, with known cor-
respondences and coordinates relative to each robot pose,
and estimates their relative change through a closed-form
solution derived in [19]. Figure 4 shows a schematic rep-
resentation of the visual odometry approach whose main
stages are briefly depicted next.

In the first pair of stereo images, two sets of features are
extracted and matched according to both their SIFT de-
scriptors and the epipolar constraint (as explained in the
previous section). The matched pairs are subsequently pro-
jected into space and their 3D spatial uncertainty is also
computed.

Then, the features are tracked in the next pair of stereo
images (using the KLT method), which produces to a new
set of matched image features at this time step. Notice that,
since the correspondences between the tracked features in
the left and right images are already known, it is not neces-
sary to match each other again. This speeds up the process
significantly and reduces the computational burden of the
whole visual odometry procedure. Finally, the new set of
matched points is also projected into 3D space.

We must remark that, due to the tracking process, the
associations between the two sets of 3D landmarks are also
known at each time step. This set of 3D landmark pairs is
taken as input for the closed-form solution which computes
the 6D robot pose increment and its associated uncertainty,
as explained next.

5.1. Statement of the Visual Odometry Problem

Let qt,t+1 be a random variable which models the pose
increment between time steps t and t+1 as a function of the
sets of 3D landmarksXt and Xt+1 (as they were defined in
section 4.1):

qt,t+1 = f (Xt,Xt+1) qt,t+1 ∼ N (μq,Σq) (13)

Assuming a linear propagation of errors, qt,t+1 follows a
Gaussian distribution with covariance matrix Σq and mean:

μq =
(

Δx Δy Δz Δα Δβ Δγ
)T

(14)
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Fig. 4. Scheme of the visual odometry algorithm.

where Δx,Δy, and Δz, are the increments in theX , Y , and
Z coordinates respectively, and Δα,Δβ, and Δγ stand for
the increments in the yaw, pitch, and roll angles, respec-
tively.

The visual odometry problem consists of computing μq
and Σq from equation (13), as described next.

5.2. Computation of the Mean

The mean of the pose increment (μq) is computed
through the method reported by Horn in [19], where it is
derived a closed-form solution to the least-squares problem
of finding the relationship between two coordinate systems
given a number of points in both systems. In our work
these points will be assumed to be the mean values μit of
the 3D landmarks (please, refer to equation (6)).

This closed-form solution is in contrast to other propos-
als for visual odometry based on iterative methods [40,48]
which require an initial estimation, and may have conver-
gence problems. Horn’s algorithm, as applied to this prob-
lem, is depicted in appendix A.

5.3. Computation of the Covariance

Covariance matrices are usually obtained through a
linear approximation of the functions involved in a given
transformation between variables (see, for example, sec-
tion 4.2). However, the closed-form solution described in

appendix A cannot be linearized since it involves the com-
putation of eigenvectors. Instead, we propose the following
solution for estimating the covariance matrix of the pose
increment Σq.

The rigid transformation that relates two sets of N cor-
responding points in two instants of time t and t + 1 can
be expressed as:

Xi
t+1 = f

(
μq,Xi

t

)
i = 1, . . . , N (15)

which becomes linear when using homogeneous coordi-
nates:

⎛
⎜⎜⎜⎜⎜⎜⎝

X i
t+1

Y it+1

Zit+1

1

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

R t

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

X i
t

Y it

Zit

1

⎞
⎟⎟⎟⎟⎟⎟⎠ (16)

Our interest is to compute the 6 × 6 covariance matrix
Σq, given μq and the 3 × 3 covariances of all the 3D land-
marks in correspondence between t and t+1 (Σit and Σit+1,
respectively). This can be accomplished as follows:

First, let Σ be a 3N × 3N block diagonal matrix com-
prising the information about Σit and Σit+1:
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Σ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Σ1 0 . . . 0

0 Σ2 . . . 0
...

...
. . .

...

0 0 . . . ΣN

⎞
⎟⎟⎟⎟⎟⎟⎠ (17)

where N stands for the number of landmarks, 0 is a 3 × 3
null matrix, and:

Σi = Σit + Σit+1 (18)

On the other hand, let H be a 3 × 6N matrix composed
of a set of 3 × 6 submatrixes Hi:

H =
(
H1 . . . Hi . . . HN

)
(19)

where each Hi is the Jacobian of f in (15), with respect to
the components of μq, for each pair i of corresponding 3D
points:

Hi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂fX
∂Δx

∂fX
∂Δy

∂fX
∂Δz

∂fX
∂Δα

∂fX
∂Δβ

∂fX
∂Δγ

∂fY
∂Δx

∂fY
∂Δy

∂fY
∂Δz

∂fY
∂Δα

∂fY
∂Δβ

∂fY
∂Δγ

∂fZ
∂Δx

∂fZ
∂Δy

∂fZ
∂Δz

∂fZ
∂Δα

∂fZ
∂Δβ

∂fZ
∂Δγ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

In this expression, fX , fY , and fZ are derived from (15)
and denote the functions which determine the X , Y and Z
coordinates, respectively, of the 3D point at time step t+1.

The resulting covariance matrix Σq is computed using
the above-mentioned matrices as:

Σq =
(
HTΣ−1H

)−1
(21)

Notice that, due to the block diagonal structure of Σ,
its inverse matrix is also block diagonal and contains the
inverse of the submatrixes Σi:

Σ−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(Σ1)−1 0 . . . 0

0 (Σ2)−1 . . . 0
...

...
. . .

...

0 0 . . . (ΣN )−1

⎞
⎟⎟⎟⎟⎟⎟⎠ (22)

Thus, the expression (21) can be split into the sum of
its block diagonal elements, yielding the final expression of
the covariance matrix Σq:

Σq =

(
N∑
i=1

HiT
(
Σi
)−1

Hi

)−1

(23)

It must be remarked that the sum of the two covariance
matrices in (18) has no meaning but its inverse

(
Σi
)−1 in

(22) may be interpreted as a logical way of weighting the

contribution of each pair of points to the pose increment
uncertainty. Thus, the covariance of the pose increment,
shown in (23), can be interpreted as the weighted sum of the
uncertainty in q given by the different pairs of landmarks.

The computed mean and covariance constitute an esti-
mation of the robot displacement between two time steps,
which will be used as the motion model for the Bayesian
filter discussed in the present work.

6. An Observation Model for Stereo Vision

In the following we introduce our proposal for a proba-
bilistic observation model p (zt|xt), which stands for the
likelihood of an observation at time t, given the robot pose
xt. Notice that, as each particle x[k]

t represents a hypothesis
of the robot pose (k represents the index of the particle),
this likelihood will be evaluated at each particle in the fil-
ter. In the following formulation, however, for clarity, we
will omit the particle indexes.

Firstly, assuming conditional independency between the
errors in the detection of the individual landmarks zit, the
likelihood function can be factorized as follows:

p (zt|xt) cond.ind=
∏
i

p
(
zit|xt

)
(24)

To avoid explicit data association between landmarks in
the observation and in the map, we apply next the law of
total probability to marginalize out the observation likeli-
hood of individual landmarks by considering all the possi-
ble associations:

p
(
zit|xt

)
=

∑
ψ={1,...,M,φ}

p
(
zit|xt, ci = ψ

)
P (ci = ψ|xt)︸ ︷︷ ︸

η

(25)

where ci is an unknown discrete variable that represents the
correspondence of the ith observed landmark. Its possible
values are 1, . . . ,M for map landmarks, or φ for no corre-
spondence with the map. Notice that the a priori probabil-
ity of any given correspondence P (ci = ψ|xt) is a constant
since it does not depend on the actual observation zit. If we
do not have any other information, we can assume the same
probability for all the possible correspondences, including
the null one:

p
(
zit|xt

)
= η

∑
ψ={1,...,M,φ}

p
(
zit|xt, ci = ψ

)
(26)

The term p
(
zit|xt, ci = ψ

)
can be seen as the probability

of the observed landmark zit and its corresponding land-
mark mψ to coincide in both the 3D space of the position
and the 128-dimensional space of the SIFT descriptors.
This can be computed by simply evaluating at the origin
a Gaussian distribution whose mean μ is the difference be-
tween the means of zit and mψ and the covariance Σ is the
sum of their covariance matrices:
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p
(
zit|xt, ci = ψ

)
= N

⎛
⎜⎝0; z̄it − m̄ψ︸ ︷︷ ︸

μ

,Σzit + Σmψ︸ ︷︷ ︸
Σ

⎞
⎟⎠ (27)

= η′ exp
{
−1

2
(
z̄it − m̄ψ

)T (
Σzit + Σmψ

)−1 (
z̄it − m̄ψ

)}

where

η′ =
(
2π
∣∣∣Σzit + Σmψ

∣∣∣)− 1
2

(28)

Due to the particular structure of the mean μ and the
covariance matrix Σ (similar to those shown in expression
(8)), the exponential term in (27) can be split in two factors
related to the position and descriptor dimensions of the
random variable, respectively:

N (0;μ,Σ)

= η′ exp

⎧⎪⎨
⎪⎩−1

2

(
μT
X μT

F

)⎛⎝ΣX 0

0T ΣF

⎞
⎠−1⎛⎝ μX

μF

⎞
⎠
⎫⎪⎬
⎪⎭

= η′ exp
{
−1

2
(
μT
XΣ−1

X μX + μT
FΣ−1

F μF

)}
(29)

= η′ exp
{
−1

2
μT
XΣ−1

X μX

}
︸ ︷︷ ︸

position

exp
{
−1

2
μT
FΣ−1

F μF

}
︸ ︷︷ ︸

descriptor

Furthermore, since ΣF is a diagonal matrix containing
constant values

(
σ2

S1, . . . , σ
2
S128

)
, the exponent of the de-

scriptor term in (29) is proportional to the squared Maha-
lanobis distance between the descriptors and its computa-
tion is greatly simplified.

7. Experimental Results

The proposed method for performing visual SLAM
within a particle filter framework has been tested in two ex-
periments involving different kinds of camera movements:

(i) In the first experiment, Sancho, one of our mobile
robots equipped with a BumbleBee 1 stereo vision
system, was manually driven following an almost cir-
cular trajectory in an office environment while gath-
ering stereo images.

(ii) The second experiment shows the performance of our
approach when coping with data from a hand-held
camera describing a totally unconstrained trajectory.

In both experiments, the camera ego-motion was computed
using the visual odometry process described in section 5
and the estimations were stored in a log file in order to
be subsequently used as the motion model of the SLAM
process, which does not operate in real time.

1 http://www.ptgrey.com

7.1. Office-like Environment Experiment

Figures 5(a-b) show a plan and a snapshot of the envi-
ronment where this first experiment has been carried out.
This environment offers some interesting features for test-
ing the robustness of the proposed visual SLAM approach.
Thus, for example, the white board shown at the top of
the image 5(b) means a place where the detection of visual
landmarks is very unlikely. On the other hand, there are
some bookshelves at the left side of the room which pro-
duces many reliable landmarks. Finally, the bottom-right
zone of the room is not well illuminated, which hampers
the extraction of landmarks. The results achieved by our
SLAM method in all these different situations are shown in
the next section, while a video showing the complete evo-
lution of this experiment can be watched online 2 .

In the feature extraction process, it has been assumed
that errors in the variables r and c (i.e. the row and the
column in the image, respectively, of the detected interest
points) have a variance of 1 pixel, while the errors in d (i.e.
the disparity) is considered to be 2 pixels. This value arises
from the assumption of independence between the errors
in the estimation of the column variables for both images;
thereby the variance of the disparity (d = cleft − cright)
becomes the sum of the variances of both c variables.

Others parameters of the camera configuration and for
the experiment setup are summarized in Table 1.

7.1.1. Map Building
In this experiment, the recorded sequence of stereo im-

ages is used to build a map of the environment through
the Rao-Blackwellized Particle Filter (RBPF) described in
section 3.

The evolution of the constructed map as the robot moves
is shown in Figure 6, where a top view of the 3D landmarks
of the map being built (shown as ellipses representing 95%
confidence intervals) is displayed at six different time steps.

2 http://www.youtube.com/watch?v=m3L8OfbTXH0

(a) (b)

white board

bo
ok

sh
el

ve
s

Fig. 5. Experiment scenario. (a) Plan and (b) a picture of the envi-
ronment.
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Table 1
Camera Configuration and Experimental Setup

Camera Configuration PointGrey BumbleBee

Baseline (b) 11.9 cm

Focal length (f) 507.808 px

Principal Point coordinates (c0, r0) (252.922, 356.237) px

Image size 640×480 px

Experimental Setup

Path length (approx.) 40 m

Total number of stereo images 1000

Image capture rate 3 Hz(
σ2

c , σ2
r , σ2

d

)
(1,1,2) px

Number of particles 80

Number of landmarks in the final map 927

In addition, the hypothesis of the robot path estimated by
each particle is also shown in the figure.

The uncertainty in both the robot pose and the map
depends on the number of observed landmarks at each time
step and the number of times they are detected. Thereby,
the uncertainty in the landmark positions decreases as they
are detected in successive observations.

The zones A, B and C indicated in Figure 6(f) corre-
spond to the interest zones which where mentioned in the
previous section: the white board, the bookshelves and the
poorly illuminated zone, respectively. As can be seen, the
group of observed landmarks in each situation are sensibly
different. Thus, in zone A, the number of landmarks is quite
low, as it was expected from the visual characteristics of the
environment. In zone B there is a high number of observed
landmarks with low uncertainty, which manifests the ad-
equate visual characteristics of that zone. Finally, in zone
C, because of the poor illumination, the landmarks are ob-
served only a few number of times and, therefore, the initial
uncertainty of their position do not reduce much. Regard-
ing the uncertainty of the robot pose estimation, directly
related to the size of the red covariance ellipse in Figure 6,
it grows during the first part of the experiment since the
vast majority of the observed landmarks are new. This sit-
uation can be appreciated in the first part of the plot in
Figure 7(a), which shows the evolution of the determinant
of the particles’ covariance matrix. The substantial increase
around iteration 225 is due to the combination of two ad-
verse factors: i) the robot is performing a turn (which en-
tails significant errors in the visual odometry estimations)
and ii) the scarce visual information available in that zone
since the camera sees an almost totally texture-less surface
(the above-mentioned white board).

However, notice that this increasing trend changes dras-
tically around iteration 240 (at some point between Figures
6(c) and (d)) since the robot closes the loop, reaching an al-
ready navigated position. Now, most of the observed land-
marks correspond to those previously stored in the map,
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Fig. 6. Map building with a Rao-Blackwellized Particle Filter. Map
representation at different time steps where a 95% Gaussian confi-
dence interval of the landmark positions is represented by blue el-

lipses. The red ellipse surrounding the particle set represents the
uncertainty in the robot pose corresponding with a 95% Gaussian
confidence interval

hence the estimation of the robot position improves (the
particles converge towards the real robot location) and,
therefore, the determinant of the covariance matrix reduces
significantly. This loop closure can be also appreciated in
Figure 7(b) where it is represented the IDs of the observed
landmarks with correspondences in the map for each time
step. In this work, the management of the landmark ID is
accomplished as follows:
– As the robot explores the environment, a unique ID is

assigned (in an increasing order) to each new observed
landmark.

– A landmark which was observed previously keeps its orig-
inal ID while its position and covariance are updated
with the new observation.

Thus, the increasing zone at the beginning of the Figure
7(b) (up to time step 225 approx.) illustrates the initial
situation where the robot navigates an area for the first
time while observing both new landmarks (the majority)
and landmarks which were recently observed and stored in
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Fig. 7. (a) Determinant of the particles’ covariance matrix through time and (b) the landmarks IDs at each time step

the map.
At loop closure (approx. at time step 240), the robot

observes a large number of already stored landmarks while
the number of new landmarks reduces significantly. The
already observed landmarks correspond to those observed
at the beginning of the experiment (with the lowest IDs).
This manifests in Figure 7(b) as two different groups of
IDs: one for the new landmarks and other for those already
stored in the map. This situation repeats every time that
the robot reaches the initial position of the path.

Please note that, in an ideal situation, with the robot ob-
serving all the possible landmarks in the environment and
establishing correct correspondences with the map at each
time step, the representation of the IDs in this experiment
should be sawtooth-shaped (the solid black line in the fig-
ure). In real situations, although the robot moves through
an already explored zone, it observes new landmarks which
are assigned new IDs, giving the particular shape of Figure
7(b).

Finally, it must be remarked that there exists another in-
terval of iterations (between time steps 375 and 500) where
the determinant of the particles’ covariance matrix grows
(see Figure 7(a)). The initial increasing zone is caused by

the high uncertainty of the landmarks in that zone of the
map (zone B in Figure 6(f)) while the peak at time step
475 comes again from the combination of a turn and the
presence of the texture-less white board (zone A in Figure
6(f)). The magnitude of this increase is sensibly lower than
that in the first lap of the experiment since some correspon-
dences between the observed landmarks and those of the
map have been established, hence reducing the landmark
uncertainty and, therefore, improving the robot pose esti-
mation. Following this trend, notice that the influence of
this situation is practically negligible in the third and the
fourth laps.

7.1.2. Visual SLAM Performance
In order to evaluate the performance of our visual SLAM

approach, we have compared the robot path estimates from
both a RBPF algorithm based on laser data, gathered with
a SICK LMS-200 laser scanner, and our visual SLAM ap-
proach (see Figure 8(a)). In this work, we have considered
the former as the ground truth of the robot path since laser
data is highly accurate. We must remark that both laser
data and stereo images have been gathered simultaneously
during the navigation in order to ensure that the path fol-
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Fig. 8. (a) Comparison between the robot path estimated through a
RBPF based on laser data (blue, dashed line) and our visual SLAM
approach (red, thick line). (b) Root-Square-Error committed by the
visual SLAM method (the horizontal thick line indicates the RMSE
≈ 19.2 cm.)

lowed by the robot is exactly the same for both types of
data.

Figure 8(b) shows the root-square-error committed by
the proposed method when estimating the robot path,
yielding a Root-Mean-Square-Error (RMSE) of 19.2 cm
with a standard deviation of 7.4 cm.

Regarding the computational time, this experiment has
been carried out on a Desktop PC Intel Pentium 4 at 2.60
GHz running under Windows XP SP2 with 2 GB of RAM
memory. The processing time of each iteration of the parti-
cle filter is represented in Figure 9, where it can be seen the
increasing tendency due to the growing amount of stored
landmarks in the map, which involves an increment in the
processing time of both computing the likelihood and in-
serting the observations into the map.

Our implementation of the particle filter does not accom-
plish the insertion stage at every iteration, but only when
the robot has moved a certain distance. This leads to the
noisy appearance of the Figure 9, since iterations which
perform and do not perform the insertion stage alternate
through time spending a mean time of 22.4 and 11.65 sec-
onds, respectively (shown in the figure as dotted red lines),
while the overall mean time for each iteration is 15.3 sec-
onds (solid red line in the figure).
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Fig. 9. Processing time evolution for each iteration of the PF. The
dotted red lines represent the mean time of an iteration in the cases
of inserting and not inserting the observed landmarks into the map
while the solid red line indicates the overall mean time.

7.2. 6 DoF Camera Experiment

This second experiment has been carried in order to test
the suitability of our SLAM approach when handling to-
tally unconstrained movements. Thus, a stereo camera has
been moved by hand following an arbitrary 6 DoF trajec-
tory in one of our labs, while gathering images and comput-
ing visual odometry from them. The estimated ego-motion
information is subsequently employed as the motion model
of our SLAM proposal.

Figures 10 (a)-(b) show a representative image employed
in this experiment and a 3D representation of the estimated
path, respectively. Please note that it is difficult to obtain
any kind of ground truth in this type of experiments, since
the camera real trajectory cannot be estimated from typical
exteroceptive sensors such as laser scans or sonars. There-
fore, the performance of our method may only be estimated
by visual inspection from a video 3 showing the sequence
of the stereo images captured by the camera, as well as the
evolution of both the constructed map and the camera es-
timated path.

As can be seen in the video, the camera is initially located
on a table, and later on it is lifted up while describing a
pair of turns in the air. The estimated 6 DoF path of the

3 http://www.youtube.com/watch?v=b73W53Kwgjw

(a) (b)

Fig. 10. Our 6 DoF camera experiment. (a) A representative image
employed in this experiment, and (b) the 3D estimated path of the
camera.
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camera closely resembles this trajectory, thus validating
our method for arbitrary 6D movements.

8. Conclusions and Future Work

In this paper we have addressed the SLAM problem for
stereo vision systems within the probabilistic framework of
PF methods.

The robot ego-motion is estimated through a closed-form
formulation to perform 6D visual odometry which models
the uncertainty of the pose increment estimation as a Gaus-
sian distribution. This ego-motion estimation relies only
on the visual information provided by the stereo camera
and does not assume any restriction in the robot movement
(e.g. smooth paths, navigation across planar surfaces, etc.).
Moreover, it avoids the divergence and local-minima prob-
lems of the iterative approaches to visual odometry.

On the other hand, our observation model for the RBPF
algorithm considers observations as sets of landmarks de-
termined by their 3D positions and their SIFT descriptors,
as well as their associateduncertainty. As an important con-
tribution, we avoid explicit data association by marginaliz-
ing out the observation likelihood over all the possible as-
sociations, thus overcoming the problems derived from es-
tablishing incorrect correspondences between the observed
landmarks and those in the map.

An experiment with a real robot has been performed in
order to validate our proposal in the context of map build-
ing. The experimental results illustrate its adequate per-
formance when coping with the SLAM problem and reveal
the proposed models as promising approaches for stereo vi-
sion in robotics. The MSE committed by our method in
comparison to a RBPF approach employing laser data is
approximately 19.2 cm.

We are currently working on reducing the computational
time of the algorithm with the aim of applying our SLAM
approach in real time. Moreover, we are also studying the
suitability of other different approaches for extracting im-
age features in order to achieve robust, efficient and more
accurate implementations.

Appendix A. Computation of the Pose Increment
through a Closed-form Solution

The closed-form solution that computes the pose incre-
ment:

μq = 〈Δx,Δy,Δz,Δα,Δβ,Δγ〉 (A.1)

between two reference systems given the coordinates of a
set ofN 3D points in both systems,

{
Xi
t

}
and

{
Xi
t+1

}
, can

be summarized as follows:
1. Compute the centroids (ct and ct+1) of the two sets

of points and subtract them from their coordinates in
order to deal only with coordinates relative to their
centroids:

ct =
1
N

N∑
i=1

Xi
t

ct+1 =
1
N

N∑
i=1

Xi
t+1

X
i
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i
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X
i
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)T

= Xi
t+1 − ct+1

(A.2)

2. For the ith 3D point, compute the following nine
products of its coordinates at time t and t+ 1:

P iXX = X
i

tX
i

t+1 P
i
Y X = Y

i

tX
i

t+1

P iXY = X
i

tY
i

t+1 P iY Y = Y
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(A.3)

3. Accumulate the products in (A.3) for all the 3D points
to end up with the following nine values:

SXX =
∑
i

P iXX SY X =
∑
i

P iY X

SXY =
∑
i

P iXY SY Y =
∑
i

P iY Y

SXZ =
∑
i

P iXZ SY Z =
∑
i

P iY Z

SZX =
∑
i

P iZX SZY =
∑
i

P iZY

SZZ =
∑
i

P iZZ

(A.4)

4. Form a 4x4 symmetric matrix with the elements in
(A.4):

N =

⎛
⎜⎜⎜⎜⎜⎜⎝

N11 N12 N13 N14

N21 N22 N23 N24

N31 N32 N33 N34

N41 N42 N43 N44

⎞
⎟⎟⎟⎟⎟⎟⎠ (A.5)

where
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N11 = SXX + SY Y + SZZ

N12 = N21 = SY Z − SZY

N13 = N31 = SZX − SXZ

N14 = N41 = SXY − SYX

N22 = SXX − SY Y − SZZ

N23 = N32 = SXY + SYX

N24 = N42 = SZX + SXZ

N33 = −SXX + SY Y − SZZ

N34 = N43 = SY Z + SZY

N44 = −SXX − SY Y + SZZ

(A.6)

5. Find the eigenvector corresponding to the largest
eigenvalue of N, which will be the quaternion that
determines the optimal rotation between the two sets
of points.

6. Compute the rotation matrix (R) associated to the
so obtained quaternion, and compute the translation
t = (Δx,Δy,Δz)T as the difference between the cen-
troid at time t and the rotated centroid at time t+1:

t = ct − Rct+1 (A.7)

7. Finally, we extract the values of the increments in
yaw, pitch, and roll angles 〈Δα,Δβ,Δγ〉 between
poses from the rotation matrix R, having in this way
all the components of μq.

Appendix B. Derivation of the landmark update
equations

In this paper, we have employed a linear Kalman filter
to estimate the 3D position of the landmarks in the map
constructed during the SLAM process. This appendix ad-
dresses the derivation of the position update equations,
from those of the Kalman Filter.

As stated in [23], the Kalman filter method comprises two
different phases: prediction and update. In the prediction
phase it is estimated the state of the system at the current
time step

(
xk|k−1

)
from the previous estimate

(
xk−1|k−1

)
and a control action (uk), whereas the update phase refines
the state estimation by introducing the information pro-
vided by the observation (yk), yielding a more accurate es-
timation

(
xk|k

)
. In addition, the KF provides a covariance

matrix associated to the estimation uncertainty
(
Pk|k

)
.

The equations stated for the discrete KF algorithm are
as follows:

Prediction

xk|k−1 = Fkxk−1|k−1 + Bkuk

Pk|k−1 = FkPk−1|k−1Fk
T + Qk

(B.1)

where Fk relates the state at the previous time step to that
at the current step (also known as the transition model), Bk

relates the control action with the state, and Qk is the co-
variance of a zero-mean multi-variate gaussian distributed
noise which affects the a priori estimation.

Update

xk|k = xk|k−1 + Kkyk

Pk|k = (I − KkHk)Pk|k−1

(B.2)

where Hk is the observation model, which relates the state
of the system to the observation at the current time step, yk

stands for the innovation, and Kk represents the Kalman
filter gain, with expressions:

yk = zk − Hkxk|k−1

Kk = Pk|k−1Hk
T
(
HkPk|k−1Hk

T + Rk

)−1 (B.3)

being Rk the covariance of the zero-mean multi-variate
gaussian distribution affecting the measurement process.

Note that, in this work, xk|k−1 and xk|k represents the
mean of the estimated position of a landmark in the map
before and after the update process, respectively, while zk

stand for the observed position of the landmark at time
step k. Besides, Pk|k−1, Pk|k and Rk are the covariance
matrixes of their associated uncertainties.

For clarity, let us take up again the notation introduced
in section 4.3, renaming these variables as follows:

xk|k ≡ μm Pk|k ≡ Σm

xk|k−1 ≡ μm̃ Pk|k−1 ≡ Σm̃

zk ≡ μk Rk ≡ Σk

Thus, with this change in the nomenclature and merging
expressions (B.2) and (B.3), the KF prediction and update
equations become:

μm̃ = Fμm̃′ + Buk

Σm̃ = FΣm̃′FT + Qk

(B.4)

being (μm̃′ ,Σm̃′) the estimation of the landmark position
at the previous time step, and

μm = μm̃ + Σm̃HT
(
HΣm̃HT + Σk

)−1
(μk − Hμm̃)

Σm =
(
I − Σm̃HT

(
HΣm̃HT + Σk

)−1
H
)

Σm̃
(B.5)

Note that the subscript k in matrixes F, B and H has
been dropped, since they are considered to be constant
through time. Furthermore, in our work, the transition
model and the control action for the landmarks in the map
are very simple, since they remain static with time. There-
fore, we do not consider uk and take F = I, which entails
that the predicted landmark positions are identical to their
estimations at the previous time step:
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μm̃ = μm̃′

Σm̃ = Σm̃′

On the other hand, as the observations in our work di-
rectly determine the 3D spatial coordinates of the land-
marks model, we have H = I, thereby simplifying equa-
tions (B.5) considerably:

μm = μm̃ + Σm̃ (Σm̃ + Σk)
−1 (μk − μm̃) (B.6)

Σm =
(
I− Σm̃ (Σm̃ + Σk)

−1
)

Σm̃ (B.7)

These simplifications can be further transformed in order
to get the more compact expressions shown in equations
(12) in section 4.3, as derived next.

Regarding the covariance equation (B.7), we can substi-
tute the identity matrix by (Σm̃ + Σk) (Σm̃ + Σk)

−1 and
factor out to obtain:

Σm =
(
(Σm̃ + Σk) (Σm̃ + Σk)

−1 − Σm̃ (Σm̃ + Σk)
−1
)

Σm̃

= Σk (Σm̃ + Σk)
−1 Σm̃ (B.8)

which is equivalent to:

Σm =
(
Σ−1
k + Σ−1

m̃

)−1 (B.9)

On the other hand, the equation of the mean (B.6) can
be expanded as follows:

μm = μm̃ + Σm̃ (Σm̃ + Σk)
−1 μk − (B.10)

−Σm̃ (Σm̃ + Σk)
−1 μm̃

and by factoring out the μm̃ variable, it becomes:

μm =
(
I− Σm̃ (Σm̃ + Σk)

−1
)
μm̃ + (B.11)

+Σm̃ (Σm̃ + Σk)
−1
μk

Now, the identity matrix can be substituted in the same
way as with the covariance expression, and by factorizing
out again, we obtain:

μm = Σk (Σm̃ + Σk)
−1
μm̃ + Σm̃ (Σm̃ + Σk)

−1
μk (B.12)

Finally, by using equation (B.8), we can conclude that:

μm = ΣmΣ−1
m̃ μm̃ + ΣmΣ−1

k μk

= Σm
(
Σ−1
m̃ μm̃ + Σ−1

k μk
)

(B.13)

which, together with equation (B.9), constitute the simpli-
fied expressions presented in section 4.3.
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