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Abstract

The increasing competitiveness of sectors such as automotive, robotics or spatial aircraft manufacturing calls for a re-
duction of their lifecycle-design stages. In this context, being able to perform dynamic analyses of complex Multibody
Systems (MBS) before manufacturing is becoming more and more valuable. This discipline is useful for studying the
dynamic behavior of such products, but also for testing electronic controllers even before a prototype is built. Not sur-
prisingly, it is a common practice to combine both real components and simulation models through Hardware-in-the-loop
testing, i.e. testing a real electronic control unit (ECU) with the dynamics of a simulated vehicle. A natural prerequisite for
those applications is being able to solve the equations of motion that govern these models faster than real-time. However,
this kind of problems involves computationally expensive linear algebra operations, hence the interest in identifying the
computational bottlenecks in order to discern on which operations shall we focus our optimization efforts.

The aim of this paper is comparing the overall computation time spent in solving the equations required for performing
a dynamic simulation of a MBS, using different linear algebra packages freely available as Open Source C/C++ libraries.
We focus on different matrix factoring and variable ordering algorithms, since their selection is shown to have a great
impact on performance. The benchmark is carried out by means of real-time capable code that implements an augmented
Lagrangian formulation based on the principle of virtual powers, modeled in natural coordinates and using the fourth-
order Runge-Kutta numerical integration method. The test problem for our benchmark is an Nx × Ny four-bar planar
mechanism, similar to the one employed in [1] but with multiple (Ny) loops stacked vertically. Such a MBS has Ny
degrees-of-freedom. The elements have a uniformly-distributed mass of 1 kg each and the unique acting forces are the
body weights.

Let the MBS be characterized by N natural coordinates q which, being redundant, require the introduction of M
kinematic constraint equations: Φ(q, t) = 0. The equations of motion for such a MBS can be formulated from the
application of the method of virtual powers [2]. Taking into account the forces at the pairs, one arrives at q̇∗> (Mq̈ − Q)+
Φ>q λ = 0 , where q̇∗ are the virtual velocities, which must satisfy the time derivative of Φ(q, t) at a stationary time, M
is the mass matrix, Q represents the generalized forces, Φq is the Jacobian of the constraint equations and λ is a vector
containing the Lagrange multipliers which determine the magnitude of the constrained forces. Therefore, for a general
MBS we have Mq̈ + Φ>q λ = Q. This equation and the kinematic restrictions form a set of N + M mixed differential
algebraic equations (DAE) of index-3, whose unknowns are q and λ. However, by differentiating twice the constraint
equations this system is reduced to an index-1 system which is more easily solved. Rearranging in matrix form leads to:
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, with c = −Φ̇qq̇ − 2ξωΦ̇ − ω2Φ (1)

Therefore, performing real-time dynamic simulations implies being able to solve for the unknown accelerations q̈ at
each time step as many times as required by the employed numerical integration method (e.g. four times with a 4th order
Runge-Kutta). Any efficient approach to solve for the q̈ in (1) should account for the sparsity pattern of the augmented
matrix A. In particular, M is block sparse and positive definite, Φq is unsymmetric but highly sparse, while A as a whole
is symmetric but neither positive nor negative definite.

These features allow us to employ the following different methods to solve the Ax = b system in (1):

1. LU factorization: By decomposing the augmented matrix as A = LU, the linear system LUx = b can be
efficiently solved by forward (Lỹ = b) and back-substitution (Ux = ỹ).
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2. Schür complement-based factorization: By means of a smart block-factorization of A we can turn the system
(1) into two coupled linear systems whose coefficient matrices are both definite positive, enabling the application
of the efficient Cholesky (LL>) decomposition twice, then solving by forward and back-substitution. Please, refer
to [3] for a detailed description of this technique.

For our benchmark we implemented the following solvers: (i) a dense LU solver (i.e. which does not exploit the
problem sparse pattern), (ii) two sparse LU solvers, using the algorithms UMFPACK [4] and KLU, and (iii) a Schür
complement-based sparse solver based on the popular CHOLMOD algorithm for the two required Cholesky factorizations.
The C++ library Eigen has been used for implementing the dense LU solver. Eigen has demonstrated in benchmarks to
be faster than free implementations of BLAS (e.g. ATLAS, uBlas) and of a comparable performance to non-free versions
(e.g. Intel MKL, GOTO).

We have evaluated the performance of each solver during a dynamic simulation of our parameterized Nx × Ny
multibody benchmark for N = Nx = Ny values ranging from 1 to 32. Notice that this leads to a constrained MBS with
N = Ny degrees of freedom. The times taken by each solver are summarized in Fig. 1(a) for increasing values of N .
Notice that, excepting the LU dense implementation, all other sparse solvers have been designed to carry out a symbolic
factorization of the matrices only once at the beginning of the simulation, since the structure of the problem matrices do
not change. Therefore, during a real-time simulation it becomes enough to: (i) update the numeric values of the sparse
Jacobians and the RHS vector (b in (1)), (ii) compute the numeric factorization and (iii) solve the linear system (Ax = b).
As it is well-known from algebra and graph-theory, reordering the problem variables becomes crucial in determining the
density of the factored matrices which, in turn, determines the cost of the numeric factorization –the computationally most
expensive step in our implementation, as shown in Fig. 1(b). That is why we tested each algorithm with different variable
orderings: “natural” (leaving variables as they are defined), AMD (Approximate Minimum Degree), COLAMD (Column
AMD) and METIS (a graph partitioning algorithm).
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Figure 1. (a) Computation times for each algorithm and ordering strategy for one complete time step (including numeric factorization
and linear system solving). (b) A typical distribution of times within one time step for the UMFPACK algorithm with AMD ordering.

Our conclusion is that CHOLMOD (with any ordering) and KLU+COLAMD are the most efficient solvers for mid-
size MBS problems, whereas UMFPACK (with either AMD or METIS) emerges as the optimal choice as the number of
bodies increases above the few hundreds.
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