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Abstract— In this paper we consider the problem of creating a
two dimensional spatial representation of gas distribution with a
mobile robot. In contrast to previous approaches to the problem
of gas distribution mapping (GDM) we do not assume that
the robot has perfect knowledge about its position. Instead we
develop a probabilistic framework for simultaneous localisation
and occupancy and gas distribution mapping (GDM-SLAM)
that allows to account for the uncertainty about the robot’s
position when computing the gas distribution map. Considering
the peculiarities of gas sensing in real-world environments, we
show which dependencies in the posterior over occupancy and
gas distribution maps can be neglected under certain practical
assumptions. We develop a Rao-Blackwellised particle filter
formulation of the GDM-SLAM problem that allows to plug in
any algorithm to compute a gas distribution map from a sequence
of gas sensor measurements and a known trajectory. In this paper
we use the Kernel Based Gas Distribution Mapping (Kernel-
GDM) method. As a first step towards outdoor gas distribution
mapping we present results obtained in a large, uncontrolled,
partly open indoor environment.

I. INTRODUCTION

Creating a spatial representation of gas distribution is an
important and challenging subproblem within the field of mo-
bile olfaction. Gas distribution mapping (GDM) could be used
to determine the exact location of gas sources or perhaps even
more importantly, to determine areas of high concentration of a
harmful gas. Hindered by the temporally fluctuating character
of turbulent gas transport, and the fact that chemical gas
sensors provide information only about the small volume their
surface interacts with, it is virtually impossible to measure
the instantaneous concentration field without using a dense
grid of sensors. However, it is sufficient to know the time-
constant structure of a gas distribution for many applications
such as air quality monitoring and surveillance of industrial
sites. Furthermore, by using mobile robots to map the gas
distribution, a contaminated area could be examined in rescue
missions in order to provide incident planning staff with
information to prevent rescue workers from being harmed or
killed due to explosions, asphyxiation or toxication.

The main contribution of this paper is the integration
of gas distribution mapping into a probabilistic framework
for SLAM, essentially introducing pose uncertainty into gas
distribution mapping. All previous approaches to the problem
of gas distribution mapping assume that the robot has perfect
knowledge about its position at all times. However, a perfect
estimate of the robot pose will not be available in real

world applications. It is therefore necessary to consider the
uncertainty of the robot pose estimates in order to represent
the available information in a gas distribution map. Instead
of restricting ourselves to pure localization, we consider the
full SLAM problem to address the case where a real robot is
moving in a previously unknown environment.

In probabilistic estimation theory applied to the SLAM
problem, Bayesian filtering provides a grounded framework for
estimating unobserved variables given only noisy observations.
Popular approaches for implementation of Bayes filtering
include Extended Kalman Filters, and Particle Filters, which
both have been extensively used in robotics. In a Particle Filter
approach each particle represents a hypothesis of the variables
being estimated, in our case the robot path and the maps. Our
approach consists of a Rao-Blackwellised particle filter where
a motion model is used to predict a prior distribution of the
robot pose. The observation model from the range scanner is
then used to update the pose estimation. Finally, the range
readings together with the gas sensor measurements are used
to update the maps. In this way, we obtain a GDM which is
consistent with the estimation of both the occupancy map and
the robot path.

The rest of this paper is organized as follows. After a
brief review on related works (Section II), we begin with a
discussion of the particular issues of gas distribution mapping
and a description of the gas distribution algorithm used in
this work (Section III). In Section IV, we outline the method
used for integrating simultaneous localization and occupancy
mapping with gas distribution mapping. Next, the experimental
setup including the olfactory robot is detailed and an example
of a gas distribution map applied in a challenging uncontrolled
environment is shown (Section V). Finally, we conclude with
a discussion and suggestions for future work (Section VI).

II. RELATED WORKS

The problem of creating a gridmap that represents the
distribution of an analyte gas is still a relatively new field
to mobile olfaction. Some works have attempted to create
a spatial representation of the gas concentration without the
use of a mobile robot by taking simultaneous measurements
with stationary sensors. In Ishida et al. [7], the time-averaged
response of metal-oxide gas sensors over 5 minutes at 33
grid points distributed over an area of 2 × 1m2 was used to
characterise the experimental environment. With an increasing
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area, however, establishing a dense grid of gas sensors would
involve problems such as cost and a lack of flexibility. Further-
more, an array of metal oxide sensors would cause a severe
disturbance to the gas distribution due to the convective flow
created by the heaters built into these sensors [6].

In Hayes et al. [4] concentration measurements were ac-
quired with a mobile robot and a representation of the gas
distribution was created by two dimensional histograms whose
bins contained the number of odour hits received as the robot
performed a random walk behavior. An odour hit was reg-
istered when the sensed concentration exceeded a predefined
threshold. This method requires perfectly even coverage of the
environment and it is doubtful whether it could be performed
in large unknown environments. Also only binary information
is used to create the map and therefore much of the fine
gradations of the concentration measurements is discarded.

All approaches to gas distribution mapping so far assume
perfect knowledge about the robot pose. This is also true for
the original version of the Kernel-GDM method by Lilienthal
and Duckett [8], described in Section III, which is extended in
this paper to address the GDM-SLAM problem. To our best
knowledge the GDM-SLAM problem has not been considered
by other authors so far.

III. KERNEL BASED GAS DISTRIBUTION MAPPING

The general gas distribution mapping problem given the
robot trajectory xt and the gas sensor measurements zt

gas

is to estimate the posterior probability distribution over gas
distribution maps mgas

p(mgas|xt, zt
gas). (1)

Due to fundamental differences between range sensing with
a laser scanner and gas sensing with metal oxide sensors
(which are the most widely used gas sensors in mobile robotic
applications, see Section V-B) Bayesian estimation cannot be
applied to the gas distribution mapping problem in the same
way as to estimate an occupancy grid map.

The main differences are, first, that the sensor readings
do not allow to derive the instantaneous concentration lev-
els directly. Metal oxide gas sensors are known to recover
slowly after the target gas is removed (15 to 70 seconds [1])
and therefore perform temporal integration implicitly. Sensor
readings can be comparatively high although the instantaneous
concentration level is actually close to zero if a high gas
concentration was sensed previously. Second, a snapshot of the
gas distribution at a given instant contains little information
about the distribution at another time due to the chaotic nature
of turbulent gas transport. Turbulence generally dominates
the dispersal of gas. As a consequence, the instantaneous
concentration field of a target gas released from a small
static source is a chaotic distribution of intermittent patches
with peak concentration values an order of magnitude higher
compared to the time-averaged values [12]. Third, in contrast
to a typical range-finder sensor, a single measurement from
a gas sensor provides information about a very small area
because it represents only the reactions at the sensor’s surface
(≈ 1 cm2).

Altogether, it is futile to attempt to create a map of the
instantaneous gas distribution with a mobile robot. Therefore,
we instead consider the problem of estimating the posterior
over time-averaged gas distribution maps mav

gas

p(mav
gas|xt, zt

gas). (2)

Another consequence of the peculiarities of gas transport and
gas sensing is that little information about the geometrical
location of the robot can be obtained from gas sensor measure-
ments. Compared to the observation likelihood for laser range
scans, it is therefore possible to approximate the observation
likelihood for gas sensor measurements by a constant value,
provided that the laser scanner observes appropriate features.
This approximation is used in Eq. 16 and visualised in Fig. 3.

In order to estimate a grid map that represents the time-
averaged relative concentration of a detected gas, we use the
Kernel-GDM method introduced by Lilienthal and Duckett [8].
The main idea is to interpret gas sensor measurements zt

gas

as noisy samples from a time-constant distribution. This im-
plies that the gas distribution in fact exhibits time-constant
structures, an assumption that is often fulfilled in unventilated
and unpopulated indoor environments [15]. It is important to
note that the noise is caused by the large fluctuations of the
instantaneous gas distribution while the electronic noise on
individual gas sensor readings is negligible [5].

The Kernel-GDM method compensates for the small overlap
between single measurements by convolving the sensor read-
ings with a two-dimensional Gaussian kernel. It has a notable
analogy with the problem of estimating density functions
using a Parzen window approach [11] with a Gaussian kernel.
However, when creating the gas distribution map, we do not
sample from the gas distribution directly. It is therefore nec-
essary to make the assumption that the trajectory of the robot
(respectively, the trajectory of the sensors) roughly covers the
available space. As detailed in Section III, the Kernel-GDM
method maintains two temporary grid maps obtained from
spatial integration of the points of measurement convolved
with the Gaussian kernel. One temporary grid map Mxzgas

integrates the points of measurement weighted by the sensor
measurements and the second temporary grid map Mx inte-
grates the points of measurement without a weight assigned.
The gas distribution mav

gas is estimated from the grid map
Mxzgas normalised to Mx, which corresponds to sampling
from the (normalised) gas distribution if the sensor readings
are considered as a measure of how many samples were drawn
from the particular grid cell. Because of the normalisation to
Mx, a perfectly even coverage of the inspected area is not
required so that the robot trajectory not necessarily has to be
customised for gas distribution mapping.

The Kernel-GDM method can cope to a certain degree with
the temporal and spatial integration of successive readings
that metal-oxide gas sensors perform implicitly due to their
slow response and long recovery time [9]. In order to obtain
a faithful representation of gas distribution despite the slow
sensor dynamics (“memory effect”), the robot’s path needs to
fulfill the requirement that the directional component of the
distortion due to the memory effect is averaged out. This can
either be achieved approximately by random exploration or
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Fig. 1. Discretisation of the Gaussian weighting function onto the grid. Left side: for each grid cell within a cutoff radius Rco (represented by a circle)
around the point of measurement �xt, the displacement �δ

(i,j)
t is calculated. The corresponding distances are indicated for the 13 affected cells by the vertical

lines drawn in the upper part of the figure. Right side: the weights w
(i,j)
t are determined by evaluating the Gaussian function for the displacement values of

the affected cells, using σ = 1/3Rco in this example. The resulting weights are indicated by shadings of grey (dark shadings correspond to high weights).

in a strict manner by using a predefined path where the robot
passes each point in the trajectory equally often from opposite
directions. If the trajectory of the robot fulfills this requirement
and sufficient time is given for the map to converge, the time-
constant structures of the gas distribution will be represented
faithfully in the gridmap, being slightly expanded and blurred
but not shifted. The validity of the gridmaps produced by
the Kernel-GDM algorithm therefore degrades gracefully with
respect to the ratio between the time constant of the sensor
dynamics and the speed of the robot. The algorithm introduces
the kernel width σ as a selectable parameter, correspond-
ing to the size of the region of extrapolation around each
measurement. The value of σ has to be set large enough to
obtain sufficient coverage according to the path of the robot.
Conversely, this means that for a larger kernel width a faster
convergence can be achieved while preserving less detail of the
gas distribution in the map. Consequently, the selected value
of the kernel width σ represents a trade-off between the need
for sufficient coverage and the aim to preserve fine details of
the mapped structures. Parameter selection and the impact of
sensor dynamics are discussed in more detail in [9].

The Kernel-GDM Algorithm

The sensor readings are convolved using the univariate two
dimensional Gaussian function

f(�x) =
1

2πσ2
e−

�x2

2σ2 . (3)

Then, the following steps are performed:

• In the first step the normalised readings rt are determined
from the raw sensor readings Rt as

rt =
Rt −Rmin

Rmax −Rmin
, (4)

using the minimum and maximum (Rmin, Rmax) value
of a given sensor.

• Then, for each grid cell (i, j) within a cutoff radius Rco,
around the point �xt where the measurement was taken at
time t, the displacement �δ

(i,j)
t from the grid cell’s centre

�x (i,j) is calculated as

�δ
(i,j)
t = �x (i,j) − �xt. (5)

• Now the weighting w
(i,j)
t for all the grid cells (i, j) is

determined as

w
(i,j)
t =

{
f(�δ (i,j)

t ) : δ
(i,j)
t ≤ Rco

0 : δ
(i,j)
t > Rco

(6)

• Next, two temporary values maintained per grid cell are
updated with this weighting: the total sum of the weights

Mx : W
(i,j)
t =

t∑
t′

w
(i,j)
t′ , (7)

and the total sum of weighted readings

Mxzgas : WR
(i,j)
t =

t∑
t′

rt′w
(i,j)
t′ . (8)

• Finally, if the total sum of the weights W
(i,j)
t exceeds

the threshold value Wmin, the value of the grid cell is
set to

c
(i,j)
t = WR

(i,j)
t /W

(i,j)
t : W

(i,j)
t ≥ Wmin. (9)

An example that shows how a single reading is convolved
onto a 5 × 5 gridmap is given in Fig. 1.
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xt+1xt–1
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zt–1 zt+1

Fig. 2. The Dynamic Bayesian Network (DBN) of the SLAM problem
for odour and occupancy grid mapping. Dependencies between variables are
represented as directed arcs. Please note that this graphical model implies that
the map m can be estimated from the observations zt given a known robot
path hypothesis xt. Observations from the range scanner and the gas sensors
are modelled as dependent on their respective maps only.

IV. PROBABILISTIC GDM-SLAM

The general SLAM problem is stated as to simultaneously
estimate the map m and the robot path xt = {x1, ..., xt},
where each xt represents the robot pose at time step t.
Set out as a Bayesian filtering problem conditioned on the
sequence of robot actions ut = {u1, ..., ut} and observations
zt = {z1, ..., zt}, the probability distribution to be estimated
is:

p(xt, m|ut, zt). (10)

The graphical model for this problem is shown in Fig. 2
as a Dynamic Bayesian Network (DBN), where the hidden
variables (represented by shaded circles) are to be estimated
from the only known data, i.e. the sequence of actions and
observations. The directed arcs in this graph represent statisti-
cal dependence between variables. Notice that the estimation
of the map m is related to the inverse sensor model of the
observations zt, which in turn depend on the estimation of
the robot path xt. The inverse sensor model is used for
estimating the map from observations since this implies to
traverse the arrows in the DBN in the opposite direction to
the actual dependence (Fig. 2). However, provided that maps
can be analytically estimated given a robot path hypothesis,
the complexity of estimating the distribution in (10) can be
highly reduced by considering the factorization

p(xt, m|ut, zt) = p(xt|ut, zt)p(m|xt, ut, zt) (11)

and subsequently performing estimation of the first term only
(the robot path) whereas analytically computing the second
one (the maps). This technique to reduce the dimensionality
of the estimation problem by exploiting the structure of the
variables is called Rao-Blackwellised Particle Filter (RBPF) in
Estimation Theory [2]. To estimate the robot path we represent
its distribution by a set of M weighted particles,{

xt,[i]
}

i=1...M
∼ p(xt|ut, zt) (12)

where associated weights ω
[i]
t account for the fact that the

particles xt,[i] are not exactly distributed according to the
density being estimated. Particle filtering for robotics and
RBPFs are extensively discussed elsewhere [14, 2].

Fig. 3. One-dimensional example which illustrates that the likelihood of
the gas sensor observation can be approximated by a constant value η under
practical assumptions (discussed in the text). Consequently, the information
provided by the gas sensors can be neglected for localization purposes.

In this work we consider that a map m comprises two
different grid maps: the occupancy map mocc and the gas dis-
tribution map mgas. Assuming independency between them,
we can estimate the map hypotheses m

[i]
occ and m

[i]
gas for

each particle i separately. In a similar way, we define the
observations zt as the pair of observations zocc,t and zgas,t

for the range scanner and the gas sensors, respectively. No-
tice that both observations are also conditionally independent
given a robot path hypothesis, as illustrated in Fig. 2. If we
consider the sequential Bayesian estimation of the robot path
distribution in (12) under the Markov assumption we obtain
the recursive formula

p(xt|ut, zt) ∝ (13)

p(zt|xt, m)
∫

p(xt|xt−1, ut)p(xt−1|ut−1, zt−1)dxt−1.

Here two stochastic models are required: the observation
model p(zt|xt, m), and the robot motion model p(xt|xt−1, ut)
which we obtain from odometry. In a RBPF, the latter distri-
bution is not necessary in closed form, since we need only a
mechanism to randomly draw samples from it. Assuming the
standard proposal distribution [2], particles for each time step
t are generated directly by sampling from the motion model:

x
[i]
t ∼ p(xt|x[i]

t−1, ut). (14)

Accordingly, weights are updated through the observation
likelihood function:

ω
[i]
t ∝ ω

[i]
t−1p(zt|x[i]

t , m[i]). (15)

Intuitively, this means that those particles that better explain
the current observations are assigned higher weights. If we
take into account now the conditional independence between
the pair of observations, we obtain

p(zt|x[i]
t , m[i]) = p(zgas,t, zocc,t|x[i]

t , m[i]
gas, m

[i]
occ) (16)

= p(zgas,t|x[i]
t , m[i]

gas)p(zocc,t|x[i]
t , m[i]

occ)

≈ ηp(zocc,t|x[i]
t , m[i]

occ).

In the last step we approximate the observation likelihood
for the gas sensors by a constant value η (similar to Grisetti et
al. [3]), assuming that the observation likelihood of the range
sensor dominates the product in (16). This is illustrated in
Fig. 3 with a one-dimensional example. Given the precision of
laser range scanners, this approximation is reasonable as long
as appropriate features can be observed with the laser scanner.
We do not consider situations where the range measurements
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do not contain features, such as is in the middle of a wide open
space, for example. This approximation means that we disre-
gard the information provided by the gas sensors for updating
the robot pose estimation. The gas sensor measurements are
used, however, to update the gas distribution map.

Regarding the second term in (11), the distribution over
maps, the occupancy grid p(mocc|xt,[i], zt

occ) for the i’th hy-
pothesis is updated by well-known sensor integration methods
([10, 13]). The gas distribution map p(mav

gas|xt,[i], zt
gas) for

the i’th particle is calculated by the Kernel-GDM algorithm
detailed in Section III. Finally, the map estimates can be
calculated as the marginal of the map distributions, taken over
all the hypotheses of robot paths as

p(m|zt) =
∑

i

ω
[i]
t p(m|xt,[i], zt). (17)

Since the expectation of a sum is the sum of the expectations,

E[p(...)] = E[
∑

i

ω[i]p(...)] =
∑

i

ω[i]E[p(...)], (18)

we can compute the mean over map posteriors from the
gas distribution maps obtained from the Kernel-GDM al-
gorithm for each particle, which approximate the terms
E[p(mav

gas|xt,[i], zt
gas)] in Eq. 18.

V. EXPERIMENTS

A. Robot

Our experiments have been conducted using a service robot,
called Sancho, which is intended to work within human
environments as, for example, a conference or fair host (see
Fig. 4a). It is constructed upon a pioneer 3DX mobile base
whose structure has been devised to contain the sensorial
system, including a radial laser scanner, a set of 10 infrared
sensors, a colour motorized camera, and a pair of electronic
noses, which are placed at a low position in the frontal part
of the robot (see Fig. 4b). All devices of Sancho are managed
by a Pentium IV laptop computer at 2.4GHz with wireless
communication to remote servers or to the internet, enabling,
for instance, remote users to command and to control the robot.

B. Gas Sensors

Located on the front of Sancho approximately 11 cm from
the floor are two electronic noses based on TGS Figaro
technology. Each e-nose consists of four TGS sensors (TGS
2600 (x2), 2620, 2602) placed in a circular formation on a
plastic backing (see Fig. 4c). The sensors are fitted inside a
retractable plastic tube sealed with a cpu fan that provides a
constant airflow into the tube (see Fig. 4b). The two e-noses
are separated at a distance of 14 cm (measured from the center
of the circular backing).

Readings from the gas sensors are collected by an on-
board data acquisition system with a sampling frequency of
1.25 Hz. Prior to experimentation, the sensor arrays for both
e-noses were heated for approximately 30 minutes reaching
temperatures between 300-500 ◦C, needed for proper oper-
ation. Metal oxide sensors exhibit some drawbacks worth
noting. Namely the low selectivity, the comparatively high
power consumption (caused by the heating device) and a

Fig. 4. Service robot Sancho. a) The original version of Sancho for delivery
applications. b) Partial view of the robot focusing on the two electronic noses
mounted on Sancho for our experiments. c) Each e-nose is composed of four
gas sensors, a fan that provides a constant air flow, and a retractable plastic
tube (not shown in the picture) that directs the air flow to the sensors.

weak durability. Furthermore, metal oxide sensors are subject
to a long response time and an even longer decay time.
However, this type of gas sensor is most often used for mobile
noses because it is inexpensive, highly sensitive and relatively
unaffected by changing environmental conditions like room
temperature or humidity.

C. Environment

Experiments were carried out within one of the wings of
the Computer Science building at the University of Málaga
(Spain). The testing scenario comprises two long corridors
(one indoor and one outdoor) connected through two passages.
Test results are presented from the runs conducted in the
indoor portion of the corridor. The environment was in no
way modified for the purpose of the experiment. Furthermore,
people were occasionally present in the corridor, moving about
and at times entering or closing doors.

An ethanol gas source was used and was contained in a cup
approximately 6 cm in diameter and 5 cm high. The small size
of the cup proved to be convenient since the robot was able to
drive directly over the source. The source was prepared at a
distance beyond the experimentation area, it was then covered
and moved into position in the corridor approximately 30
minutes prior to experimentation. The cover was then removed
just before an experimentation trial would begin.

D. Results

An implementation of the system was made by moving the
robot at a speed of 5 cm/s in a spiral sweeping fashion. Fig.
5a shows the maximum likelihood path taken by the robot
indicated by a solid black line. Fig. 5b shows the gas distribu-
tion map merged with the laser scan data. The source location
in the figure is indicated by a circular ring. Here, different
shadings of gray are used to indicate concentration values,
where dark shading corresponds to low and light shading
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Fig. 5. (a) Laser Scan of the explored corridor and the most likely path taken by the robot. (b) The gas distribution map merged with the laser scan
information. The actual source position is indicated by (light blue) concentric squares and a cross. Concentration values higher than 80% of the maximum
are indicated with a second of range of dark to light shading in red. (c) Enlarged view of the gas distribution map at the source location.

to high relative concentration values. To better illustrate the
variations in the measured concentration, a different shading
color is used for cells containing concentration values higher
than 80% of the maximum.

Note that the area indicating highest concentration values in
the gas distribution map, corresponds to the source location,
seen best in the close-up shown in Fig. 5c. While this corre-
spondence provides a good indication that the gas distribution
map corresponds to the true gas distribution it is not possible
to conclude from this result that the suggested approach
is generally able to represent the average gas distribution
accurately. A thorough ground truth evaluation of the obtained
gas distribution map is, however, very difficult due to the
difficulty of measuring the gas distribution at the same time
and the same height as with the sensors mounted on the
robot. It is nonetheless remarkable that the gas distribution
mapping algorithm was able to cope with the dimension of
the environment (corridor of approx. 20 m x 2 m) and with
the uncontrolled environment (an indoor wing connected to
outdoor junctions).

VI. CONCLUSION

In this paper we present a probabilistic framework that
integrates SLAM (with “M” = occupancy mapping) and gas
distribution mapping. In contrast to all previous approaches,
which assume that the robot has perfect knowledge about
its position at all times, we propose an algorithm to create
a two dimensional gas distribution gridmap that takes the
uncertainty of the pose estimates into account. We develop
a Rao-Blackwellised particle filter formulation of the GDM-
SLAM problem and show which dependencies in the posterior
can be neglected under certain practical assumptions.

Finally, we present results with the suggested approach
obtained with a mobile robot equipped with gas sensors and
a laser range scanner. To our knowledge, the experimental
testbed used for evaluation is the largest environment for which
a gas distribution map was created by a mobile robot so far
and due to its partly open character this experiment can also
be considered as a first step towards outdoor gas distribution

mapping. This is an important contribution as mobile olfaction
platforms move towards real application domains. Future work
will primarily focus of establishing the validity of the proposed
algorithm through experimentation with the current mobile
platform.
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