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A Probabilistic Observation Model for Stereo Vision 
Systems: Application to Particle Filter-Based Mapping 

and Localization 

Francisco Angel Moreno, Jose Luis Blanco, and Javier Gonzalez 

System Engineering and Automation Department 
University of Malaga, Spain 

Abstract. In this paper we propose a probabilistic observation model for stereo 
vision systems which avoids explicit data association between observations and 
the map by marginalizing the observation likelihood over all the possible 
associations. We define observations as sets of landmarks composed of their 3D 
locations, assumed to be normally distributed, and their SIFT descriptors. Our 
model has been integrated into a particle filter to test its performance in map 
building and global localization, as illustrated by experiments with a real robot. 

1   Introduction 

Due to the rich information cameras provide and their low cost in comparison with 
traditional robotics sensors, like laser scanners, vision systems have acquired more 
and more importance in mobile robotics during the last years. In particular, a large 
number of vision-based localization approaches have been reported in the literature 
either using single ([2],[3]), stereo ([13],[14]), or omnidirectional [8] cameras. Errors 
in the formation of the images (e.g. discretization) and in detecting features may lead 
to large inaccuracies in the robot localization. The resulting uncertainty can be 
managed by probabilistic Bayesian filters, extensively discussed elsewhere ([12], 
[16]). The underlying principle of those filters is the Bayes’ theorem, which states 
how to update a prior belief about a variable x given a new observation z and an 
observation model: 

( ) ( )N ( )
priorposterior obs. model

p x z p x p z x∝
�	
 �	


 
(1)

In mobile robot localization, the filter can be implemented by iteratively executing 
a prediction and an update step. In the former, the system state (the robot pose) is 
propagated in time according to an evolution model (the motion model), giving the 
prior estimation of the robot pose. In the second step, the prior is refined according to 
a given observation model, obtaining the posterior distribution. 

Two widely extended implementations of Bayesian filters are the Extended 
Kalman Filter (EKF) [7], and the family of sequential Monte Carlo (SMC) methods 
(also named particle filters (PF)) [1]. EKF has been successfully used in mobile robot 
localization [4], but it is limited by the assumption of Gaussian models in both, the 
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robot pose and the observation model. On the other hand, a PF can cope with 
complex, even multi-modal distributions, providing a unified method for map 
building and global localization. Due to these advantages, in this work we focus on 
observation models for PF. Although an observation model is required in both EKFs 
and PFs, notice that, in the former, the observation model has a parametrical form 
whereas in PFs it is necessary only to evaluate it pointwise. 

This paper addresses the derivation of a suitable observation model for stereo 
vision systems. We assume that observations are sets of landmarks defined by their 
three-dimensional positions and a distinctive feature descriptor. In particular, we use 
SIFT [9] descriptors due to their invariance to image translation, scaling, and rotation. 
The main contribution of this work is the avoidance of explicit data association 
between observations and the map, which is achieved by marginalizing the 
observation model over all the possible associations. This model has been validated 
by experiments with a real robot: first a map of the environment has been successfully 
built applying vision-based SLAM, next, global localization is performed using the so 
built map.  

The rest of this paper is organized as follows. In Section 2, we state the problem 
and define the involved variables. Section 3 describes our proposal for the observation 
model, and experimental results are presented in Section 4. Finally, we provide some 
conclusions and discuss possible future works in Section 5. 

2   Problem Statement 

2.1   Preliminary Definitions 

Let m be the map of the environment, xt the robot pose, ut the robot action (which 
typically consists of odometry readings), and zt the observation, all of them for the 
time step t. Then, the recursive Bayesian filter for the robot pose reads [16]: 

( ) ( ) ( ) ( )1: 1: 1 1 1: 1 1: 1 1

current pose estimation observation model motion model previous pose estimation

, , , , , ,t t t t t t t t t t t tp x z u m p z x m p x x u p x z u m dx− − − − −∝ ∫���	��
 ��	�
 ���	��
����	���

 

(2)

where we have employed the notation z1:t={z1,…,zt} for clarity. In this work we define 
observations zt and the map m as sets of three-dimensional landmarks: 

{ } { } ( )
{ } { } ( ) ( )

i= 1,...,N

j= 1,...,M

 where , , ,

 where , , , , ,j j
m m

i i i i i i i
t t t t t t t t

j j j j j j
j j m m m m m m

z z z N

m m m N N

μ

μ μ

= = Σ

= = Σ Σ
F F

X F X

X F X F

∼

∼ ∼
 (3) 

Notice that a landmark, either in the map or in an observation, comprises of its 3D 
location X (which we assume to be normally distributed), and its associated SIFT 
descriptor F. For each landmark in the map, the descriptor j

mF is also assumed to be 

normally distributed whereas the descriptor of an observation landmark i
tF is just a 

sample vector. The process for extracting observations from the stereo images is 
described next. 
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2.2   Extraction of Reliable Landmarks for Observations 

To extract the set of 3D landmarks (i.e. the observation) from a pair of stereo images 
we need to find feature points in both images, to match them, and to estimate their 
corresponding 3D locations. Next we describe the whole process in more detail. 

Many methods have been proposed in the literature for extracting interest points 
from images, as the well known detectors of Kitchen & Rosenfeld [8] and Harris [5], 
based on the first and the second-order derivatives of images, respectively. More 
recently, the SIFT detector proposed by Lowe [9] deals with the detection process by 
identifying local extrema in a pyramid of Difference of Gaussians (DoG). It also 
provides the detected features with a descriptor that exhibits invariance to rotation and 
scale, and partial invariance to lighting changes and affine distortions. In our work, 
the detection of interest points in the images is carried out by the method proposed by 
Shi and Tomasi [15]. In addition, their corresponding SIFT descriptor is also 
computed to make them sufficiently distinguishable and improve the matching 
process robustness. 

Once a set of keypoints has been detected in each image they are robustly matched 
according to both the similarity of their descriptors and the restriction imposed by the 
epipolar geometry. More precisely, in the former restriction, for each keypoint in the 
left image, it is computed the Euclidean distance between its descriptor and those of 
the keypoints in the right image. For a pair of keypoints to be considered as a 
candidate match, the minimum distance must be below a fixed threshold and the 
second lowest distance must be sufficiently apart from the minimum (see Fig. 1(b)). 
Moreover, the points must fulfill the epipolar constraint: they have to lay on the 
conjugate epipolar lines. In a stereo vision system with parallel optical axis as the one 
shown in Fig. 1(a), epipolar lines are parallel and horizontal, thus, the epipolar 
constraint reduces to checking that both features are in the same row. 

Once matching have been robustly established, it is straightforward to estimate the 
most likely 3D coordinates of the landmark by using well-known methods [6],[14]. 
However, we also consider here the uncertainty in the 3D landmark position due to 
errors in the image quantization and in feature detection methods. Assuming a stereo 
system with parallel optical axes and a pinhole camera model (see Fig. 1(a)), the 3D 
coordinates (X, Y, Z) of a landmark can be computed from two matched points in the 
left and right images as [14]: 

0 0( ) ( )b b b
d d dX Y Zc c r r f= = =− −  (4)

where (r0, c0) are the coordinates of the reference image centre, (r, c) are the 
coordinates of the keypoint in the reference image (say, the left one), b is the baseline, 
d is the disparity, and f is the focal length of both cameras (please, refer to Fig. 1(a)). 

The errors in obtaining the variables r, c, and d, are usually modelled as 
uncorrelated zero-mean Gaussian random variables [10]. Using a first-order error 
propagation to approximate the distribution of the variables in (4) as multivariate 
Gaussians, we obtain the following covariance matrix: 
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Fig. 1. (a) Configuration of a stereo vision system and schematic representation of uncertainty 
in the localization of the 3D landmarks. (b) Euclidean distance between the descriptors of a 
feature in the left image and all the features in the right one. 

( ) T2 2 2, ,c r ddiag σ σ σΣ = J J  (5)

where J stands for the Jacobian matrix of the functions in (4), and 2 2 2 2 2, , , , ,X Y Z c rσ σ σ σ σ  
and 2

dσ are the variances of the corresponding variables. Expanding (5) we come to the 

following expression for Σ: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

2

2

22 2 2 2 2 22 2 0 0 0 0
2 4 4 4

22 2 2 2 2 22 20 0 0 0
4 2 4 4

2 2 2 2 2 2 2
0 0

4 4 4

X XY XZ

XY Y YZ

XZ YZ Z

d d dc

d d dr

d d d

b c c c c b r r c c b fb
d d d d

c c b r r b r r r r b fb
d d d d

c c b f r r b f f b

d d d

σ σ σσ

σ σ σσ

σ σ σ

σ σ σ
σ σ σ
σ σ σ

=

− − − −

− − − −

− −

⎛ ⎞
+⎜ ⎟

⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟ = +⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎜ ⎟
⎝ ⎠

Σ
 

(6) 

which approximately models the uncertainty in the coordinates of landmarks 
computed from the noisy measurements of a stereo system. Finally, each landmark is 
assigned a SIFT descriptor which is simply computed as the mean value of the 
descriptors from each image (F = (f+f’)/2). 

3   The Proposed Observation Model for Stereo Vision 

In the following we introduce our proposal for the probabilistic observation 

model ( ),t tp z x m , which models the likelihood of an observation at time t, given the 

robot pose (xt) and a map (m). Firstly, assuming conditional independency between 
the errors in the detection of the individual landmarks i

tz , the likelihood function can 

be factorized as follows: 
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( ) ( )cond.ind

, ,i
t t t t

i

p z x m p z x m= ∏  (7)

To avoid explicit data association between landmarks in the observation and in the 
map, we apply next the law of total probability to marginalize out the observation 
likelihood of individual landmarks by considering all the possible associations: 

( ) ( )
{ }

( )
1,..., ,

, , , ,i i
t t t t i i t

j M

p z x m p z x m c j P c j x m
φ

η
=

= = =∑ ���	��

 

(8)

where ic is an unknown discrete variable that represents the correspondence of the i-th 

observed landmark. Its possible values are {1,…,M} for map landmarks, orφ for no 

correspondence with the map. Notice that the a priori probability of a given 

correspondence with the j-th landmark in the map, ( ),i tP c j x m= , is constant since 

the actual observation i
tz is not taken into account. Assuming the same probability for 

all the possible correspondences, including the null one, we have: 

( ) ( )
{ }1,..., ,

, , ,i i
t t t t i

j M

p z x m p z x m c j
φ

η
=

= =∑  (9)

Next, if we expand the likelihood term conditioned to a given correspondence 
according to the definitions in (3), we obtain: 

( ) N

( ) ( )cond.ind

Localization term Descriptor term

, , , , , ,

, , , , ,

i
jt

i i i j j
t t j i t t t m m i

mz

i j i j
t t m i t t m i

p z x m c j p x c j

p x c j p x c j

⎛ ⎞
⎜ ⎟= = =⎜ ⎟⎜ ⎟
⎝ ⎠

= = =

X F X F

X X F F

�	


����	���
����	���


 (10)

Here we have assumed conditional independence between the errors in localization 
and the descriptor of landmarks, which seems a plausible approximation. The 
descriptor term is easily computed by evaluating the probability density function 
associated to j

mF  at the vector i
tF . Regarding the localization term, we approximate it 

by the probability density of the pair of landmarks to coincide in the 3D space:  

( ) ( ) ( )
3

, , j i
m t

i j
t t m ip x c j p p d I

∈

= = ≡∫ X X
X

X X X X X
\

 (11)

where ( )j

m

p
X

X and ( )i

t

p
X

X are the distributions of the random variables j
mX and i

tX , 

respectively. Since both distributions are Gaussian their product is also a Gaussian 
and hence the integral I in (11) has a closed-form solution: 

( ) ( ) ( ) ( ){ }
1

T 1
2 12 exp 2

j i j i j i j i
m t m t m t m tI π μ μ μ μ

− −
= Σ + Σ − − Σ + Σ −  (12)
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Fig. 2. Map building with a Rao-Blackwellised Particle Filter. (a)-(d) Map representation at 
different time steps. (e) Value of the covariance matrix determinant through time. (f) Plan and 
(g) a picture of the environment. 

4   Experimental Results 

Our proposed observation model has been tested within a particle filter framework for 
both Simultaneous Localization and Mapping (SLAM) and global localization. In 
robotics, particle filters represent the distribution of the robot pose by a set of samples 
which are propagated through the robot motion model and subsequently weighted 
according to the observation model. In the following experiments we additionally fit 
the particle set with a Gaussian to easily measure the degree of uncertainty in the 
robot pose estimation. 

For the experiments, our Sancho mobile robot, equipped with a BumbleBee stereo 
vision system [18] (with a baseline of 11.9 cm and 2 mm of focal length), was 
manually driven following a circular trajectory of about 40 m inside one of our 
laboratories while taking images with the stereo camera at 3Hz (up to a grand total of 
1000 stereo images). In the feature extraction process, it has been assumed that errors 
in the variables r, c and d have a variance of 1 pixel. A complete video showing the 
evolution of both experiments can be downloaded in [17]. 

4.1   Map Building 

The sequence of stereo images is firstly used to build a map of the environment 
through a Rao-Blackwellised Particle Filter (RBPF). RBPFs are efficient solutions to 
the SLAM problem where each particle carries a hypothesis of the whole robot path 
and the associated map [16]. 
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Fig. 3. (a)-(d) Global localization using the map built before. Initially, particles are uniformly
scattered across the map and are subsequently concentrated around the robot real pose (a circle 
surrounding the particles is shown in (c)-(d)). 

The evolution of the constructed map while the robot navigates is shown in Fig. 2 
(a)-(d), where a top view of the 3D landmarks of the map being built (represented by 
99% confidence intervals) is displayed at different time steps. Note that the 
uncertainty in the landmark positions decreases as they are detected in successive 
observations. Moreover, the covariance of the particles grows during the experiment 
since only new landmarks are being added to the map, until the point where the robot 
reaches an already navigated position, which is called the loop closure. Then, the 
estimation of the robot position is improved and particles converge towards the real 
robot location. This occurs in some point between Fig. 2 (c) and (d), and its effects in 
the uncertainty can be seen through the evolution of the determinant of the covariance 
matrix (Fig. 2 (e)). For this experiment, a sample size of 50 particles has been 
sufficient to yield a correct estimation of the map. The relatively small sample set is 
the reason of the noisy appearance of the fitted covariance in Fig. 2(e). 

4.2   Global Localization 

In this experiment we deal with the global localization problem. We take the map 
associated to the particle with the highest weight from the previous experiment as the 
map of the environment. Initially, a set of 3000 particles is uniformly distributed over 
the whole map (see Fig. 3 (a)) and, as the filter processes observations, they tend to 
converge towards the robot actual location (Fig. 3 (b)-(d)). Notice that in the early 
iterations particles are scattered over multiple possible positions since the available 
information is not enough to unambiguously localize the robot. 

5   Conclusions 

In this paper we have introduced a novel observation model for stereo vision systems 
suitable for particle filters, which considers observations as sets of landmarks 
determined by their 3D positions and their SIFT descriptors. As an important 
contribution, we avoid explicit data association by marginalizing out the observation 
likelihood over all the possible associations. Matching features in stereo image pairs is 
robustly solved by checking simple restrictions regarding their descriptors and epipolar 
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geometry. The model takes into account the uncertainty both in the localization of 
landmarks and in their feature descriptors. 

Two experiments have been performed in order to validate our proposal in the 
context of map building and global localization. The experimental results illustrate its 
adequate performance when coping with both problems and reveal the proposed 
observation model as a promising approach for stereo vision in robotics. 
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