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An Efficient Closed-Form Solution to Probabilistic 6]
Visual Odometry for a Stereo Camera

F.A. Moreno, ].L. Blanco, and J. Gonzilez

Department of System Engineering and Automation, University of Malaga, Spain
famorenc@isa.uma.es, {jlblanco, Jgonzalez}@ctima.uma.es

Abstract. Estimating the ego-motion of a mobile robot has been traditionally
achieved by means of encoder-based odometry. However, this method presents
several drawbacks, such as the existence of accumulative drifts, its sensibility to
slippage, and its limitation to planar environments. In this work we present an
alternative method for estimating the incremental change in the robot pose from
images taken by a stereo camera, In contrast to most previous approaches for
6D visual edametry, based on iterative, approximate methods, we propose here
to employ an optimal closed-form formulation which is more accurate,
efficient, and does not exhibit convergence problems. We also derive the ex-
pression for the covariance associated to this estimation, which enables the in-
tegration of our approach into vision-based SLAM frameworks. Additionally,
our proposal combines highly-distinctive SIFT descriptors with the fast KLT
feature tracker, thus achieving robust and efficient execution in real-time. To
validate our research we provide experimental results for a real robot.

1 Introduction

Odometry is one of the most widely used means for estimating the motion of a mol
robot. Traditionally, odometry is derived from encoders measuring the revolutions
the robot’s wheels, thus providing information for esti mating the change in the rq
pose. Unfortunately, the usage of encoder-based odometry is limited to wheeled
bots operating on plane surfaces and systematic errors such as drift, wheel slippa
and un-controlled differences in the robot’s wheels induce incremental errors in
displacement estimation, which can not be properly modelled by a zero-mean Ga
sian distribution. This erroneous assumption about the encoder-based odometry err
is accepted in most probabilistic filters for robot localization and SLAM [15], ¢
may eventually lead to the divergence of the filter estimation,

In order to overcome the limitations of encoder-based odometry, other n
proprioceptive sensors such as laser sensors [4, 14] and, more recently, vision-ba
systems [1, 16] have been used in the last years. The proper performance of laser s
sors is also limited to purely planar motions, whereas vision-based odometry expl¢
the advantages of the wider field-of-view of cameras. Nowadays, cameras are che
and ubiquitous sensors capable of collecting huge amount of information from the |
vironment. The existence of powerful methods for extracting and tracking signifig
features from images, along with the above-mentioned advantages of cameras, esl;
lish a propitious framework for applying vision to ego-motion estimation.

I Blanc-Talon et al. (Eds.): ACIVS 2007, LNCS 4678, pp. 932-942, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Regarding this topic, several approaches have been proposed in the technical litera-
ture which apply different methods for estimating the displacement of a vision-
equipped mobile robot from a sequence of images taken along its navigation through
the environment. The work in [10] reports both a meneccular and a stereo visual
odometry system based on iterative methods for estimating the 3D change in robot
pose, while [1] performs monocular visual odometry with uncalibrated consumer-
grade cameras under the assumption of purely planar motion. In [13] it is presented a
probabilistic method for performing SLAM which uses visual odometry as the robot
motion model. This approach looks for sets of features in the stereo images and com-
putes their SIFT descriptors in order to establish correspondences. The camera motion
is subsequently estimated using an iterative optimization algorithm which minimizes
the re-projection error of the 3D points.

In this paper we propose a new approach to visual odometry by estimating incre-
mental changes in the 6D (yaw, pitch, roll, x, y, z) robot pose between consecutive
stereo images. Our method estimates the complete set of angles and translations, thus
there are not constraints about the potential movements of the camera as in other ap-
proaches like [2].

Our algorithm combines the speed of the Kanade-Lucas-Tomasi detector and
tracker [12] with the selectivity of SIFT descriptors [8] to match features in the stereo
images. Since SIFT-based stereo matching is only carried out when the number of
distinctive points in the tracker falls below a given threshold, we avoid the high com-
putational cost involved in computing and comparing the Euclidean distance between
SIFT descriptors for all the features in each pair of stereo images. Another advantage
of our approach over previous works is the application of a closed form solution to es-
timate the changes in orientation and translation, eluding both the complexity and di-
vergence problems of iterative methods. Moreover, we model the uncertainty of the
pose estimate by propagating the uncertainty in the 3D positions of the observed
points.

The rest of the paper is organized as follows: Section II presents a brief outline of
our proposed method for performing visual odometry, which is described in more de-
tail in section III. In section IV we provide some experimental results, whereas sec-
tion V presents some conclusions and the future work.

2 Method Overview

Our proposed method, depicted in Fig. 1, can be summarized by the following stages:

I. Searching for a set of interest features in a first pair of stereo images, and computa-
tion of their corresponding SIFT descriptors.

2. Stereo matching based on the Euclidean distance between descriptors and epipolar
geometry restrictions.

3. Projection into 3D space of the matched features. therefore obtaining a set of three
dimensional points with coordinates relative to the current robot pose.

4. Tracking the features in the next pair of sterco images. Notice that this tracking al-
lows us to avoid a new SIFT-based matching step.

5. These tracked features are projected into 3D space, yiclding a new set of three di-
mensional points with known correspondences to the previous set of 3D points.
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6. Robot (camera) 6D pose estimation through a closed-form solution of the absolute
orientation problem [6], given the correspondences between the two sets of 3D
points.

7. It the number of tracked features falls below a certain threshold, new features are
searched in the stereo images and their SIFT descriptors computed. Subsequently,
they are matched according to their descriptors and added to the current set of
points.

8. Repeat [rom step 4.

A full detailed description of all the steps of our method is presented in next section.
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Fig. 1. A schematic representation of the proposed method

3 Detailed Description of the Method

This section presents a detailed description of the different operations involved in our
proposed algorithm for performing visual odometry.

3.1 Extraction and Matching of Reliable Features from Stereo Images

Several methods have been proposed in the literature for extracting interest points
from images, as the well known detectors of Kitchen & Rosenfeld [7] and Harris [5],
based on the first and the second-order derivatives ol images, respectively. More re-
cently, the SIFT detector proposed by Lowe [8] deals with this problem by identifying
local extrema in a pyramid of Difference of Gaussians (DoG). It also provides the de-
tected features with a descriptor that exhibits invariance to rotation and scale, and
partial invariance to lighting changes and affine distortions. In our work, the detection
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of interest points in the images is carried out by the method proposed by Shi and
Tomasi [12]. In addition, their corresponding SIFT descriptors are also computed to
make them sufficiently distinguishable and to improve the robustness of the matching
process.

Once a set of keypoints has been detected in the left and right images they are
robustly matched according to both the similarity of their descriptors and the restric-
tions imposed by the epipolar geometry. More precisely, in the former restriction, for
each keypoint in the left image it is computed the Euclidean distance between its de-
scriptor and those of the keypoints in the right image. For a pair of keypoints to be
considered as a candidate match their descriptors must fulfill two conditions: to be
similar enough (their distance below a certain threshold), and different enough to
other candidates (their distance above a certain threshold). Moreover, the points must
fulfill the epipolar constraint, i.e. they have to lay on the conjugate epipolar lines (or
be close enough). In a stereo vision system with parallel optical axis as the one we use
here, the epipolar lines are parallel and horizontal, thus the epipolar constraint reduces
to checking that both features are in the same row.

Finally, each pair of matched features is assigned a unique ID which will be used
to identify the point projected from their image coordinates in subsequent time steps.

3.2 Projection into 3D Space

Once the features have been robustly matched, the coordinates of their corresponding
3D points are estimated from their coordinates on the images and the intrinsic pa-
rameters of the stereo system. Formally, let (¢, r) be the image coordinates of a fea-
ture in the left image (which we will be taken as the reference one) and d the disparity
of its conjugate feature in the right one. Then, the 3D coordinates (X,Y,Z) of the pro-
jected point are computed as:

X=(c—c)l Y=(r—r)t) z=f¥ (1

where (c¢y. 1) are the image coordinates of the principal point in the reference image,
b is the baseline of the sterco system, and f stands for the identical focal length of the
cameras.

The errors in the so obtained variables r, ¢, and d are usually modeled as uncorre-
lated zero-mean Gaussian noises [9]. By using a first-order error to approximate the
distribution of the variables in (1) as multivariate Gaussians, we obtain the following
covariance matrix:

O_; O-XY O_.‘('Z
2 . 2 2 2 T
Loy Oy Oy :.]dmg(O'( ,Oj_,od).] (2)
O-\'Y 037 O-;
where J stands for the Jacobian matrix of the functions in (1), and

0%,0,,0,.0.,0,,and g, are the variances of the corresponding variables. Expand-
ing (2) we come up with the following expression for X:
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which approximately models the uncertainty in the 3D coordinates of points com-
puted from the noisy measurements of a stereo system.

Finally, to distinguish it from the rest of the projected points, each 3D point i
assigned the unique ID of the matched pair of image features from which it was
generated.

3.3 Tracking Features

In successive stereo frames, the detected features are tracked using the well-known
Lucas-Kanade-Tomasi method [12] in order to determine their coordinates in the new
pair of stereo images. This method computes the optical flow of a pixel in two con-
secutive images by minimizing the difference between the surrounding windows us-
ing a Newton-Raphson method.

The correct tracking of a pair of matched features in the left and right images at
time k yields another matched pair of features in the stereo images at time k+1. At this
point the epipolar constraint is considered to detect improperly tracked features and,
hence, to avoid the presence of unreliable matched pairs. By using this tracking proc-
ess, we avoid both the search for features and the SIFT-based stereo matching at the
new camera pose. Thus this method speeds up the process of extracting and matching
features and, consequently, the computational burden of the whole visual odometry
procedure is considerably reduced.

The resulting set of tracked features are also projected to space following the
method described in section 3.2, yielding a new set of 3D points which keep their IDs
from the image features in order to maintain an implicit matching relationship with
the points in the previous set.

If the number of tracked features falls below a threshold, the algorithm searches for
new features in the images to maintain a proper amount of elements in the 3D point
sets.

3.4 Probabilistic Estimation of the Pose Change

In this section we present a method for estimating the probability distribution of the
change in the robot pose between two time steps from the sets of 3D points deter-
mined as described above.

Formally, let X be a set of 3D points ohtained at time &:

Xk - {X!‘ }ifl...‘ﬁi‘ @)
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where the position of each 3D point X is assumed to follow a Gaussian distribution
with mean x4, —<X i‘,YA_',Z;>and covariance X, determined by equations (1) and
(3). lespentlvely ‘

X, ~ N(’”X; ’zxa] ()

At this point, we deline g 4,y as the random variable which models the pose change
between time steps k and k+1 as a function of the sets of projected 3D points X, and
Xi.,.,':

epn = f(X Xk+|) ebrr ~ N(Juqazg) (6)

Under a linear approximation of error propagation, g; .,y follows a Gaussian distri-
bution with covariance matrix X, and mean u, = (A), Ay, Az, A, Aﬁ,Ay) where Ax,
Ay, and Az are the increments in the X, ¥, and Z coordinates respectively, and Aa, Af,
and Ay stand for the increments in the yaw, pitch, and roll angles, respectively.

34.1 Estimation of the Mean Value y,

In this paper, we propose to compute i, through the method reported by Horn in [6],
where it is derived a closed-form solution to the least-squares problem of finding the
relationship between two coordinate systems using the measurements of the coordi-
nates of a number of points in both systems. We use the mean values #,, of the posi-
tions of the 3D points as the inputs to this algorithm. This closed-form so]utlon is in
contrast to other proposals for visual odometry based on iterative methods [11, 13]
which require an initial estimation of the change in pose.

The closed-form solution can be summarized as follows:

. Compute the centroids (¢, and ¢;.) of the two sets of points and subtract them
from their co )rdmales in order to deal only with coordinates relative to their cen-
troids: X;\—i)ﬁ Yf 1:> dnkan—gXul Y.:n,éul?

. For the i-th 3D point, compute the following nine products of its coordinates at
time k and &+1:

(S

Py =X Xon Py=XVor o Py=ZTon Py=Z.Ze @)

3. Accumulate the products in (7) for all the 3D points to end up with the following
nine values:

SY:ZP;A' Sx;':zp):'y SZY:ZP;)' Sﬂ:zpiz (8)

4. Form a 4x4 symmetric matrix with the elements in (8):

Sy TSy +8, Srz o SZ}’ Szx - sz er - Sw
N-= Srz' - SZ)' Sew =Sy =Sy, Sy + 8y Sy T8y, 9)
S X S X7 S.w + er 7Sx.x‘ + Sn‘ o er Srz + Szy
Sy — Sy S+ Sy 5, =Sy =Sy + 54
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5. Find the eigenvector corresponding to the largest eigenvalue of N, which will be
taken as the quaternion that determines the rotation between the robot pose at time
steps k and A+1.

6. Compute the rotation matrix (R) associated to the so obtained quaternion. and
compute the translation t= (/_\.x, A_\',A:)T as the difference between the centroid at
time & and the scaled and rotated centroid at time k+1:

t=c,—Re,,, (10)

Finally, we extract the values of the increments in the yaw, pitch, and roll angles
(Aa’, A[)’,Aj/) between poses from the rotation matrix R, having in this way all the
components of .

3.4.2 Estimation of the Covariance Matrix X,
Covariance matrixes are usually obtained through a linear approximation of the func-
tions involved in a given transformation between variables (see, for example, section
3.2). However, in the case of the closed-form solution described above the function
cannot be linearized due to the computation of the largest eigenvector.

Therefore, we propose here to use the linearized version of the problem, which can
be stated as the minimization of the least square error of the system:

X, ()

i R 1 t i
Yk,+l _ i YAF (11
Z:\-w ,,,,,, T‘* Zk

] 0O 0 0 ! 1 |

for the variables which determines the pose change, i
u, = (/_u Av, Az Ac, Aﬁ,A}/) . Expanding (11) we obtain the position of the i-th point
at time k+1 as a function of its position at time k (represented by X ) and the incre-
ments in X, ¥, Z, yaw. pitch and roll between both time steps:

Xio=F(u,X,)

Yia=f(u,X) (12)

z,=1(1,X)
By linearizing these equations we come to the following expression for X

S -H'YH=YH"(Z) H (13)

where H' stands for the Jacobian matrix of the equations in (12) for the i-th 3D point
relative to y, and T =X, + %, is the sum of the position covariance matrices of the i-
th point at times k and k+1 as defined in equation (3). Notice that, since the 3D points
are uncorrelated, the first expression in (13) can be split into the sum of its block di-

agonal elements.
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4 Experimental Results

We have performed a variety of experiments to compare classical encoder-based
odometry with our proposed method for visual odometry in an indoor environment. In
this paper, we present one of them where our robot Sancho is equipped with a
PointGrey Bumblebee stereo camera and driven through a room while gathering ste-
reo images and odometry readings. We also use laser scans to build a map of the envi-
ronment and estimate the real path of the robot, which will be taken as the ground
truth in this experiment (thick lines in Fig. 2(a)-(b)). An example of the scene man-
aged in this experiment is shown in Fig. 2(c).

I
i T
0.8
(1k)
06 0.6 /ﬂ'f/
o4 et 0 =1 /%71'7/ ¢
1 AL | et A
02 T -2 p
:‘;/m"""/ ’ = // iy’
0 P ; -
0.2) + ~' — 0.2 = I —
04 —— 0.4 1
0 02 04 06 08 1 12 14 16 18 0 02 04 06 08 1 12 14 16 18
(a} A iy % tey

Fig. 2. (a) Path of the robot estimated from the laser scanner built map (thick line) and our pro-
posed visual odometry method (thin line). (b) Estimated paths from the laser scanner map and
the encoder-based odometry readings (dashed line). (¢) Example of the images managed in the
experiments.

In order to compare the performance of the odometry methods, we compute the er-
rors committed by both methods at each time step as the difference between their es-
timates and the ground truth.

The histograms of the 3D position errors of both approaches are shown in Fig. 3.
We have found that both methods perform similarly, with most of the errors in Ax and
Ay below 5 cm. Notice that since the robot moves in a planar environment, Az should
be zero for the whole experiment. Consequently, our algorithm provides a coherent
estimation which is always close to Az = 0 with a small error (typically 1 cm), as can
be seen in Fig.3. The distribution of the error in the 3D position is illustrated in the
last plot in Fig. 4.

Regarding the estimation of the orientation, visual odometry achieves an error in
yaw (the only rotational degree of freedom of a planar robot) similar to conventional
odometry. However, we should highlight the accuracy of our algorithm in the other
components of the orientation, where the largest error is below 1 deg (please, refer to
the histograms for pitch and roll in Fig.4).

Recalling the estimated paths of the robot in Fig. 2 according to both odometric
methods, we can now remark their similar accuracy in spite of the higher dimension-
ality of visual odometry, which, a priori, is prone to accumulate larger errors. We can
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Visual odometry
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Fig. 3. Histograms of the errors committed in the estimation of the changes in the robot posi-
tion for the visual odometry (top plots) and classical odometry (bottom plots) approaches

conclude that the reason for this performance is the small estimation errors of visual
odometry in the dimensions not involved in planar odometry, i.e. Az, Af, Ay.

5 Conclusions

This paper has presented a new method to perform visual odometry by computing the
6D change between the poses of a camera in consecutive time steps. Our method
combines the speed of the Lucas-Kanade-Tomasi detector and tracker with the capa-
bility of the STFT descriptor to distinguish features. Another contribution of this work
in comparison to previous approaches is the employment of a closed-form, optimal
solution to the problem of finding the 6D transformation between two sets of corre-
sponding points. The results show that the performance of our approach for visual
odometry is quite similar to that of conventional odometry for planar environments,
whereas visual odometry additionally allows movements in 6D. Further research will
be aimed at integrating the presented approach into visual SLAM frameworks.
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Visual odometry

&

Encoder-based Odometry

yaw pitch roll

Distribution of the errors in 3D position

phi

Fig. 4. Histograms of the errors committed in the estimation of the changes in the robot orienta-
tion for the visual odometry (top plots) and conventional encoder-based odometry (bottom-left
plot) approaches. (bottom-right) Distribution of the errors in the estimation of the change in the
robot 3D position for the visual odometry approach.
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