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Abstract The lack of publicly accessible datasets with
a reliable ground truth has prevented in the past a

fair and coherent comparison of different methods pro-

posed in the mobile robot Simultaneous Localization
and Mapping (SLAM) literature. Providing such a ground

truth becomes specially challenging in the case of visual

SLAM, where the world model is 3-dimensional and the
robot path is 6-dimensional. This work addresses both

the practical and theoretical issues found while building

a collection of six outdoor datasets. It is discussed how

to estimate the 6-d vehicle path from readings of a set of
three Real Time Kinematics (RTK) GPS receivers, as

well as the associated uncertainty bounds that can be

employed to evaluate the performance of SLAM meth-
ods. The vehicle was also equipped with several laser

scanners, from which reference point clouds are built

as a testbed for other algorithms such as segmentation
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or surface fitting. All the datasets, calibration infor-
mation and associated software tools are available for

download1.
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1 Introduction

1.1 Motivation

The field of Simultaneous Localization and Mapping
(SLAM) has witnessed a huge activity in the last decade

due to the central role of this problem in any practical

application of robotics to the real life. While the the-
oretical bases of SLAM are well understood and are

quite independent of the kind of sensors employed by

the robot, in practice many of the reported works fo-

cus on either 2-d SLAM (assumption of a planar world)
or 6-d SLAM (features have full 3-d positions and the

robot can also rotate freely in 3-d). Typically the first

group of works rely on laser scanners while the latter
employ monocular or stereo cameras.

A critical issue which must be considered for any

SLAM techniques, either 2-d or 6-d, is the evaluation of

its performance. Usually, more recent techniques claim
to be better in any sense with respect to previous works.

Here, better can mean more accurate (in the case of

building metric maps), less prone to divergence or more
scalable, among other possibilities.

In principle, the advantages of some techniques in

comparison to others should be quantified, but that is

not a goal easy to achieve in practice. In some cases, the
differences between two methods are more qualitative

1 http://babel.isa.uma.es/mrpt/papers/dataset2009/
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than quantitative, but most often measuring the accu-

racy of the results becomes necessary. Instead of con-
trasting the maps produced by the different methods

(which usually relies on visual inspection), it is more

convenient to consider the robot reconstructed paths

due to its reduced dimensionality in comparison to the

maps. Additionally, the evaluation of robot paths would

even enable comparing a 2-d method (based, for in-
stance, in grid mapping) to a 6-d technique such as

vision-based SLAM. This would not be possible if the

maps, of different nature, were instead employed in the

comparison.

The traditional problem found by the SLAM com-

munity in this sense is the lack of a reliable ground truth

for the robot paths. Some works have to rely on sim-

ulations to overcome this difficulty, but this approach

ignores the problems that arise with real-world sensors.
The existence of public reference datasets with an ac-

curate ground truth would provide an ideal testbed for

many SLAM techniques.

1.2 Related work

A good introduction to the SLAM problem by Durrant-

Whyte and Bailey can be found in [10], which also

includes a review of the few known publicly available
datasets. Among them, the Victoria’s park [12] has be-

come the most widely employed testbed by the com-

munity of 2-d SLAM, having been used in dozens of
works, e.g. [11,15,20,18,21,23]. Many other datasets

can be found in the Radish repository [14], most of

them consisting of laser scanner and odometry data

logs. Nevertheless, no previous dataset contains an ac-
curate ground truth2.

Regarding datasets oriented to vision-based SLAM,
to the best of our knowledge there is no previous work

where a ground truth is associated to the path of the

camera or the robot. Another on-going project aimed
at SLAM benchmarking is RawSeeds [3]. At the time of

writing this article, there are no released datasets yet.

1.3 Contribution

The present work makes two major contributions to the
field of mobile robotics.

Firstly, the release of a collection of outdoor datasets
with data from a large and heterogeneous set of sen-

sors comprising color cameras, several laser scanners,

precise GPS devices and an inertial measurement unit.

2 Some datasets include the GPS positioning of the robot, but
not its orientation.

This collection provides a unified and extensive testbed

for comparing and validating different solutions to com-
mon robotics applications, such as SLAM, video track-

ing or the processing of large 3-d point clouds. The

datasets comprise accurate sensor calibration informa-
tion and both raw and post-processed data (such as the

3-d point clouds for each dataset). The format of all the

data files is fully documented and open-source applica-
tions are also published to facilitate their visualization,

management and processing.

Secondly, we also present a methodology for obtain-

ing a complete 6-d centimeter-accuracy ground truth

estimation, among with its associated uncertainty bound.
We also discuss innovative auto-calibration methods for

some of the sensors, which virtually discard human er-

rors in the manual measurement of the sensor posi-
tioning on the vehicle. Additionally, we also intoduce a

method to measure the consistence of the ground truth,

which confirms the accuracy of our datasets.

To the best of our knowledge, there is no previous

work with such an accurate ground truth in full 6-d. Vi-
sual SLAM techniques are clearly the best candidates to

be tested against the presented datasets, although our

work may be also applicable to 2-d SLAM techniques
due to the existence of two horizontal laser scanners and

the planar trajectories followed in some of the datasets.

2 Vehicle description

To carry all the measurement devices, we employed an

electric buggy-typed vehicle (see Figure 1) that can
navigate through different environments with the ap-

propriate load and autonomy capabilities. The major

benefit of using an electric vehicle, besides of the slight
environmental impact, is the avoidance of the inherent

vibrations of standard cars.

The vehicle was modified and adapted for a more

suitable arrangement of the sensors. Specifically, we de-

signed and built a rigid top structure which allowed a
robust and easy-to-modify assembly of most of the em-

ployed devices.

In total, we placed twelve sensors on the vehicle

of such heterogeneous types as laser scanners, inertial
measurement units, GPS receivers (both consumer-grade

DGPS and GPS-RTK) and color cameras.

Figure 1 (b) shows a descriptive illustration with

vehicle sensor positions, and Table 1 provides a listing
of sensors and their respective 6-d in the vehicle local

reference frame.

These poses were initially measured by hand and,

most of them, were subsequently optimized through

different calibration methods, as will be explained in
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Fig. 1 (a) The buggy-typed electric vehicle employed for grabbing the dataset and (b) a scheme of the sensors positions on the vehicle.

section 5. In the following, we describe each group of

sensors.

2.1 Laser Scanners

The vehicle was equipped with three different types

of laser scanners: two Hokuyo UTW-30LX, two SICK
LMS-221 and, finally, a SICK LMS-200 (see Figure 2).

The Hokuyo UTW-30LX3 are small, lightweight out-

door laser scanners with a detection range from 0.1 to

30 meters and a 270 deg. field of view. Per manufactur-
ers specifications the sensors provide an angular resolu-

tion of 0.25 deg. and achieve an accuracy of 30 mm for

3 http://www.hokuyo-aut.jp/02sensor/07scanner/utm 30lx.html

Hokuyo

UTW-30LX

SICK

LMS 200

SICK

LMS 221

Fig. 2 The three laser scanner models employed for the datasets.

measurements up to 10 meters and 50 mm for higher

ranges.

Data transmission between the Hokuyo and the PC

is easily accomplished through a USB link, which makes

the sensor, together with its lightness and reduced di-

mensions, quite suitable for mobile robotics applica-
tions.

The two Hokuyo laser scanners were located in the

front and the rear of the vehicle, respectively, and scan-
ning the environment in a plane parallel to the ground.

On the other hand, SICK4 laser scanners are heavy

and robust devices widely employed in robotics and

industrial applications. Their performance is sensibly
higher than Hokuyo’s and, furthermore, they are highly

configurable.

In our dataset collection, the LMS-200 was config-

ured to measure up to a maximum range of 80 meters
with an accuracy of 40 mm (as reported by the manu-

facturer), whereas the accuracy of the LMS-221 device

is 5 mm in a measurement range from 0.8 to 32 meters.
Both models provide an angular resolution of 0.5 deg.

and a field of view of 180 deg., narrower than that of

Hokuyo scanners. Finally, although both the Hokuyo
and the LMS-221 devices are designed to operate out-

doors, we found in our experiments that the Hokuyo

4 http://www.sick.com
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Sensor x (m) y (m) z (m) yaw (deg.) pitch (deg.) roll (deg.)

Rear GPS-RTK 0.000 0.000 0.132 × × ×

Front Left GPS-RTK 1.729 0.5725 0.115 × × ×

Front Right GPS-RTK 1.733 −0.5725 0.1280 × × ×

DGPS∗ −0.250 0.000 0.100 × × ×

Left Camera 2.216 0.430 0.022 −88.43 −2.99 −87.23

Right Camera 2.200 −0.427 0.025 −90.31 −3.53 −86.19

Front Hokuyo∗ 2.420 0.000 −1.740 0.00 0.00 0.00

Rear Hokuyo∗ −0.299 0.084 −1.725 178.81 0.00 0.00

Front SICK LMS-200∗ 2.278 0.000 −1.565 0.00 −6.84 0.00

Left SICK LMS-221 −0.3642 0.7899 0.0441 90.58 6.82 −89.66

Right SICK LMS-221 −0.3225 −0.8045 −0.0201 −90.33 −2.87 89.85

IMU∗ × × × 0.00 0.00 0.00
∗Sensor pose is not optimized. × (irrelevant or not applicable).

Table 1 Summary of the sensor 6-d poses.

laser scanners are more sensitive to sunlight and, there-

fore, prone to higher errors when operating outdoors.
The LMS-200 sensor was located at the front of

the vehicle, scanning a plane slightly tilted upwards,

whereas the LMS-221 laser scanners were placed at the
sides of the vehicle such as their scans become perpen-

dicular to the ground plane. This layout allows the vehi-

cle to scan objects located at its sides when navigating.

2.2 Cameras

Image grabbing was performed by means of two CCD

color cameras (AVT Marlin F-131C model5), which can

capture up to 1280x1024-size images at a maximum
frame speed of 25 fps and transfer them to the PC via

a standard firewire link.

In order to properly adjust the devices according to
light conditions, some of their features, such as shut-

ter, bright, or color mode can be easily configured by

software, while focus and aperture are manually con-
trolled. The images within the presented datasets were

captured at 7.5 fps with a dimension of 1024x768 pix-

els, being offered sets of both raw and rectified images

for each dataset.
The two AVT cameras were mounted on the top

structure of the vehicle with their optical axes pointing

forward.
To properly rectify the grabbed images, the cameras

need to be calibrated, an issue addressed in Section 5.4.

2.3 Inertial measurement unit (IMU)

We employed a MTi device from xSens6 (see Figure 3)

to provide a source of inertial raw measurements.

5 http://www.alliedvisiontec.com/avt-

products/cameras/marlin.html
6 http://www.xsens.com/en/products/machine motion/mti.php?

The convention followed in this paper for 3-d ori-

entations is to consider them as the sequence of rota-
tions yaw, pitch and roll around the z, y and x axes,

respectively, being positive angles performed counter-

clockwise.

This device is a miniature, gyro-enhanced, 3-axis

IMU, which is both powered and communicated through
a USB link. It contains gyroscopes, accelerometers and

magnetometers in 3-d which are combined through an

Extended Kalman Filter (EKF) to provide 3-d orienta-

tion data at a maximum rate of 100 Hz.

According to the manufacturer specifications, the
MTi device achieves a static accuracy of 0.5 deg. in atti-

tude (both pitch and roll) and 1.0 deg. in heading (yaw)

measurements, whereas in dynamic situations this per-

formance degrades up to 2.0 deg. RMS. The angular
resolution of this device is 0.05 deg., while the full scale

of the onboard accelerometers and gyroscopes is 5g and

300 deg/s, respectively.

This sensor was also fixed to the top structure of the

vehicle in order to move as a rigid solid with the GPS
receivers, which define the local coordinates frame. Note

that knowledge about the location of this sensor on the

(a) (b)

Fig. 3 (a) The MTi IMU model by xSens and (b) its mounting

point on the vehicle.
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vehicle is not relevant since it only provides orientation

measurements.

2.4 GPS devices

Global Positioning System (GPS) has become the most
reliable system for land surveying and vehicle position-

ing due to the high accuracy it can provide and the

worldwide spreading of GPS receivers.

In short, the principle of operation of normal GPS
systems consists of the trilateration of the distances

between a mobile receiver (rover) and a constellation

of satellites as illustrated in Figure 4(a). These satel-
lites transmit microwaves signals containing a pseudo-

random code (PRC) that is compared by the rover

with a stored local copy. The existing delay between
the received and the local code determines the actual

distances between the receiver and the satellites and,

therefore, allows the mobile unit to pinpoint its posi-

tion. However, normal GPS systems are prone to some
error sources such as receiver clock inaccuracies or sig-

nal alteration due to atmospheric conditions, and, there-

fore, provide a relatively low accuracy for mobile robots
localization (about 3 meters under ideal conditions).

Differential GPS (DGPS) technique overcomes some

of the major limitations and error sources of the normal
GPS system by setting a static reference station with a

known fixed position which re-broadcast via radio the

differential corrections according to the area conditions

– see Figure 4(b). These corrections allow the rovers in
the area to localize themselves with a higher accuracy

(typically tens of centimeters). Normally, DGPS refer-

ence stations have large coverage areas (in the order of
kilometers) to provide service to as many receivers as

possible, which involves a loss of accuracy proportional

to the distance to the reference station.
Real-Time-Kinematics (RTK) means an improve-

ment to the DGPS technique which employs both the

reference station corrections and the carrier phase of the

GPS satellite signals to achieve up to a centimeter level
of accuracy. Moreover, GPS-RTK systems usually ar-

range their own reference stations which can be placed

much closer to the rovers than those employed for stan-
dard DGPS systems, as shown in Figure 4(c). In this

state-of-the-art technique, the GPS receiver gages the

distance to the satellites by adjusting the received and
the local copy of the signal not only by comparing the

PRC but also the phase of the signals, thus leading to

a much more fine delay estimation and, therefore, to an

improved localization (up to 1 cm of accuracy).
GPS-RTK devices can operate in two different modes:

RTK-float and RTK-fixed. In the former, the RTK ref-

erence station has not enough information from the

Satellite Constellation

Normal GPS operation

(a)

GPS signal

GPS Receiver

(b)

DGPS operation scenario

GPS signal

Satellite Constellation

DGPS Receiver

Reference Station

Radio signal

(Corrections)

 ~ units of kilometers

Satellite Constellation

GPS-RTK operation scenario

(c)

GPS-RTK

Receiver RTK Reference Station

Radio signal

(Corrections)
Carrier phase comparison

GPS signal

 ~ tens of meters

Fig. 4 GPS scenarios. (a) Normal GPS operation, (b) DGPS

operation and (c) Real-Time-Kinematics GPS operation.

satellite constellation to precisely determinate its static

position, leading to significant errors in rovers localiza-
tion, while the latter is only attainable when the num-

ber of visible satellites and the quality of their signals

allow a total disambiguation in its positioning.

We placed four different GPS receivers in our vehi-

cle: one consumer-grade DGPS device and three RTK-

GPS (two Javad Maxor and one Topcon GR-3) which
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Fig. 5 The GPS devices on the vehicle. (a) Low cost Deluo
DGPS, (b) Javad Maxor GPS-RTK and (c) Topcon GR-3 GPS-
RTK.

constitute a solid frame for establishing a reliable 6-d

ground truth estimation (see Figure 5).

The two Maxor-GGDT devices from Javad7 are dual

frequency GPS receivers which provide RTK-level-of-

accuracy measurements at a rate of 4 Hz through a
RS-232 link. These receivers are associated to a pair of

MarAnt+ antennas which were mounted, as separated

as possible, at the front of the vehicle top structure, as

can be seen in Figure 1 (b).

On the other hand, the Topcon GR-38 device is a

robust, state-of-the-art positioning receiver which can

combine signals from the three existing satellite constel-
lations: American GPS, Russian GLONASS and Euro-

pean Galileo, thus ensuring an optimal coverage 24h a

day achieving a high performance. Positioning data is
measured and transmitted to the PC at a rate of 1 Hz.

This device was placed at the rear of the top structure.

It is important to remark that Javad and Topcon

devices are connected to different reference stations as
they are configured to receive RTK corrections from

their own stations through different radio channels. This

caused the positioning readings to be biased with con-
stant offsets depending on the specific measuring de-

vice. This offset can be estimated through a least squares-

error minimization algorithm, which will be explained
in Section 4.2.

Finally, the Deluo9 DGPS is a low-cost, consumer-

grade, compact and portable receiver extensively em-

ployed for extending PDAs and laptops with self-localization
capabilities. Its performance and accuracy are sensibly

poorer than in the RTK-GPS sensors but its measure-

ments may be suitable for testing and developing rough
localization applications which are intended to be ac-

cessible to a high amount of users. For example, it could

be taken into account together with the cameras to test

large-scale SLAM approaches. Section 5.2 presents a
brief evaluation of the Deluo DGPS performance.

7 http://www.javad.com/jns/index.html
8 http://www.topconeurope.com
9 http://www.deluogps.com

3 Data collection

This section describes the emplacements of the six pre-

sented datasets. Three of them were collected at the
parking of the Computer Science School building while

the other three were located at the Campus boulevard

of the University of Málaga, as depicted in Figure 6.

From now on, and for clarity purposes, the datasets

will be denoted by the combination of a prefix, iden-
tifying its corresponding emplacement (PARKING or

CAMPUS) and two-letters mnemonic indicating a dis-

tinctive feature that makes it easily identifiable. In five

of the six datasets, this mnemonic denotes the number
of complete loops performed by the vehicle (e.g. 0L for

zero loops) whereas in the remaining one (CAMPUS-

RT), it indicates that the trajectory is a round-trip.

Next, we describe more extensively the most rele-

vant characteristics of the two groups of datasets.

3.1 Parking datasets

The three parking datasets are characterized for almost

planar paths through a scenario which mostly contains
trees and cars. These datasets present more loops than

the campus ones, which makes them specially interest-

ing for testing SLAM approaches.

The lack of planar surfaces, such as buildings, and

the presence of dynamic objects such as moving cars

and crossing people, make this emplacement particu-
larly interesting for computer vision applications (e.g.

segmentation or object visual tracking). Finally, the

presence in this group of datasets of nearby objects in
the images, facilitates the estimation of the camera dis-

placement in common vision-based solutions while the

detection of far objects leads to a better estimation of
the rotation [5,6].

Figures 7–9 contain visual descriptions of the park-

ing datasets, showing the 3-d point clouds (subfigures

(a), (c) and (e)) generated through the projection of the

vertical laser scans from their estimated pose at each

time step. The methodology for the estimation of the
sensors trajectories will be described later on in Section

6.3.

On the other hand, subfigures (b) illustrate aerial

views of the whole vehicle trajectory where it has been

highlighted the start and end points of the paths.

Finally, we depict in subfigures (d) a summary of

the operation modes for the three GPS-RTK receivers

during the whole data collection process (please, refer
to section 2.4 for a descriptive review of GPS operation

modes). Notice that we can estimate a reliable ground

truth only when the three devices are simultaneously
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operating in RTK-fixed mode, thereby achieving the

highest accuracy of the 6-d pose vehicle estimation.
Please, note as well that we have considered the

starting point of the dataset PARKING-0L as the origin

of the Cartesian reference system for all the presented
datasets, as can be seen in Figure 6.

3.2 Campus datasets

In general, the campus datasets include fairly large loops,
specially suitable for validating large-scale SLAM algo-

rithms. Besides, they also contain long straight trajec-

tories which may be a proper testbed for visual odom-
etry methods. Approaches for other vision-based appli-

cations such as automatic detection of overtaking cars

or dynamic objects tracking are also good candidates

for being evaluated by employing these datasets.
Their visual descriptions are shown in Figures 10-12

with identical structure as explained above.

3.3 Summary of dataset applications

Table 2 shows a summary of some datasets properties

and an evaluation of their suitability for being employed

in a set of common robotics and computer vision appli-
cations. This should be understood as a recommenda-

tion, related to the own special characteristics of each

dataset as, for example, the number of relevant sensors,

the planar nature of the movement, or the presence of
loop closures.

3.4 Software

The vehicle is equipped with sensors of quite different
types, each generating data at different rates. Thus, the

software intended to grab the data logs must be capable

of dealing with asynchronous sensor data. For this pur-

pose, our data log recording application, named rawlog-

grabber, creates one thread for each individual sensor on

the robot. Each thread collects the data flow from its

corresponding sensor, and converts it into discrete enti-
ties, or observations. Different kinds of sensors produce

different observation objects.

At a predetermined rate (1Hz in our case), the main
thread of the logger application collects the incoming

observations from all sensors, which are then sorted by

their timestamps and dumped into a compressed binary

file. Documentation about the format of these files, as
well as the source-code of the grabber and some data

viewer applications are published as part of the Mobile

Robot Programming Toolkit (MRPT) [2].

4 Derivation of the path ground truth

In this section we address one of the major contribu-
tions of this work: a detailed description of how to com-

pute a ground truth for the 6-d path of the vehicle from

GPS readings. Section 6 will derive a bound for the un-
certainty of this reconstructed path.

4.1 Coordinates transformation

We will focus first on the problem of tracking the posi-

tion of a single GPS receiver, that is, we are interested

in the 3-d coordinates (x, y, z) of a particular point. In
our situation, these points are the centers of the GPS

antennas – see Figure 1.

GPS receivers provide datums through three param-

eters: longitude, latitude and elevation. To fully exploit
the precision of RTK receivers, these coordinates must

be interpreted exactly using the same system the GPS

network uses, the World Geodetic System (WGS)-84

reference ellipsoid. This coordinate framework has been
optimized such as its center matches the Earth center of

mass as accurately as possible. We briefly explain next

the meaning of the three coordinates in WGS-84.

The longitude datum states the angular distance
from an arbitrarily defined meridian, the International

Reference Meridian, just a few arc-seconds off the prior

Greenwich’s observatory reference. The geodetic lati-

tude is the other angular coordinate, which measures

the angle between the equatorial plane and the normal

of the ellipsoid at the measured point. Note that this

is not exactly equal to the angle for the line passing
through the Earth center and the point of interest (the

geocentric latitude [4]). Finally, the elevation represents

the height over the reference geoid.

We now review the equations required to recon-
struct local Cartesian coordinates, the natural reference

system employed in SLAM research, from a sequence of

GPS-collected data. Let Di be the datums of the i’th
GPS reading, comprised of longitude αi, latitude βi and

elevation hi:

Di =





αi

βi

hi



 (1)

The geocentric Cartesian coordinates of this point,
Gi, can be obtained by [16]:

Gi =





xi

yi

zi



 =





(Ni + hi) cos βi cos αi

(Ni + hi) cos βi sin αi

(Ni cos2 æ + hi) sin βi



 (2)
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Length LC vSLAM 2D SLAM vOdometry Dyn. Obj. Seg.

PARKING-0L 524 m. × X X X ×

PARKING-2L 543 m. X X X X ×

PARKING-6L 1222 m. X X X X X

CAMPUS-0L 1143 m. × X × X X

CAMPUS-2L 2150 m. X X × X X

CAMPUS-RT 776 m. × X × X X

Table 2 Datasets lengths and recommended applications. Legend: LC (Loop Closure), vSLAM (Visual SLAM ), vOdometry (Visual
Odometry), Dyn. Obj. Seg. (Dynamic Objects Segmentation)

100 m

P-0L

P-2L

P-6L

C-0L

C-RT

C-2L

Legend

Global Reference

System

Y

X

Fig. 6 Vehicle trajectories for the six grabbed datasets, where P and C stand for PARKING and CAMPUS, respectively. The global
reference system represents the origin in our transformed Cartesian coordinate system for all the datasets.

with the radius of curvature Ni computed from the
semimajor axis a and the angular eccentricity æ as:

Ni =
a

√

1 − sin2 æsin2 βi

(3)

At this point we have assigned each GPS readings a

3-d location in rectangular coordinates. However, these
coordinates are of few practical utility due to two prob-

lems: the large scale of all the distances (the origin is

the center of the Earth), and the orientation of the XYZ

axes – refer to Figure 13(a). We would rather desire a
coordinate transformation where coordinates are local

to a known point in the environment and the axes have

a more convenient orientation, with the XY plane being

horizontal and Z pointing upward, as illustrated in Fig-
ure 13(b). This kind of reference system is called ENU

(East-North-Up) and is commonly used in tracking ap-

plications, as opposed to the so far described Earth-
Centered Earth-Fixed (ECEF) system [16].

Unlike other previous methods such as [9], our change

of coordinates is not an approximation but an exact

simple rigid transformation, i.e. computed accurately

without approximations.

This change of coordinates can be described as the
mapping of a 3-d point Gi into local ENU coordinates

Li relative to another point R, with rotation repre-

sented by the three new orthogonal base vectors u (East),
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V2. (b) Top-view of the vehicle path and (d) status (modes) of the 3 GPS devices during the experiment.
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Fig. 12 CAMPUS-2L dataset. (a) 3-d projected points for the lateral laser scanners and vehicle path. (c,e) Zoom of zones V1 and
V2. (b) Top-view of the vehicle path and (d) status (modes) of the 3 GPS devices during the experiment.
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Fig. 13 (a) A schematic representation of the variables involved
in the WGS84 reference ellipsoid used for GPS localization. We
define a more convenient local Cartesian coordinate system with

the origin at an arbitrary location, as shown in (b).

v (North) and w (up)10. Mathematically, the operation

can be written down using homogeneous matrices as:

Li =

[

u v w R

0 0 0 1

]−1

Gi (4)

=









u⊤ −u⊤R

v⊤ −v⊤R

w⊤ −w⊤R

0 1









Gi

However, we have found that a direct implementa-

tion of the equation above suffers of unacceptable in-

10 In the published datasets, coordinates use an up vector that
follows the same direction than the line passing through the Earth
center and the reference point. In the literature, this vector is of-
ten defined as perpendicular to the ellipsoid (very close but not

exactly equal to our up vector). Thus, strictly speaking, ours
are not ENU coordinates but a slightly rotated version. Never-
theless, this does not affect at all the accuracy of the obtained
coordinates.

accuracies due to numerical rounding errors with stan-

dard 64-bit floating point numbers. These errors arise
in the multiplications of numbers in a wide dynamic

range, i.e. the orthogonal vectors (in the range [0, 1])

and the geocentric coordinates (with a order of 106).

As a workaround, we propose the following rear-

rangement of the transformation:

Li =









u⊤ 0

v⊤ 0

w⊤ 0

0 1









(Gi − R) (5)

which can be easily derived from Eq. (4) but avoids the
numerical inaccuracies.

Finally, the geodetic coordinates of the reference

point used in all the datasets presented in this work

can be found in the next table (see also its representa-
tion in the map of Figure 6):

Longitude: -4.478958828333333 deg.

Latitude: 36.714459075 deg.

Elevation: 38.8887 m.

4.2 Compensation of RTK offsets

At this point we can compute the trajectories of the

three RTK GPS receivers. However, as mentioned in
Section 2.4, the fact that RTK corrections are taken

from different base stations introduce constant offsets

in the locations of each device. A part of these offsets
is also due to inaccuracies in the initial positioning of

the RTK base stations during the system setup.

Let P̂ i
t denote the local Cartesian coordinates of the

i’th GPS receiver, computed as described in the previ-
ous section. Our goal is to obtain the corrected coordi-

nates P i
t :

P i
t

(

∆i
)

=





xi
t

yi
t

zi
t



 = P̂ i
t + ∆i =





x̂i
t

ŷi
t

ẑi
t



 +





∆i
x

∆i
y

∆i
z



 (6)

by means of the offset vectors which are different for

each receiver i but constant with time. Let ∆ denote

the concatenation of all these vectors, such as

∆ =









∆1

∆2

...

∆i









(7)

We show next how these parameters can be deter-

mined automatically without any further a-priori known



16

Campus Datasets Parking Datasets

Optimal RMSE of dij RMSE of d2ij Optimal RMSE of dij RMSE of d2ij
d1,2 1.8226m 1.16cm 4.23510−2 1.8208m 1.02cm 3.71110−2

d1,3 1.8255m 0.89cm 3.32610−2 1.8247m 0.71cm 2.61110−2

d2,3 1.1444m 0.81cm 1.84810−2 1.1457m 0.96cm 2.18910−2

Optimal RTK offsets (∆i
x,∆

i
y ,∆

i
z) (meters)

∆1 0, 0, 0 0, 0, 0

∆2 -145.2875, 28.6745, 2.3344 -260.168, 23.8158, -1.64305

∆3 -145.2914, 28.6712, 1.2915 -260.169, 23.8075, -2.74191

Table 3 Results of the least squares optimizations of GPS parameters.

data, measurements or approximations. This is a cru-

cial point supporting the quality of our subsequently
derived ground truth, since our method is insensitive

to errors in any manually acquired (i.e. noisy) measure-

ment.

The basis of this automatic calibration procedure

is that the three GPS receivers move as a single rigid

body, that is, they are robustly attached to the vehicle
(refer to Figure 1). From this follows that the distances

between GPS receivers (or inter-GPS distances) must

be constant with time, which allows us to set up the

determination of ∆ as the following least square opti-
mization problem:

∆⋆ = arg min
∆

E (∆,D) (8)

E (∆,D) =
∑

(i,j)

∑

t

(∣

∣

∣P i
t (∆

i) − P
j
t (∆j)

∣

∣

∣ − dij

)2

where (i, j) represents all the possible unique pairs of
GPS devices 11, and D = {dij} are the real distances

between those pairs. Notice that those distances dij can

be determined by measuring them manually, what for

our vehicle gives us:

drear,front−left = 1.79 meters

drear,front−right = 1.79 meters
dfront−left,front−right = 1.15 meters

Obviously, small errors must certainly be present in

these values due to the limited accuracy of any prac-
tical method for manual measuring. In order to make

our calibration independent of those errors, the set of

optimal inter-GPS distances D⋆ is determined as the

result of another optimization problem, taking the val-
ues above as the initial guess for the optimization:

D⋆ = arg min
D

(

min
∆

E (∆,D)
)

(9)

11 In our specific case of three receivers, the possible values are
(1, 2), (1, 3) and (2, 3), where the indices 1, 2, and 3 correspond
to the rear, front-left and front-right receivers, respectively.

We must remark that this is a nested optimization

problem, where the inner optimization of ∆ was stated
by Eq. (8).

Put in words, our approach to the automatic deter-
mination of the offsets ∆ and inter-GPS distances D

consists of an iterative optimization of the inter-GPS

distances, where the error function being optimized is

the residual error of another optimization of the RTK
offsets, maintaining the distances fixed.

The optimization has been implemented as two nested
instances of the Levenberg-Marquardt algorithm [17,

19]. The method exhibits an excellent robustness, in

the sense that it converges to the optimal values start-
ing from virtually any set of initial values for ∆. Re-

garding the execution time, our custom C++ imple-

mentation takes about 2 minutes to optimize the data
from a representative sample of 600 timesteps.

Since the six datasets, described in Section 3, were
collected during two days with the RTK base stations

installed at different locations each day, the RTK off-

set parameter ∆ has different values in the campus

datasets than in the parking datasets. On the other
hand, the inter-GPS distances D should remain con-

stant throughout the different datasets.

The optimization results are summarized in Table 3:

the average difference between the values of D in the

two independent optimizations is 1.3mm, i.e. in practice
both estimates converge to the same point. This is a

clear indication of the accuracy of all the 3-d locations

given by the sensors, an issue which is quantified later
on in this work.

We must highlight again that our method has pre-
cisely estimated these distances and the RTK offsets (in

the order of hundreds of meters) by simply relying on

the rigid body assumption of the GPS receivers.

4.3 Computation of the vehicle trajectory

As a result of the previous section, we now have an

accurate 3-d reconstruction of the path followed by each

GPS receiver on the vehicle, namely the sequences P i
t
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Fig. 14 Vertical ticks represent the timestamps at which the
different sensors give their readings. In the case of the GPS re-
ceivers, the rear device works at 1Hz while both the front left and
right devices have a frequency of 4Hz. Thus the ground truth for

the vehicle pose is obtained at 1Hz, the rate at which all three
sensors coincide. Since other sensors (in this example, a camera)
operate at different rates we need to interpolate the 6-d ground
truth to assign a valid pose to each sensor reading.

for the three GPS sensor i = 1, 2, 3 and for the sequence

of timesteps t.

At this point it must be pointed out that the tim-
ing reference used by each GPS receiver is very accu-

rately synchronized to the others since they are all syn-

chronized with the satellite signal. Therefore, when the

timestamp of datum readings from different receivers
coincide we can assume that all the GPS locations were

measured exactly at the same time, with timing errors

negligible for the purposes of this work.
The synchronization of the data is a prerequisite for

our goal of computing the 6-d ground truth of the vehi-

cle path, since three simultaneous 3-d measurements
unequivocally determine the complete 6-d pose of a

rigid body, in our case the vehicle. Therefore, ground

truth is available when the data from all the three re-

ceivers coincide in time. As illustrated in Figure 14, this
happens with a rate of 1Hz in our system.

Regarding the computation of the sequence of 6-d

vehicle poses vt from the GPS locations P i
t , we can set

up the following optimization problem which gives the

optimal solution at each timestamp t:

v̂t = arg min
v

∑

i

(

P i
t − [v ⊕ pi]

)2
(10)

with pi stating the location of each receiver on the vehi-

cle local coordinate framework (refer to Figure 1), and
⊕ being the pose composition operator [22]. This can

be regarded as a problem of matching three pairs of

corresponding 3-d points. A widely employed solution

to this generic problem is the Iterative Closest Point
(ICP) algorithm [1]. In turn, we propose to apply the

closed-form solution derived by Horn in [13] since in

our case there are no uncertain data associations (the

main issue solved by ICP). Other interesting character-

istics of [13] are the closed-form nature of the solution
and that providing an initial guess of the solution is

unnecessary.

One advantage of stating the problem of recovering

the vehicle path as in Eq. (10) is that GPS sensors can

be freely positioned at arbitrary locations on the vehi-

cle, e.g. there is no assumption about they being dis-
posed in orthogonal directions. The process to automat-

ically refine the local coordinates pi is discussed later

on in Section 5.1. We must remark that a minimum of
three GPS devices are required to obtain instantaneous

ground truth measurements, but our method can triv-

ially incorporate any larger number of devices with the
purpose of reducing the overall reconstruction error.

4.4 Interpolation of the 6-d vehicle trajectory

The process described in Section 4.3 gives us the desired

ground truth for the vehicle trajectory, one of the main
goals of this work.

However, there are two tasks that force us to in-

terpolate the 1Hz ground truth. Firstly, vision SLAM
methods usually reconstruct the 6-d path of the cam-

eras, not the vehicle. Therefore, in order to measure

the quality of a given SLAM method under evaluation,
a ground truth for the path of the cameras (or in gen-

eral any other sensor, e.g. laser scanners) must be avail-

able. This is why the vehicle path must be interpolated,

since in general the timestamps of other sensors will not
coincide with those of the GPS readings, as shown in

Figure 14. Secondly, our goal of building accurate point

clouds from the laser scanner data also requires the pre-
cise locations of the scanners with time, again requiring

the vehicle pose at instants of time that require inter-

polation.

A priori, a potentially promising technique for car-

rying on this interpolation would be spline fit [8], which

results in smooth interpolated curves with continuous
derivatives that exactly pass through all the input points

to interpolate.

The consequences of this last property of splines in
our specific case require a closer examination. Each of

the six dimensions of the vehicle pose, 3-d for Carte-

sian coordinates and 3-d for the angles, follows charac-
teristic and distinctive variations with time. For exam-

ple, the coordinates of the planar locations (x and y)

are specially suited for being approximated by splines

since the vehicle movement over the road tends to de-
scribe smooth arcs. On the other hand, the pitch and

roll angles are typically around zero and disregarding

the small part caused by real rocking of the vehicle,
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variations are caused by the noise (errors) in the 3-d

coordinates of the RTK receivers. In those cases, splines
typically magnify this error making it an unacceptable

choice.

In our datasets, we finally chose to interpolate the
vehicle x and y coordinates using splines, and the rest

of dimensions using a least square linear fit of the four

closer ground truth points. Once the pose of the vehicle
can be estimated at any arbitrary instant t, the sensor

pose is obtained by 6-d pose composition with the local

sensor location (see Table 1), for example, using homo-

geneous coordinates. This method has led to accurate
reconstructed paths, as can be visually verified with the

maps discussed in Section 7.1. In Section 6.3 we go back

to the issue of sensor paths and their uncertainty.

5 Calibration of sensors

The 6-d positioning of each sensor in vehicle local co-
ordinates is as important as the ground truth of the

vehicle trajectory itself. By means of carefully manual

measuring we can obtain a first estimate of these pa-
rameters associated to every sensor onboard. The pur-

pose of this section is to discuss automatic calibration

methods for some of the sensors used in the datasets.

It must be noted the hierarchical nature of our cal-
ibration methodology: first of all, the inter-GPS dis-

tances were automatically calibrated through the least

square problem stated in Eq. 9. As explained in Section
4.2, that solution is free of human measuring errors. In

the subsequent sections these optimal inter-GPS dis-

tances D⋆ will be used to first refine the Cartesian co-
ordinates of the GPS receivers. Next, those coordinates

are the basis for an accurate determination of the vehi-

cle path ground truth, which in turn is indirectly used

later to optimize the positions of the vertical laser scan-
ners and the cameras. The final result of all this process

can be seen in Table 1.

5.1 Positioning of RTK-GPS devices

Let pi be the local coordinates of each GPS receiver

for i = 1, 2, 3, as already employed in Eq. (10). Since
we already know the optimal inter-GPS distances D

(see Table 3), the optimal set of locations is that one

fulfilling

{p⋆
i } = arg min

{pi}

∑

(i,j)

(|pi − pj | − dij)
2

(11)

Before solving the above least square problem, ad-

ditional constrains must be set since the system is un-

derdetermined. We arbitrarily set the position of the

rear device (index i = 1) to be at the origin of the XY

plane, that is:

p1 =





0
0

0.132



 (12)

with the z coordinate conveniently chosen such as the

XY plane coincides with the top structure of our vehi-

cle (see Figure 1). There is still an additional degree-
of-freedom in the form of a radial symmetry around

the Z axis. It can be avoided by arbitrarily imposing

that the x axis must exactly bisect the two front GPS

devices (with indexes i = 2 and i = 3, respectively),
which agrees with our coordinate system with the x

axis pointing forward, as seen in Figure 1(b).

Under these constrains the optimization can be suc-
cessfully solved, obtaining the sensor coordinates shown

in Table 1.

5.2 DGPS characterization

In this section we provide an empirically estimated bound
for the Deluo DGPS error.

This is accomplished by batch processing the posi-

tioning measurements collected in all the six presented

datasets and measuring the root mean square error
(RMSE) between the DGPS readings and our ground

truth estimation in the time steps where both are avail-

able and also synchronized. In the comparison, we con-
sidered data from both standalone and DGPS operation

modes for the Deluo sensor.

The results yield quite similar RMSE values for the
vertical (z coordinate) and horizontal (a combination

of x and y coordinates) errors: 13.729 m and 13.762 m,

respectively. These figures can be put in contrast with

our bounded uncertainty of the ground truth estimate,
in the order of ∼ 1cm, thus clearly illustrating the dif-

ferent performance between DGPS and RTK devices.

5.3 Positioning of vertical laser scanners

We have devised an algorithm to automatically cali-
brate the location of the two vertical SICK LMS-221

laser scanners. To illustrate the underlying idea, please

consider the example in Figure 15(a), where the ground
truth of the vehicle path (the continuous line) and a

first rough estimate of the left vertical laser location on

the vehicle are enough to build the 3-d point cloud also

shown in the figure. Our algorithm relies on the real-
ization that the optimal sensor localization is that one

maximizing the matching between the point clouds gen-

erated each time the vehicle passes by the same area.
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Fig. 15 (a) An example of the kind of 3-d point clouds used to calibrate the onboard location of vertical laser scanners. (b) For the
first manually measured location, clear slope errors can be observed in the reconstructed ground, as indicated by the histogram with
several values up to 1 meter below the actual ground plane (around −2.2m). (c) After calibrating the sensor location, the reconstructed

3-d points are more consistent with the real scenario.

For instance, it can be seen how in Figure 15(a) the

vehicle first scans the central area while moving in one
direction, then turns and scans it again from the oppo-

site direction.

By identifying a dozen of segments from all the
datasets fulfilling this requisite, a Levenberg-Marquardt

optimization has been applied to each laser scanner giv-

ing us the poses shown in Table 1. The optimized values
only differ from those measured manually by a few cen-

timeters and less than 7 degrees in the angles.

To quantify the improvement due to the optimized
sensor poses, we have computed the histograms of the

z coordinate in two point clouds, both with manually

measured and optimized coordinates, in Figure 15(b)–
(c), respectively. Given that the coordinate system ref-

erence is on the top structure of our vehicle (see Fig-

ure 1) and its approximate height is 2.2m to the ground,

a distinctive peak can be expected at -2.2m in the his-
tograms due to large portions of the scans being points

on the ground. This peak is clearly visible in the graphs,

and the interesting observation is that the peak is nar-
rower after calibrating the sensor, which is mainly due

to a correction in the angular offsets in the sensor loca-

tion.

5.4 Cameras

In general, camera calibration involves estimating a set

of parameters regarding its projective properties and

its pose within a global reference system.

The projective properties of the camera are defined

by both its intrinsic and distortion parameters, which

determine the position where a certain 3-d point in
the scene is projected onto the image plane. Without

considering any lens distortion phenomena, a 3-d point

p = (X,Y,Z)⊤ (related to the camera reference system)

projects to an image point p′ = (uw, vw,w)
⊤

, with w

being a scale factor, through the pin-hole model equa-
tion:




uw

vw

w



 = R





X

Y

Z



 =





fx 0 cx

0 fy cy

0 0 1









X

Y

Z



 (13)

where fx and fy stand for the focal length in units

of pixel width and height, respectively, (cx, cy) are the

coordinates of the principal point of the camera (also
known as the image center), and (u, v) represent the

projected point coordinates within the image reference

system, in pixel units.
Besides, cameras are typically affected by distortion,

which produces a displacement of the projected image

points and whose major components are known as ra-

(c) (d)

(a) (b)

Fig. 16 Camera calibration. (a-b) Two examples of the images
employed to estimate both the intrinsic and distortion parame-
ters. (c-d) Raw and rectified versions of one of the images in the
CAMPUS-0L dataset.
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Left Camera Right Camera

fx (px) 923.5295 911.3657

fy (px) 922.2418 909.3910

cx (px) 507.2222 519.3951

cy (px) 383.5822 409.0285

k1 −0.353754 −0.339539

k2 0.162014 0.140431

p1 1.643379 · 10−03 2.969822 · 10−04

p2 3.655471 · 10−04 −1.405876 · 10−04

Table 4 Calibrated intrinsic parameters of the cameras.

dial and tangential distortion. Thus, the pin-hole pro-

jection model can be extended as:

u′ = u + ur + ut (14)

v′ = v + vr + vt (15)

being the radial terms

ur = u
(

k1r
2 + k2r

4
)

(16)

vr = v
(

k1r
2 + k2r

4
)

(17)

and the tangential ones

ut = 2p1uv + p2

(

r2 + 2u2
)

(18)

vt = p1

(

r2 + 2v2
)

+ 2p2uv (19)

with r =
√

u2 + v2.

In this work, the intrinsic and distortion parameters

of the cameras are estimated through the Zhang’s well-

known procedure presented in [24]. As the input for the
calibration method we employed a sequence of images

showing a calibration pattern (in concrete, a checker-

board), from several different points of view – see Figure
16(a-b) for an example of the calibration images. Fig-

ures 16(c)–(d) show the raw and rectified versions of

a representative image from the CAMPUS-0L dataset,

respectively. The so-obtained intrinsic parameters are
shown in table 4.

On the other hand, an initial rough estimation of

the camera pose on the vehicle was obtained by means
of a measuring tape. Subsequently, it was refined by ap-

plying a Levenberg-Marquardt optimization for a set of

points with known 3-d coordinates (from point clouds

generated by the vertical scanners) and manually se-
lected pixel coordinates. The algorithm minimizes the

overall square error of the point projections in the im-

ages, resulting in the final camera poses that can be
seen in Table 1.

5.5 IMU

As mentioned above, the MTi sensor position on the

vehicle is not relevant because it only measures the at-

titude and heading of the vehicle. However, it may be

interesting to roughly determine its performance dur-

ing the vehicle navigation, which can be accomplished
by comparing the MTi readings with the estimated an-

gles provided by the ground truth. Since the vehicle

movement through the environment may be considered
locally almost-planar, in the comparison we focus on

the yaw angle (i.e. the vehicle heading), as it under-

goes larger variations than the attitude components.
For this comparison experiment, we use the data from

the CAMPUS-0L dataset because the ground truth es-

timation is available in almost the whole trajectory.

Figure 17(a) shows a comparison between the yaw

angle provided by the IMU and that computed from the

ground truth. The vehicle trajectory is shown in Figure

10(b), where it can be seen a complete 180 deg. turn

performed at the end of the campus boulevard. This is
illustrated in Figure 17(a) around t = 250s, where it

can be noticed that the IMU readings indicate a turn

of about 200 deg., which represents a severe drift with
respect to the ground truth.

This drift becomes more evident in the peaks present

in Figures 17(b)–(c), where they are shown both the

yaw velocity (i.e. its derivative) and the root square er-
ror of the IMU yaw velocity with respect to the ground

truth at each time step. This device performance seems

to be acceptable in most of the navigation but its data

can not be considered reliable when experiencing no-
ticeable turns. The RMSE value of this error is about

1.631 deg/s, being the mean and the maximum veloci-

ties 1.199 deg/s and 14.354 deg/s, respectively.

For the measured pitch velocity, we obtain a RMSE
of 0.812 deg/s, while 0.092 deg/s and 0.487 deg/s are

the values of the mean and the maximum velocities,

respectively. Finally, values for the RMSE, mean and
maximum roll velocities are 0.609 deg/s, 0.149 deg/s,

and 0.882 deg/s, respectively.

6 Uncertainty Analysis

Comparing the estimate from a given SLAM method

against our ground truth can only be significant if un-
certainties (both in the SLAM output and the ground

truth) are carefully taken into account. In this section

we derive an estimate of the probability distribution

of our reconstructed vehicle poses vt. For that goal it
is first needed the distribution of the errors in the 3-d

locations measured by the three GPS receivers.

6.1 Estimation of RTK-GPS noise

From the sensor characterization, the working princi-

ple of RTK-GPS and the manufacturer specifications,
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Fig. 17 (a) Yaw estimation provided by the MTi device (IMU ) and the ground truth (GT ). (b) Yaw velocity computed from both
data. (c) IMU error in yaw derivative estimation with respect to the ground truth and corresponding root mean-square-error (RMSE)

(Data corresponding to the CAMPUS-0L dataset).

it comes out that noise in latitude and longitude coor-

dinates is smaller than in the height. There is no reason

for the statistical errors in the latitude to be different
to those in the longitude, and experimental data con-

firm this point. This characteristic and the fact that the

XY plane in our transformation to local coordinates is

tangent to the GPS ellipsoid imply that the measur-
ing errors in x and y should be equal. Let denote the

standard deviation of these errors as σx and σy, respec-

tively, being the error in the height (z axis) modeled by
σz.

A characteristic of RTK-GPS technology is that er-

rors in z are always larger than those in (x, y). We

model this fact by introducing a scale factor η such
as

σx = σy = σ0 (20)

σz = ησ0

By grabbing thousands of GPS readings with the ve-

hicle stopped, we have experimentally determined this

factor to be approximately η = 1.75.

At this point we only need to estimate one param-

eter (σ0) to have a complete model of the GPS errors.
Our approach to estimate σ0 relies on the information

given by the residuals of the optimization of D (the

inter-GPS distances), derived in Section 4.2. Since we
know that those distances must be constant, the proba-

bility distribution of the deviations with respect to the

optimal value, shown in Figure 18 as histograms, can
be used to characterize the GPS localization errors.

In particular, we will focus on the probability den-

sity distribution (pdf) of d2
ij , being dij the distance be-

tween two 3-d points measured by the GPS receivers i

and j. It can be proven that this density, which cannot
be approximated by first order uncertainty propaga-

tion, is a function of the error in x and y (σ0) and the

relative locations of the GPS receivers on the vehicle
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Fig. 18 Histograms of (top) the residuals from the optimiza-
tion of dij in Section 4.2, and (bottom) the same for the square
distances. Units are meters and square meters, respectively. The

variance of the square distance residuals is a convenient value for
modeling the 3-d positioning errors of the GPS receivers.

lij , as estimated in Section 5.1. Thus we can express its

variance as:

σ2
d2 = f (σ0, {lij}) (21)

Since the values of lij are known, we can accurately

estimate σ0 from Eq. (21) through a Monte-Carlo (MC)
simulation, arriving to the numerical results

σx = σy = 0.64cm (22)

σz = 1.02cm

which characterize the errors of the GPS 3-d measure-

ments. These values predict a standard deviation in the
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inter-GPS distances of 9.1mm, which is consistent with

the residuals of the LM optimization in Table 3.

Next sections rely on this error model to finally pro-
vide the uncertainty of the vehicle path.

6.2 Uncertainty in the vehicle 6-d pose

Our model for the pose uncertainty is a multivariate

Gaussian distribution, such as its mean v̂t coincides

with the optimal value derived in Eq. (10) and its 6×6
covariance matrix Wt, is determined next. That is,

vt ∼ N (v̂t,Wt)

The covariance matrix Wt depends on the vehicle

orientation, thereby varying with time. Furthermore, it
should be estimated in each case from a Monte-Carlo

(MC) simulation which provides a better approxima-

tion than linearization approaches. To avoid executing
one MC estimation for every possible vt we propose to

only estimate the covariance for the case of the vehicle

at the origin, then rotate this reference covariance ac-
cording to the real attitude angles of the vehicle. That

is, if W ⋆ stands for the reference covariance matrix,

Wt = J(vt)W
⋆J(vt)

⊤ (24)

where the Jacobian of the transformation J(vt) incor-
porates the 3 × 3 rotation matrix R(vt) associated to

the vehicle pose vt:

J(vt) =

[

R(vt) 0

0 I3

]

(25)

By means of 107 simulations of noisy GPS mea-

surements we arrive to the reference matrix shown in

Eq. (23) and pictured in Figure 19 as 95% confidence el-

lipsoids. This covariance matrix is specific for the noise
levels of our GPS receivers and their relative positions

on the vehicle, thus it would not be applicable to other

configurations.

Our public datasets available for download incorpo-

rate the precomputed values of the covariance matrix
rotated accordingly to Eq. (24) for each timestep.
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Fig. 19 The 95% confidence ellipsoids for the uncertainty of the
vehicle 6-d pose, represented separately for (x, y, z) (a) and the
three attitude angles (b).
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6.3 Trajectory of the sensors

Many existing SLAM techniques assume that the origin
of the robocentric coordinate system coincides with that

of the sensor – MonoSLAM, or SLAM based on monoc-

ular cameras, is a prominent example [7]. This approach

is clearly convenient when there is only one sensor (e.g.
one camera in MonoSLAM or one laser scanner in 2-d

SLAM).

A ground truth for those methods can be easily ob-

tained from the vehicle trajectory vt derived in Section

4.3 and the local coordinates of the sensor of interest,
denoted by u in the following. A summary of these local

coordinates for our vehicle is presented in Table 1.

For each timestep t, the pose of the given sensor in

global coordinates st is obtained as the result of the 6-d

pose composition

st = vt ⊕ u (26)

Taking into account that both vt and u have associ-
ated uncertainties, modeled by the covariance matrices

Wt and U , we also represent the global coordinates as

multivariate Gaussians with mean ŝt and covariance St.
The mean is simply given by Eq. (26) applied to the

means of the vehicle path and the local coordinates,

while the derivation of the covariance is detailed in Ap-
pendix A.

For the purpose of estimating the ground truth for
a sensor path st, we could assume a perfect knowl-

edge of the local coordinates, which implies a null U

matrix. However, for the sake of accuracy this matrix

should roughly model the potential errors in the pro-
cess of manually measuring these quantities (or in the

optimization methods used for some sensors, e.g. the

cameras in Section 5.4). The sensor paths in the pub-
lished datasets assume a standard deviation of 0.02 mm

and 0.1 degrees for all the translations and rotations,

respectively.

6.4 A measure of the ground truth consistency

Each pose in the ground truth of the vehicle trajectory
can be seen as our estimate of the corresponding ran-

dom variable. As such, we can only expect to obtain an

optimal estimation and its corresponding uncertainty

bound, as derived in previous sections.

However, in our problem there is an additional con-

strain which can be used to provide a measure of the
consistency for each ground truth point vt. The con-

strain is the rigid body assumption, and as discussed

next will determine how much confident shall we be

about the estimate of each vehicle pose. It must be high-

lighted that this measure cannot fix in any way the op-
timal estimations already derived in previous sections.

Our derivation starts with the vector D of square

distances between each different pair of GPS sensors,
that is:

D = [d2
12 d2

13 d2
23] = f({xi, yi, zi}) , i = 1, 2, 3

Since each distance is a function of the measured

3-d locations (xi, yi, zi),

d2
ij = (xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 (27)

the covariance matrix of D can be estimated by lin-

earization as follows:

ΣD = Fdiag
(

σ2
x, σ2

x, σ2
x, σ2

y, σ2
y, σ2

y, σ2
z , σ2

z , σ2
z

)

F⊤

= σ2
0Fdiag

(

1, 1, 1, 1, 1, 1, η2, η2, η2
)

F⊤

where in the last step we employed the definitions in

Eq. (20).

Let ∆dij
be the distance between the points i and j

in the XY plane, and ∆zij
= zi−zj their distance in z.

Since the GPS units are roughly at the same height in
our vehicle, it turns out that ∆2

zij
≪ ∆2

dij
. By using this

approximation, it can be shown after some operations

that the covariance matrix ΣD becomes:

4σ2
0





2∆d2
12 ∆12∆13 cos φ12

13 −∆12∆23 cos φ12
23

∆12∆13 cos φ12
13 2∆d2

13 ∆13∆23 cos φ13
23

−∆12∆23 cos φ12
23 ∆13∆23 cos φ13

23 2∆d2
23





Here it has been employed φ
ij
ik as the angle between

the pair of 2-d vectors passing by the GPS sensors i

and j, and i and k, respectively. Disregarding small

variations due to terrain slopes, these angles and all the

distances in Eq. (28) remain constant with time, thus
it provides a good approximation of the covariance of

D during all the datasets.

We can now define our measure of the quality of the

GPS positioning at each timestep t as the Mahalanobis
distance between the vector of measured square dis-

tances Dt and the optimized values D̂, using the above

derived covariance matrix ΣD, that is:

qt =

√

(

Dt − D̂
)⊤

Σ−1
D

(

Dt − D̂
)

(28)

Lower values of this measure reflect a better qual-

ity in the ground truth. We illustrate the behavior of
this confidence measure in Figure 20 for three differ-

ent datasets. It can be remarked how the measure re-

mains relatively constant with time, thus guaranteeing
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Fig. 20 Our measure of the confidence of the ground truth for three different datasets. Lower values mean that the measured 3-d
positions for the GPS devices are closer to the condition of rigid rotations, thus they must be more accurate.

the accuracy of our estimated ground truth. Regarding

the high values observed about t = 170 for the dataset

CAMPUS-2L, they coincide with a moderate slope in
the terrain, which may render our approximation of ΣD

less accurate for those specific segments of the dataset.

Therefore, our quality measure should be taken more

into account when the vehicle moves in relatively more
horizontal areas, e.g. all three parking datasets.

7 Validation

Quantitative validations have been already presented

along the paper. For example, the narrow distribution
of the residuals in Figure 18(a) implies that our recon-

structed paths have errors in the order of 1cm. The

uncertainties derived in Section 6.2 confirm our expec-

tation of centimeter-level errors.

In addition, this section provides qualitatively illus-
trations of the accuracy of the reconstructed trajecto-

ries for the vehicle and the sensors by means of building

different kinds of maps directly from the ground truth.

7.1 Construction of 3-d point clouds

To validate the accuracy of the path ground truth and
the calibration of vertical laser scanners, we can com-

pare, by visual inspection, the actual shape of a rep-

resentative real object in the scene with its 3-d cloud
point structure generated from laser data and the vehi-

cle path.

In that sense, consider Figure 9(e), corresponding

to PARKING-6L, which shows a group of cars parked
under some trees. Please note how some of the cars

had at least two of their sides scanned by the vertical

laser scanners, as the vehicle navigated around them in

different directions. It can be appreciated in the figure
that the generated 3-d point cloud describing the cars

visually fits their real shape quite accurately, revealing

a considerable consistency between the real world and

its corresponding point cloud representation12. There-

fore, both ground truth estimation and laser scanners

calibration can be considered as notably reliable. Nev-
ertheless, it must be remarked that expected errors in

the point clouds are larger than those in the vehicle

path, since the projected points magnify the effects of

small orientation errors in the vehicle.

7.2 Construction of colored 3-d maps

The camera calibration, which involved the estimation

of both distortion and projection parameters and its lo-

cation on the vehicle, can be also validated by determin-
ing the real color of the points in the above-mentioned

3-d point clouds.

For that purpose, we re-projected those 3-d points

into the captured images, at each time step, and deter-

mined their real colors from the re-projected pixel coor-
dinates in the images. As shown in Figure 21(a)–(b) for

the CAMPUS-0L dataset, the color information and the

3-d structure of the scene seems to be sensibly coherent.
A pair of representative examples can be found in the

buildings surrounding the road, whose colors are that

of the red bricks which compose their fronts, and in the
crosswalk shown in the middle of Figure 21(a), which

by visual inspection seems to be properly projected on

the floor.

8 Conclusion

In this work we have identified an important unsat-
isfied need within the SLAM community, namely the

existence of a freely accessible compilation of datasets

with an associated ground truth suitable for evaluating
the different SLAM techniques.

The present work intends to provide such an accu-
rate ground truth for a series of outdoor datasets, in-

cluding its estimated uncertainty bounds, in the range

12 The complete 3-d point clouds are published along the
dataset files.
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(a)

(b)

Fig. 21 (a) A snapshot of the colored 3-d point map employed
for the validation of cameras calibration and (b) its the corre-

sponding image from the CAMPUS-0L dataset.

of 1cm and 0.5deg. These bounds remain constant with

time along all the datasets, turning the datasets into

an ideal testbed for the evaluation of methods such
as visual SLAM or visual odometry. The scalability of

SLAM methods can be also assessed with regard to

their capability of closing loops, since the more than

6Km of recorded datasets comprise several loops of dif-
ferent lengths.

As an additional result of our ground truth estima-

tion, we also provide reference 3-d point clouds for each
of the datasets, which may be proper to test a variety

of other techniques such as 3-d surface reconstruction

or path planning.

All the datasets are freely available online among
with extensive documentation and open-source software

which allows the easy and configurable post-processing

of the raw data.
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A Uncertainty propagation with 6-d poses

We are interested in the operation of pose composition (denoted
by the operator ⊕), where a given pose b is transformed into the
coordinate system described by another pose a, giving as result

the new pose c:

c = f(a, b) = a⊕ b (29)

The 6-d components of c are (xc yc zc φc χc ψc)⊤, and sim-

ilarly for a and b with the appropriate subscripts. The variables
φ, χ and ψ stand for the three orientation angles yaw, pitch and
roll, respectively.

Using homogeneous coordinates it can be shown that the

function f(·) becomes:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

xc = xa +R11xb +R12yb +R13zb

yc = ya +R21xb +R22yb +R23zb

zc = za +R31xb +R32yb +R33zb

φc = φa + φb

χc = χa + χb

ψc = ψa + ψb

(30)

where it has been used Rij to represent the entries of the rotation
matrix associated to the pose a.

We next take into account the uncertainties in each variable
by means of linearization of the error propagation. Each pose can
be modeled as a multivariate Gaussian distribution, such as:

a ∼ N (â, A) (31)

b ∼ N (b̂, B)

c ∼ N (ĉ, C)

The mean is given by the composition of the means of the

inputs, that is ĉ = â ⊕ b̂. Assuming that errors in a and b are
independent, the covariance C can be approximated by:

C =
∂f

∂a
A
∂f

∂a

⊤

+
∂f

∂b
B
∂f

∂b

⊤

(32)

In this expression, ∂f
∂a

and ∂f
∂b

stand for the Jacobian ma-
trices of the function f with respect to the elements of a and b,

respectively. It can be shown that the first Jacobian becomes:

∂f

∂a
=

0

B

B

B

B

B

B

@

1 0 0 F14 F15 F16

0 1 0 F24 F25 F26

0 0 1 0 F35 F36

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1

C

C

C

C

C

C

A

(33)

with:

F14 = −xb sinφa cosφa +

yb(− sinφa sinχa sinψa − cosφa cosψa) +

zb(− sinφa sinχa cosψa + cosφa sinψa)

F15 = −xb cosφa sinχa +

yb cosφa cosχa sinψa + zb cosφa cosχa cosψa

F16 = yb(cosφa sinχa cosψa + sinφa sinψa) +

zb(− cosφa sinχa sinψa + sinφa cosψa)
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F24 = xb cosφa cosχa +

yb(cosφa sinχa sinψa − sinφa cosψa) +

zb(cosφa sinχa cosψa + sinφa sinψa)

F25 = −xb sinφa sinχa + yb sinφa cosχa sinψa +

zb sinφa cosχa cosψa

F26 = yb(sinφa sinχa cosψa − cosφa sinψa) +

zb(− sinφa sinχa sinψa − cosφa cosψa)

F35 = −xb cosχa − yb sinχa sinψa − zb sinχa cosψa

F36 = yb cosχa cosψa − zb cosχa sinψa

Regarding the Jacobian with respect to b, it is given by a
block diagonal matrix composed of the rotation matrix R (for

the angles of pose a) and the identity I:

∂f

∂b
=

»

R(a) 0

0 I3

–

. (34)
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