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ABSTRACT

This thesis focuses on the problem of enabling mobile robots to autonomously build

world models of their environments and to employ them as a reference to self–localization

and navigation.

For mobile robots to become truly autonomous and useful, they must be able of

reliably moving towards the locations required by their tasks. This simple requirement

gives raise to countless problems that have populated research in the mobile robotics

community for the last two decades. Among these issues, two of the most relevant

are: (i) secure autonomous navigation, that is, moving to a target avoiding collisions

and (ii) the employment of an adequate world model for robot self-referencing within

the environment and also for locating places of interest. The present thesis introduces

several contributions to both research fields.

Among the contributions of this thesis we find a novel approach to extend SLAM

to large-scale scenarios by means of a seamless integration of geometric and topological

map building in a probabilistic framework that estimates the hybrid metric-topological

(HMT) state space of the robot path. The proposed framework unifies the research ar-

eas of topological mapping, reasoning on topological maps and metric SLAM, providing

also a natural integration of SLAM and the “robot awakening” problem.

Other contributions of this thesis cover a wide variety of topics, such as optimal

estimation in particle filters, a new probabilistic observation model for laser scanners

xv



based on consensus theory, a novel measure of the uncertainty in grid mapping, an

efficient method for range-only SLAM, a grounded method for partitioning large maps

into submaps, a multi-hypotheses approach to grid map matching, and a mathematical

framework for extending simple obstacle avoidance methods to realistic robots.
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CHAPTER 1

INTRODUCTION

1.1 Towards autonomous robots

By the end of 2007 there were about 1 million functional robots in the world, virtually

all of them industrial arm robots [IFR08]. In comparison to the evident success of

robotics in industrial scenarios, mobile robots still have a marginal relevance in our

society, although exceptions can be found as the dozens of automatic cleaning machines

that operate daily at the Paris metro [Kuh97] or the millions of cleaning robots sold

by iRobot for personal use in homes [iRo].

Nowadays, AGVs (autonomous guided vehicles) usually operate at facilities pur-

posely modified with guidewires or other devices [Hah] that define the possible tra-

jectories the robot can follow. Extending the usage of robots to homes, hospitals and

public places in general represents an extremely challenging step that state-of-the-art

research has not fully solved yet. Achieving such a level of integration of mobile robots

in our society demands addressing a number of issues in order for them to become fully

autonomous. To only mention a few of these hurdles, an autonomous robot [Sie04]

1



2 Towards autonomous robots

that interacts with humans should have the abilities of grasping and manipulating ob-

jects [Shi96], correctly managing social interactions and understanding non-verbal lan-

guage [Fon03], recognizing people [Zha03] and planning complex tasks [Gal04], among

others. Naturally, the list of required abilities may vary depending on the domain

and purpose of the robot. For instance, aerial or underwater [Yuh00] autonomous

robots must be adapted differently than those created to assist the elder people or for

entertainment in museums [Bur99].

Nevertheless, there exist two basic issues that any mobile robot must solve in order

to achieve a certain degree of autonomy, namely being able to track its own position

within the world (localization) and driving itself in a safely manner towards some given

target location (navigation). These two topics are, broadly speaking, the concern of

the present work.

Regarding mobile robot localization, the issues to be faced greatly depend on low-

level issues, such as the kind of employed sensors (e.g. cameras, laser range finders

or radio beacons). Nevertheless, it must be remarked that despite those differences,

a probabilistic treatment of the problem has revealed itself as a fruitful approach,

particularly since the introduction of particle filtering techniques in the late 1990s

[Del99,Thr01b]. In the common situation addressed in robot localization, the initial

position of the vehicle is only roughly known (or totally unknown for the so called

“awakening problem” [Fox99a]), and the robot must gain increasing confidence about

its location as it moves around and gathers sensory data. This process is possible due to

the existence of data previously known by the robot, usually a map of the environment

entered by the human.

A natural evolution of this problem is to go one step further and let the robot start

without any previous knowledge about its environment, that is, without an already



1. Introduction 3

built map. In this case the robot must localize and build a map as it senses the envi-

ronment for the first time. This paradigm, called the Simultaneous Localization and

Mapping (SLAM) problem, has witnessed a highly intense research activity during the

last two decades [Bai06a,Thr02,Thr05]. The special interest of the robotics community

in SLAM can be easily understood by realizing its potential benefits: a mobile robot

capable of learning the characteristics of its environment would not need any special

setup or modification in its workplace.

As with the localization problem, probabilistic approaches to SLAM are specially

appropriate due to their capability to deal with noise in the sensors and with uncer-

tainty in both the position of the robot and the world model, which will be always

uncertain due to the noisy and sometimes ambiguous nature of robotic sensors and

actuators.

An interesting reflection is the fact that both localization and SLAM are just spe-

cial cases of one single statistical problem, namely probabilistic estimation [Bis06].

However, there are several different ways of approaching these problems, some more

appropriate than others depending on the kind of robotic sensors or map representation

employed. This is one of the reasons of the huge body of existing literature in the field

in spite of all the works reducing to the same basic mathematical problem.

Last but not least, autonomous mobile robots should navigate safely through their

environment, which involves the usage of techniques aimed at finding feasible paths for

the robot to reach the desired targets while avoiding collisions with static or dynamic

obstacles. These approaches strongly depend on the mechanical locomotion system of

the robot. Although there is an increasing trend to design biped robots [Goe07,Par01],

this thesis focuses on the more common case of wheeled robots. Motion planning and

control for these robots is a difficult problem due to non-holonomic restrictions that

limit the set of feasible maneuvers.



4 Contributions of this thesis

1.2 Contributions of this thesis

The contributions of this thesis are all advanced solutions to the above-mentioned

requirements for autonomy, that is, localization, mapping and navigation. A summary

of the most relevant contributions follows below:

• A novel Bayesian approach for the problems of localization and SLAM based

on probabilistic estimation over a hybrid metric-topological (HMT) state-space.

This new approach, called HMT-SLAM, allows robust map building of large-scale

environments and also provides an elegant integration of the “robot awakening”

and local SLAM problems. The publications [Bla07b] and [Bla08d] are the most

relevant results related to this line of research.

• A new particle filter algorithm for optimal estimation in problems with non-

parametric system and observation models. This algorithm has direct applica-

tions to both localization and SLAM, and it was published in [Bla08h].

• The introduction of a new stochastic sensor model (a likelihood model in Bayesian

estimation) for precise range finders based on Consensus Theory, which is shown

to perform better than previous methods for dynamic environments. The method

was reported in [Bla07c].

• A probabilistic method aimed at improving the accuracy of the motion model

of mobile robots by means of fusing readings from odometry and a gyroscope,

reported in [Bla07d].

• A new measurement of uncertainty for global map-building that unifies uncer-

tainty in the estimates of the robot path and the map and provides a more



1. Introduction 5

valuable information than previous proposals in the context of autonomous ex-

ploration, as reported in [Bla06a,Bla08c].

• Probabilistic solutions to SLAM with range-only sensors, which led to [Bla08e,

Bla08a]. These works are in fact the most recent ones from a series of works

on localization with Ultra-Wide-Band (UWB) radio beacons ( [FM07, Gon07,

Gon09a]).

• The proposal of a method for partitioning observations into approximately inde-

pendent clusters (local maps), a necessary operation in HMT-SLAM. This new

approach was introduced in [Bla06b,Bla09b].

• Matching occupancy grid maps, another operation needed in HMT-SLAM. The

results of this research line appeared in [Bla07e,Bla10b,Bla10c].

• A new approach to mobile robot obstacle avoidance through multiple space trans-

formations that extend the applicability of existing obstacle avoidance methods

to kinematically-constrained vehicles, making no approximations in either the

robot shape or in the kinematic restrictions. A series of works in this line has

previously appeared in [Bla06c,Bla08f,Bla08g].



6 Framework of this thesis

1.3 Framework of this thesis

This thesis is the outcome of five years of research activity of his author as a member

of the MAPIR group 1, which belongs to the Departamento de Ingenieŕıa de Sistemas

y Automática 2 of the University of Málaga. During that time, funding was supplied

by the Spanish national research contract DPI2005-01391, the Spanish FPU grant

program and the European contract CRAFT-COOP-CT-2005-017668. The scientific

production of this period is in part reflected in this thesis, while the results that had

direct applications to the industry have led to three patents [Est09,Jim07,Jim06].

The MAPIR group experience in mobile robotics goes back to the early 90s, with

several PhD theses in the area, such as [GJ93] and [RT01]. Moreover, two other PhD

theses [FM00,Gal06] addressed the topic of large-scale graph world models, which is

closely related to HMT-SLAM, one of the main contributions of this thesis.

The author completed the doctoral courses entitled “Ingenieŕıa de los Sistemas de

Producción” (Production System Engineering) given by the Departamento de Inge-

nieŕıa de Sistemas y Automática, and also complemented his academic education with

the participation in the SLAM Summer School (2006), and a three months stay with

the Mobile Robot Group headed by Dr. Paul Newman.

Regarding the experimental setups presented in this work, they have been carried

out with two mobile robots: SENA, a robotic wheelchair [Gon06a], and SANCHO, a

fair-host robot [Gon09b]. The author, among the rest of the group, has devoted great

efforts to the development of these robots, including both software implementation

tasks and the design of electronic boards.

1http://babel.isa.uma.es/mapir/
2http://www.isa.uma.es/

http://babel.isa.uma.es/mapir/
http://www.isa.uma.es/
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1.4 Organization

After this introduction, Chapter 2 provides the fundamental background on the prob-

abilistic techniques that will be employed throughout the rest of the thesis.

The work is divided into four clearly-differentiated parts:

• Chapters 3 to 6 are devoted to purely metric robot localization techniques.

• Chapters 7 to 10 cover the contributions related to mobile robot autonomous

exploration and SLAM (also in a purely metric setting), including a review of

existing approaches.

• Chapters 11 to 14 present the new approach to local and topological localization

and map building, called HMT-SLAM. Individual operations within this frame-

work, such as map partitioning or grid map matching, are discussed in their

corresponding chapters.

• Finally, chapters 15 to 16 review existing local navigation approaches and intro-

duce a new space transformation for efficient search of collision-free trajectories,

with applications to motion planning and reactive navigation.





CHAPTER 2

PROBABILISTIC

FOUNDATIONS

“All events, who by their smallness seem not consequences of natural laws,
are in fact outcomes as necessary as celestial movements [...] but because of
our ignorance of the immense majority of the data required and our inability
to submit to computation most of the data we do know of, [...] we attribute
these phenomena to randomness, [...] an expression of nothing more than our
ignorance.”

Théorie Analytique des Probabilités (1812), pp. 177-178

Pierre-Simon Laplace

2.1 Introduction

Probability theory has become an essential tool in modern engineering and science. The

reason of this success can be found in the unpredictable aspects of any system under

real-world conditions: independently of the precision of the employed instruments,

measurements are always noisy and thus will vary from one instant to the next. Another

9
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difficulty of practical systems is that we are often interested in measuring the state of

systems not directly observable, where the only measurable information is non-trivially

related to that state.

A probabilistic treatment of such situations has the potential to provide us with

explicit and accurate estimates of the system, right from the accumulated knowledge

gained through, possibly noisy and indirect, observations.

With the intention of keeping this thesis as much self-contained as possible, subse-

quent sections introduce fundamental concepts and mathematical definitions on which

probabilistic mobile robotics relies. Nevertheless, this chapter does not intend to be

a thorough and complete reference on probability theory, for which the interested

reader is referred to the excellent existing literature [Apo07,Bis06,Dou01,Ris04,Rus95a,

Thr05].

2.2 Basic definitions

Let S be the countable (finite or infinite) set of all the possible outcomes of an ex-

periment. Then, a probability space is defined as the triplet (S,B, P ) with B being a

Boolean algebra (typically the set of all the possible subsets of S) and with P being

a probability measure, which provides us the probability of every possible event (the

combination of one or more outcomes from S). The probability measure P must fulfill

a few fundamental requirements, namely, (i) providing a total probability of 1 for the

entire set S, (ii) being nonnegative and (iii) being completely additive, which can be

informally defined as any function whose output for an input set A = {a1, ..., ai} is the

sum of the outputs for each individual element in the set [Apo07].

In the case of uncountable sample spaces S (e.g. the line of the real numbers R), the

smallest applicable Boolean algebra is a kind of σ-algebra called Borel algebra, built
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from all the intervals where S is defined. The resulting measures (or probabilities)

emerging from such algebra are Lebesgue measurable, which means that probability

distributions (to be defined shortly below) may contain any countable number of dis-

continuities as long as all the discontinuities belong to a null set [Wei73].

Following the common practice in science and engineering texts, the rest of this

thesis employs the most natural Boolean algebra B for probability spaces : a Borel σ-

algebra for the common case of S being a subset of Rn, and the set of all possible

subsets for S being a discrete sample space. Therefore, these technical details about

Measure Theory will rarely be mentioned from now on. For further discussion about

this modern description of Probability Theory the reader is referred to the existing

literature [Apo07].

In the usual approach to a probability theory problem we will be interested in

random variables (RVs). A RV represents any measurable outcome of an experiment,

thus each realization of the variable or observation, will vary for each repetition of the

experiment (e.g. the time to finish a race). RVs may also represent non-observable

quantities (e.g. the temperature at the core of the sun) of which indirect measurements

exist.

A RV is properly modeled by its probability distribution 1, the function that de-

termines how likely is to obtain one or another outcome for each observation of the

variable.

In the case of a discrete random variable X, its distribution is defined by means

of a probability mass function (pmf), written down as PX(Xi) or P (X = Xi) (note

the capital P ), and which reflects the probability of X to be exactly Xi, for the whole

domain of possible values of Xi.

1Note that this corresponds to the additive set function P in the probability space triplet defined
above.
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Figure 2.1: Examples of probability distributions for (a) a discrete variable (pmf) and (b)
a continuous variable (pdf).

For a continuous variable x, the distribution is described by its probability density

function (pdf), denoted by px(ǫ) (note the uncapitalized p) which does not indicate

probabilities, but probability densities for each possible value of x = ǫ. Here, probabil-

ities can be always obtained for the event that the variable x falls within a given range

[a, b] by means of:

P (a < x < b) =

∫ b

a

px(ǫ)dǫ (2.2.1)

The concepts of pmf and pdf are illustrated with two realistic examples in the

Figure 2.1.

Another concept, related to the pdf through Lebesgue integration, is the cumulative

distribution function (cdf), which also fully describes a probability distribution by

measuring the probability of the variable x being below any given value. In the case of

a real-valued variable x the cdf is represented by Fx, such as
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Fx(ǫ) = P (x < ǫ) (2.2.2)

Obviously, the limit of a cdf must be zero and one for x tending towards minus

and plus infinity, respectively. A cdf may contain discontinuities, but continuity from

the right hand must be assessed for each of them [Apo07]. For the common case of a

continuous cdf, the probability of any given open set ]a, b[ will be always identical to

that of the closed set [a, b], since the Lebesgue measure of the end points a and b is

zero.

A distribution is said to be multivariate when it describes the statistical occurrence

of more than one variables, which may be continuous, discrete or an arbitrary mixture

of them. The pdf (or cdf) of multiple variables is called a joint distribution, in contrast

to a marginal distribution where only one of the variables is considered.

Another important concept is the mathematical expectation of any arbitrary func-

tion f(x) of a RV x, which determines the output from the function f(·) that will be

closest, in average, to the output generated from random samples of x. It is denoted

with the E[·] operator, defined as

Ex[f(ǫ)] =

∫ ∞

−∞
f(ǫ)px(ǫ)dǫ (2.2.3)

Using this expectation we can define the n’th (non-central) moment of a distribution

as:

µ′
n = Ex[ǫ

n] (2.2.4)

The first of these moments (n = 1) is the mean of the distribution. Denoting

the mean of the RV x as x̄ we can now determine the n’th central moment of its

distribution, given by:
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µn = Ex[(ǫ− x̄)n] (2.2.5)

In this case, the most widely employed moment is the second order one, named

variance, which measures the dispersion of the distribution. In the case of multivariate

distributions the moments become matrices, and the second central moment is called

the covariance matrix.

Regarding the probability distributions of two or more RVs, there exist a number

of fundamental definitions that will be used extensively throughout this thesis. They

are enumerated briefly below.

Conditional distribution: The conditional pdf of a RV y given another variable

x is written down as p(y|x), and can be shown to be:

p(y|x) .= p(x, y)

p(x)
(2.2.6)

with p(x, y) being the joint pdf of both variables.

Independence: A pair of variables x and y are said to be independent if the

information provide bdy one of them contributes nothing to the knowledge about the

other. Put mathematically, independent RVs fulfill:

p(y|x) = p(y) (2.2.7)

p(x|y) = p(x) (2.2.8)

p(x, y) = p(x)p(y) (A consequence of Eqs. (2.2.6)–(2.2.7))

Conditional independence: A pair of variables x and y are conditionally inde-

pendent given another third variable z if, given knowledge of z, further knowledge of

x or y gives no information about y or x, respectively. This property will be discussed

shortly in §2.10.
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Law of total probability: The pdf of a set of one or more RVs y can be always

obtained by “averaging out” its conditional distribution p(y|x) for any other arbitrary

set of RVs x, that is:

p(y) = Ex[y|x] =
∫ ∞

−∞
p(y|x)p(x)dx (2.2.9)

In the case of discrete variables, this law can be expressed as a sum:

P (y) = Ex[y|x] =
∑

∀x
P (y|x)P (x) (2.2.10)

2.3 Parametric probability distributions

Probability distributions of random variables can be broadly divided into two distinc-

tive groups: parametric and non-parametric.

In the first case, the pmf or pdf governing the random variable can be described

through a mathematical equation that gives the exact value of the distribution for

the whole domain of the variable. In contrast, non-parametric distributions cannot be

modeled by formulas that yield directly and exactly their value, and other methods

must be employed instead as will be discussed below (§2.4).

There exist dozens of well-known parametric distributions [Abr65,Eva01], although

in this work only a few will be employed, which are introduced below.

2.3.1 Uniform distribution

This is the simplest distribution, where all the potential values of a random variable z

with a domain [a, b] have exactly the same occurrence likelihood:
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z ∼ U(a, b) pz(x) = U(x; a, b) =
{

1
b−a , for x ∈ [a, b]

0 , otherwise
(2.3.1)

2.3.2 Normal or Gaussian distribution

Certainly the most widely employed density due to its remarkable properties, such as

the convenience of many operations such as summing, conditioning or factoring normal

variables also giving normal variables.

In this text, the fact that an N -dimensional random variable z with mean z̄ and

covariance matrix Σz is governed by a Gaussian distribution will be denoted as:

z ∼ N (z̄,Σz) (2.3.2)

with its pdf defined parametrically as:

pz(x) = N (x; z̄,Σz) =
1

(2π)N/2
√

|Σz|
exp

(

−1

2
(x− z̄)⊤ Σz

−1 (x− z̄)

)

2.3.3 Chi-square distribution

Given a sequence of k uni-dimensional normally-distributed variables zi with mean zero

and unit variance, the statistic

q =
k∑

i=1

z2i (2.3.3)

is also a random variable that follows a chi-square distribution with k degrees of free-

dom, that is, q ∼ χ2
k. The density of this distribution, defined for non-negative numbers

only, is given by:

pq(x) =
xk/2−1e−x/2

2k/2Γ(k/2)
(2.3.4)
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where Γ(k) is the gamma function, with no closed-form solution.

The importance of this density comes from it being the foundation of an important

method to compare two statistical distributions, named the chi-square test . This test is

widely employed in probabilistic robotics to deal with problems such as stochastic data

association (see [Nei01] and §14.6). In a chi-square test we are not directly interested

in the chi-square pdf, but rather on its inverse cumulative distribution function, which

will be denoted as χ2
k,c. The test gives us the maximum value of the statistic q such as

it can be asserted that the two distributions being compared coincide with a certainty

of c (a probability between 0 and 1).

2.4 Non-parametric probability distributions

In spite of the wide applicability of the normal distribution, many continuous variables

in the real-world cannot be properly modeled as Gaussians or any other parametric

distribution. In those cases, non-parametric methods must be applied to model the

corresponding probability densities.

Kernel-based methods approximate the actual density distribution of a random

variable from a sequence of independent samples. A kernel function, usually a Gaussian

[Par62], is inserted at each sampled value, and the pdf estimation consists of the

average of all these kernels. Since in mobile robotics there are few situations ( [Lil07]

is an example) where we can draw a large number of independent samples from the

variables of interest, these methods have a modest presence in the field.

The most straightforward non-parametric estimators are histograms (for 1-dimension)

or probability grids (for higher dimensions). Although such approximations did find

their application to mobile robot localization [Fox99b], it quickly became evident that
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keeping the probability for each bin in the histogram (or cell in the grids) is im-

practical and wastes most of the computational and storage resources in, probably,

non-interesting parts of that space.

An alternative approach is importance sampling [Dou01], where the actual pdf is

approximated by a set of weighted samples (or particles) which are usually concentrated

on the relevant areas of the state space. The validity of importance sampling is based

on the interesting property that any statistic Ex[f(x)] of a random variable x can be

estimated from a set of M samples x[i] with associated weights ω[i], since it can be

proven that

lim
M−→∞

M∑

i=1

ω[i]f(x[i]) = Ex[f(x)] (2.4.1)

for the correct values of weights. In practice, the degree of accuracy attainable by

importance sampling is an important issue, since the number of samples must be kept

bounded due to computational limitations. Montecarlo simulation with importance

sampling is the base of particle filters, which will be discussed in §2.7.2.

2.5 Mahalanobis distance

The Mahalanobis distance DM is a convenient measurement of distances from a fixed

point y to another point x whose location follows a normal distribution N (x̄,Σx). For

two independent variables, this distance is given by:

DM (x,y) =

√

(y − x̄)⊤ Σx
−1 (y − x̄) (2.5.1)

The intuitive idea behind the Mahalanobis distance is to account for distances

weighted by their uncertainty in each dimension. Figure 2.2 illustrates this with ellipses
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Figure 2.2: An example of the Mahalanobis distance for a 2-d Gaussian N (µ,Σ). The
ellipses represent the 68%, 95% and 99.7% confidence intervals for the random variable de-
scribed by this Gaussian to be within the enclosed areas, for DM being 1, 2 or 3, respectively.

of constant Mahalanobis distance from the mean point of a 2-d Gaussian. These ellipses

will be often used to represent confidence intervals throughout this text.

Another interesting application of the Mahalanobis distance is when both points x

and y are Gaussian random variables. In that case, the Mahalanobis distance can be

computed as:

DM (x,y) =

√

(ȳ − x̄)⊤ (Σx +Σy − 2Σxy)
−1 (ȳ − x̄) (2.5.2)

with Σxy being the cross-covariance matrix of the two variables. This expression can

be easily derived by noticing that computing this distance between two Gaussians can

be reformulated as the distance from the origin to a new random variable δ = y − x,

which follows the distribution N (ȳ − x̄,Σx +Σy) as illustrated in Figure 2.3.



20 Kullback-Leibler divergence

2 4 6 8 10 12

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

-1

0

1

2

3

4

5

6

7

( ), xN x Σ

( ),
y

N y Σ

( ),MD x y

( ),0MD y x−

( ),
x y

N y x− Σ + Σ

(a) (b)

Figure 2.3: (a) An example of the Mahalanobis distance between two Gaussians x and y. (b)
The same distance, reformulated as the distance to the origin from the variable representing
the difference of both Gaussians.

2.6 Kullback-Leibler divergence

The Kullback-Leibler divergence (KLD) is a measure of the similarity between two

probability density functions p(x) and q(x), defined as [Kul51]:

DKL(p, q) =

∫ ∞

−∞
p(x) log

p(x)

q(x)
dx (2.6.1)

Only two exactly equal densities give a KLD value of zero. Otherwise, the KLD is

always a positive quantity. In spite of the similarities with the mathematical definition

of a distance, the KLD is not a valid distance metric since, in general, DKL(p, q) 6=

DKL(q, p), hence the usage of the term divergence.

One application of KLD found in mobile robotics is to measure the similarity of

two independent N -dimensional Gaussian distributions p and q, that is, DKL(p, q),

provided that:
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p(x) = N (x;µp,Σp) (2.6.2)

q(x) = N (x;µq,Σq)

which has the closed-form solution:

DKL(p, q) =
1

2

(

log
|Σq|
|Σp|

−N + tr
(
Σ−1
q Σp

)
+ (µq − µp)⊤ Σ−1

q (µq − µp)
)

(2.6.3)

Another interesting situation where KLD finds applications is in comparing two

sums of Gaussians (SOG). Unfortunately, there is no closed-form expression in this

case, but an upper bound exists as proven by Runnalls in [Run07]. This result will be

useful in this thesis, as shown in §14.6.2.

2.7 Bayes filtering

The Bayes rule is the grounding of an important family of probabilistic estimation

techniques named Bayes filters which underlies many of the approaches presented in

this thesis. Given a probabilistic belief about the state x of a system, Bayes filtering

estimates the new belief after acquiring observations z that are directly or indirectly

related to the system. Put mathematically, the rule is stated as:

p(x|z) = p(x)
p(z|x)
p(z)

(2.7.1)

The belief after incorporating the observation, that is, p(x|z), is referred to as the

posterior density, while the term p(x) is named the prior density and p(z|x), which

models how observations are related to the system state, is called the observation

likelihood. The denominator p(z), called the partition function in some contexts, rep-

resents the appropriate constant to normalize the posterior distribution and make it a
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proper density function. As will be seen when discussing robot localization and SLAM

(in chapters 3 and 7, respectively), this Bayes rule can be applied recursively to the

sequence of variables in a dynamic system that evolves with time.

It is worthy to highlight a convention that will be used throughout this thesis: the

distribution that represents the knowledge before incorporating the new information in

the Bayes equation, that is, p(x) in Eq. (2.7.1), will be always called Bayes prior , or

just prior if there is no ambiguity. This remark is necessary since, strictly speaking,

“priors” are distributions not conditioned to any other variable, whereas it will be quite

common to find Bayes priors as p(x|B), with B being previous knowledge, e.g. already

incorporated in previous steps of a sequential Bayes filter.

Note that the Bayes rule states the relation between generic probability densities.

Each of the existing Bayesian filters specializes in approaching the problem for a differ-

ent representation of the densities, and/or for the cases of linear and non-linear models,

as briefly introduced in §§2.7.1–2.7.2. A deeper discussion about Bayesian filters can

be found elsewhere [Dou01,Ris04].

2.7.1 Gaussian filters

This family of Bayesian filters relies on multivariate Gaussian distributions to model

the uncertainty in all the variables of both the system state and the observations.

Systems with both linear transition and linear observation equations can be optimally

estimated by means of the Kalman filter (KF) [Kal60], which means that the posterior

converges towards the actual distribution as observations are processed.

The limitation of linear equations can be avoided by linearization, which leads to

the Extended Kalman Filter (EKF) [Jul97], or by systematic sampling, which gives the

Unscented Kalman Filter (UKF) [Wan00]. Other variants include the iterated EKF
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(IKF) (which was proven to be equivalent to the Gauss-Newton method [Bel93]), and

the Information Filter (IF) [Wal07], which maintains and updates normal distributions

in their canonical form [Wu05].

2.7.2 Particle filters

The application of Monte-Carlo simulation to sets of particles with the aim of approx-

imating Bayes filtering leads to a group of techniques generically named particle filters

(PF) or Sequential Monte Carlo (SMC) estimation. The main advantages of PFs in

comparison to Kalman Filters are the avoidance of linearization errors and the possi-

bility of representing other pdfs apart from Gaussians. On the other hand, PFs require

a number of samples that grows exponentially with the dimensionality of the problem.

In its simplest form, a PF propagates the samples that approximate the prior in the

state space using the transition model of the system, and then updates their weights

using the observation likelihood. A detailed survey of particle filtering techniques can

be found in Chapter 4, where we also propose a novel particle filter algorithm.

As an additional remark, in most practical situations (where linear models are

not applicable) Monte-Carlo simulation with a large enough number of samples is

usually considered the standard for approximating the ground-truth distribution of

the posterior.
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2.8 Resampling strategies

A common problem of all particle filters is the degeneracy of weights, which consists

of the unbounded increase of the variance of the weights ω[i] with time2. In order to

prevent this growth of variance, which entails a loss of particle diversity, one of a set

of resampling methods must be employed.

The aim of resampling is to replace an old set of N particles by a new one with the

same population size but where particles have been duplicated or removed according

to their weights. More specifically, the expected duplication count of the i’th particle,

denoted by Ni, must tend to Nω[i]. After resampling, all the weights become equal

to preserve the importance sampling of the target pdf. Deciding whether to perform

resampling or not is most commonly done by monitoring the effective sample size (ESS)

[Liu96], obtained from the N normalized weights ω[i] as:

ESS =

(
N∑

i=1

(ω[i])2

)−1

∈ [1, N ] (2.8.1)

The ESS provides a measure of the variance of the particles’ weights, e.g. the

ESS tends to 1 when one single particle carries the largest weight and the rest have

negligible weights.

2.8.1 Overview

This section describes four different strategies for resampling a set of particles whose

normalized weights are given by ω[i], for i = 1, ..., N . The methods are explained using

a visual analogy with a “wheel” whose perimeter is assigned to the different particles in

such a way that the length of the perimeter associated to each particle is proportional to

2 This variance is defined between different executions of the particle filter; it must remain clear
that importance weights are just scalars, not pdfs.
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its weight (see Figures 2.4–2.7). Therefore, picking a random direction in this “wheel”

implies choosing a particle with a probability proportional to its weight. For a more

formal description of the methods, please refer to the excellent paper by Douc, Cappé

and Moulines [Dou05].

[1]ω
[2]ω

[3]ω

[4]ω [5]ω

[6]ω

Random

Figure 2.4: The multinomial resampling algorithm.

• Multinomial resampling: It is the most straightforward resampling method,

where N independent random numbers are generated to pick a particle from the

old set. In the “wheel” analogy, illustrated in Figure 2.4, this method consists

of picking N independent random directions from the center of the wheel and

taking the pointed particle. The name of this method comes from the fact that

the probability mass function for the duplication counts Ni is a multinomial

distribution with the weights as parameters.
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Figure 2.5: The residual resampling algorithm. The shaded areas represent the integer
parts of ω[i]/(1/N). The residual parts of the weights, subtracting these areas, are taken as
the modified weights ω̃[i].

• Residual resampling: This method comprises two stages, as can be seen in

Figure 2.5. Firstly, particles are resampled deterministically by picking Ni =

⌊Nω[i]⌋ copies of the i’th particle. Then, multinomial sampling is performed

with the residual weights:

ω̃[i] = ω[i] −Ni/N.
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Figure 2.6: The stratified resampling algorithm. The entire circumference is divided into
N equal parts, represented as the N circular sectors of 1/N perimeter lengths each.

• Stratified resampling: In this method, the “wheel” representing the old set of

particles is divided into N equally-sized segments, as represented in Figure 2.6.

Then, N numbers are independently generated from a uniform distribution like

in multinomial sampling, but instead of mapping each draw to the entire cir-

cumference, they are mapped within its corresponding partition out of the N

ones.



28 Resampling strategies

[1]ω
[2]ω

[3]ω

[4]ω [5]ω

[6]ω

1
N

1
N

1
N

1
N

1
N

1
N

Random

Figure 2.7: The systematic resampling algorithm.

• Systematic resampling: Also called universal sampling, this popular technique

draws only one random number, i.e. one direction in the “wheel”, with the

others N−1 directions being fixed at 1/N increments from that randomly picked

direction.

2.8.2 Comparison of the four methods

In the context of Rao-Blackwellized particle filters (RBPF) [Dou00a], where each par-

ticle carries a hypothesis of the complete history of the system state evolution, re-

sampling becomes a crucial operation that reduces the diversity of the PF estimate

for past states. In order to evaluate the impact of the resampling strategy on this
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loss, the four different resampling methods discussed above have been evaluated in a

benchmark [Bla09a] that measures the diversity of different states remaining after t

time steps, assuming all the states were initially different.

The results, displayed in Figure 2.8, agree with the theoretical conclusions in

[Dou05], stating that multinomial resampling is the worst of the three methods in

terms of variance of the sample weights. Therefore, due to its simple implementation

and good results, the systematic method is employed in the rest of this work when eval-

uating “classical” particle filters, in constrast to our new proposed algorithms where

resampling is addressed differently, as explained in the corresponding chapters.

101

102

100 101
1

Time steps (t)

Number of hypotheses 

surviving since t=1

Multinomial

Residual

Stratified

Systematic

Figure 2.8: A benchmark to measure the loss of hypothesis diversity with time in an RBPF
for the four different resampling techniques discussed in this section. The multinomial method
clearly emerges as the worst choice.
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2.9 Random sample generation

A recurrent topic throughout probabilistic mobile robotics is drawing samples from

some probability distribution. Typical applications include Monte Carlo simulations

for modeling a stochastic process and some steps within particle filtering.

The most basic random generation mechanism is that for uniform distributions over

integer numbers, since any other discrete or continuous distribution can be derived

from it. Due to its importance, most modern programming languages include such

a uniform random generator. In the case of C or C++, the POSIX.1-2001 standard

proposes a simple pseudorandom generator – the implementation of the function rand

in the default C libraries. However, this method has its drawbacks in both efficiency

and randomness [Wil92].

In this thesis it has been employed an alternative method, namely the MT19937

variation of the Mersenne twister algorithm [Mat98]. Note that although this method

generates integer numbers, generating uniformly-distributed real numbers from them

is trivial. An application of uniform sampling in the context of resampling has been

already discussed in §2.8.

Another distribution useful in probabilistic robotics is the 1-dimensional normalized

Gaussian, that is, with mean zero and unit variance, which can be obtained from

uniformly-distributed numbers following the algorithm gasdev described in [Wil92].

Drawing samples from multivariate Gaussians is the most important sampling

method in our context, since it is involved in most particle filters for robot local-

ization and mapping (e.g. for drawing samples from the motion models). Let x̄ and

Σx denote the mean and covariance, respectively, of the N -dimensional Gaussian from

which a sample x will be drawn, that is,
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x ∼ N (x̄,Σx) (2.9.1)

If we obtain the N eigenvalues ei and eigenvectors vi of Σx, the k’th element of the

sample x is given by

x(k) = x̄(k) +
N∑

i=1

√
eivi(k)rk (2.9.2)

where each rk is a random sample from a 1-dimensional, normalized Gaussian. This

method can be seen as a change of bases from the N -hypersphere where the N in-

dependent and identically distributed (i.i.d.) random samples rk are generated, into

the orthogonal base defined by the eigenvectors of the covariance matrix Σx, each

dimension scaled by the corresponding eigenvalue.

2.10 Graphical models

Graphical models are a powerful tool where concepts from both graph and probabil-

ity theories are applied in order to make efficient statistical inference or sampling in

problems involving several random variables [Bis06,Jen96]. In this paradigm, a graph

represents a set of random variables (the nodes) and their statistical dependencies (the

edges). Graphical models have recently inspired interesting approaches in the mobile

robot SLAM community [Cum08,Pas02]. Furthermore, some well-known methods such

as the Kalman filter or Hidden-Markov models can be shown to be specific instances

of inference on graphical models [Bis06].

Depending on the edges being directed or undirected, the resulting graph is known
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as a Bayesian network (BN) or a Markov random field, respectively. In this work we

are only interested in BNs, where the direction of edges can be interpreted as a causal

relation between the variables that gives raise to a statistical dependence.

To illustrate the usage of a BN to, for example, factor a joint distribution, consider

the example in Figure 2.9 with the five random variables {a, b, c, d, e}:

a b c

ed

Figure 2.9: An example of a Bayesian network with five random variables.

Given the dependencies in this graph, the joint distribution of the system can be

factored exploiting the lack of connections between some nodes. In the current example,

using the Law of Total Probability we arrive at:

p(a, b, c, d, e) = p(a)p(d)p(b|a)p(c|b)p(e|a, d). (2.10.1)

Another important information that can be determined from a BN is whether two

variables (or sets of variables 3) a and c are conditionally independent given another

set of variables b, what is sometimes denoted as [Daw79]:

a ⊥⊥ c | b (2.10.2)

This condition can be asserted from the BN by inspecting whether the fixation of

the values of the variables in b leaves no connection that could carry information from

3An advantage of graphical models is that what is true for each node representing one random
variable, also holds when the nodes represent sets or clusters of variables.
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variables in a to those in c, or whether the arrows (in the possible paths between a and

c) meet head-to-head at some intermediary node that is not part of b. If at least one

of those two conditions holds, it is said that b d-separates a and c. For a more formal

definition of the rules to determine d-separation, please refer to [Bis06,Rus95b,Ver90].

A pair of variables a and d (refer to Figure 2.9) can be also (unconditionally)

independent, which can be denoted as a ⊥⊥ d | ∅ or simply a ⊥⊥ d. From the rules to

determine d-separation, it can be deduced that two variables are independent only if

all the paths between them end in a head-to-head arrow configuration (or, obviously,

when there is no connection at all between them).

Summarizing for the example in Figure 2.9, it can be observed that b d-separates

a and c, thus a ⊥⊥ c | b, and therefore the distribution p(a, c|b) can be factored as

p(a|b)p(c|b). Moreover, it can be observed that a and d are (unconditionally) indepen-

dent variables (since the arrows in the path a↔ d meet head-to-head), that is, a ⊥⊥ d,

and hence p(a, d) = p(a)p(d).

The application of these simplifications is at the core of many modern approaches

to map building in mobile robotics, including the framework presented in Chapter 12.
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Part I

Mobile Robot Localization
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CHAPTER 3

OVERVIEW

This chapter briefly reviews the problem of mobile robot localization and some of the

existing solutions proposed in the literature.

In general, the reported methods can be divided into those based on metric maps

(e.g. sets of landmarks, occupancy grids) and those relying on topological maps (e.g.

a graph of distinctive “places”). Although the latter approach has led to some success-

fully localization frameworks [Cum08,Kui90], the largest part of the literature focuses

on pure metric methods due to their better suitability to indoor, possibly cluttered

(and dynamic) spaces where a mobile robot needs an accurate pose estimation in order

to perform some basic tasks such as motion planning.

Metric localization most commonly addresses the problem of pose tracking, where

an estimate of the robot pose is sequentially updated as new data are gathered by

the sensors (e.g. wheels odometry, camera images or laser scans). This situation can

be characterized by the existence of a unique robot pose hypothesis relatively well

37
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xt-1 xt xt+1

ut ut+1ut-1

… …

zt-1 zt zt+1

m

Robot poses

Figure 3.1: The dynamic Bayesian network for mobile robot localization, where robot poses
xt are hidden variables (represented as shaded nodes) to be estimated from actions ut, sensor
observations zt and a model of the environment m.

localized in space. An extension of this paradigm is global localization, the problem

of a robot “awakening” in an unknown position of the environment. In this case, a

multitude of localization hypotheses must be managed simultaneously.

Bayesian filtering allows the coherent treatment of both, global localization and

pose tracking in a single probabilistic framework. Although parametric filters such as

multihypotheses Kalman filters have been used for this aim [Arr02a], the most common

approach is particle filtering [Thr05].

Mathematically, probabilistic robot localization consists of estimating the distribu-

tion of a hidden dynamic variable xt, standing for the robot pose at time step t, given

sensor observations zt, a map of the environment m and robot actions ut (normally,

odometry increments).

From the dynamic Bayesian network (DBN) of the problem, displayed in Figure 3.1,

it is clear that the sequence of robot poses constitute a Markov process, that is, given

a pose xt, the pose at the next instant xt+1 is conditionally independent of all previous

poses:
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xt+1 ⊥⊥ x1, x2, ..., xt−1 | xt. (3.0.1)

Therefore, the problem can be addressed sequentially by estimating one robot pose

at once based on the previously estimated pose, using the well-known expression:

p(xt|z1:t, u1:t,m) ∝ p(zt|xt,m)

∫

p(xt|xt−1, ut)p(xt−1|z1:t−1, u1:t−1,m)dxt−1 (3.0.2)

The derivation of this equation is given next along a detailed description of the

probabilistic rules applied in each step. Note that superscripts have been used for

shortening the expressions with sequences of variables, e.g. xt
.
= x1:t.

p(xt|zt, ut,m)
︸ ︷︷ ︸

Posterior for t

∝

Bayes on zt p(zt|xt, zt−1, ut,m)p(xt|zt−1, ut,m) =

zt ⊥⊥ zt−1, ut | xt,m p(zt|xt,m)
︸ ︷︷ ︸

Observation
likelihood

p(xt|zt−1, ut,m) =

Law of total
probability on xt−1

p(zt|xt,m)

∫ ∞

−∞
p(xt|xt−1, z

t−1, ut,m)p(xt−1|zt−1, ut,m)dxt−1 =

xt ⊥⊥ zt−1, ut−1,m | xt−1, ut p(zt|xt,m)

∫ ∞

−∞
p(xt|xt−1, ut)
︸ ︷︷ ︸

Motion model

p(xt−1|zt−1, ut,m)dxt−1 =

xt−1 ⊥⊥ ut | ∅ p(zt|xt,m)

∫ ∞

−∞
p(xt|xt−1, ut) p(xt−1|zt−1, ut−1,m)

︸ ︷︷ ︸

Posterior for t− 1

dxt−1

In the next chapter it is explored a novel algorithm for effective Bayesian filtering

and its applications to mobile robot localization. Then, Chapter 5 discusses a proposal
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for a new observation model useful for localization with accurate laser range scanners

in dynamic environments. Finally, we also address in Chapter 6 the issue of improving

a robot probabilistic motion model by means of fusing different proprioceptive sensors.



CHAPTER 4

OPTIMAL PARTICLE

FILTERING FOR

NON-PARAMETRIC

OBSERVATION MODELS

4.1 Introduction

Sequential estimation of dynamic, partially observable systems is a problem with nu-

merous applications in a wide range of engineering and scientific disciplines. The

state-space form of this problem consists of iteratively tracking the state of a system at

discrete time steps given the system transition and observation models and a sequence

of observations. In a probabilistic framework, sequential Bayesian filtering represents

41
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an effective solution [Liu98,Dou01,Ris04].

In the scope of mobile robotics there are two prominent applications of Bayesian

sequential estimation that have received a huge attention by the research community

in the last decade, namely localization and simultaneous localization and map build-

ing (SLAM) [Thr01b, Thr05, Est05, Gut99, Fox99b, Dis01, Hah03, Thr02, Gri07b]. As

discussed in Chapter 3, the former consists of estimating the pose of a mobile robot

within a previously known environment, whereas in SLAM a map of the environment

is estimated from scratch while performing self-localization.

In both cases the choice for the representation of the environment determines which

Bayesian estimation method can be applied. For example, landmark maps can be

modeled by multivariate Gaussian distributions with Gaussian observation models that

can be obtained by solving the data association problem [Dis01, Dav07]. Therefore,

SLAM with landmark maps can be solved through Gaussian filters such as the EKF

[Jul97] or the UKF [Wan00]. However, for other types of map representations, like

occupancy grid-maps [Mor85,Thr03], these filters are not applicable, forcing a sample-

based representation of probability densities and sequential estimation carried-out via

Monte-Carlo simulations (the filtering algorithms becomes a particle filter [Dou01]).

In this chapter we focus on occupancy grids as map model, although the described

method, published in [Bla08h], can be also applied to other maps compatible with a

sample-based representation of probability distributions (e.g. gas concentration maps

[Lou07], topological maps [Ran06]). Among the advantages of mapping with occupancy

grids we find the precise dense information they provide and the direct relation of

the map with the sensory data, which avoids the problem of data association that

is present in landmark maps [Nei01]. Their main drawback is that the observation

likelihood model for grid maps can be evaluated only pointwise in a non-parametric

form [Thr05, Thr01a], in contrast to analytical models available for landmark maps



4. Optimal Particle filtering for non-parametric observation models 43

[Dav07,Dis01] that enable the direct computation of the optimal probability densities

[Dou00b].

Provided that we are able to draw samples according to the system transition

model (the robot motion model in our case) and to pointwise evaluate the observation

model, we can sequentially solve localization and SLAM through one of the most basic

particle filter algorithms: the Sequential Importance Sampling (SIS) filter [Rub87],

subsequently modified to account for the particle depletion problem [Aru02] by means

of a resampling step, leading to the SIS with resampling (SIR) filter [Rub88,Gor93].

However, the behavior of these algorithms is greatly compromised by peaky sensor

models and outliers, which make most of the particles to be discarded in the resampling

step, which leads to particle impoverishment or even to the divergence of the filter. In

mobile robotics, this issue typically arises in vehicles equipped with low-noise sensors

such as laser range finders 1.

A theoretical approach that enables the efficient representation of probability den-

sities through perfectly distributed particles (and thus, avoiding particle depletion as

much as possible) was proposed by Doucet et al. [Dou00b], consisting of an optimal

proposal distribution from which to draw samples at each time step. However, a direct

application of this approach requires an observation model with a parametric distribu-

tion (from which random samples could be drawn), whereas, as mentioned above, for

grid maps we can evaluate it only pointwise [Thr05].

This chapter describes a new particle filter algorithm that, given the same require-

ments as the original SIS and SIR algorithms, dynamically generates the minimum

number of particles that best represent the true distribution within a given bounded

error, thus providing optimal sampling. The method is grounded on previous works

1Chapter 5 presents another solution to the problem of peaky likelihood models by means of a
new likelihood model, whereas in this chapter the focus is on doing Bayesian filtering for any sensor
model, no matter how peaky it could be.
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related to optimal sampling [Dou00b,Dou00a], auxiliary particle filters (APF) [Pit99],

rejection sampling [Liu98], and adaptive sample size for robot localization [Fox03]. All

these ideas will be discussed throughout subsequent sections.

When applied to mobile robots, the proposed method represents important im-

provements with respect to previous algorithms for efficient localization and grid map

building:

• No Gaussian approximations are assumed for the generation of new particles,

which is the case of previous PF works (e.g. [Mon03a,Gri07b]).

• Our method is based on the formulation of a general particle filter, and does

not depend on the reliability of scan matching to approximate the observation

likelihood in the case of range scans, as previous works do. Approximating the

peak of the posterior distribution by a Gaussian centered at the result of scan

matching actually hides the true robot pose distribution, and may lead to filter

divergence if the scan matching is poor or fails, as pointed out in [Mon03a,

Gri07b].

It should be stressed that, like other particle filter algorithms, our proposal should

be used only when either the system models are non-linear or the filtered distributions

or the observation model cannot be approximated well by Gaussians. Otherwise, the

very well-known Kalman-like filters [Jul97,Wan00] are more efficient and convenient.

In the next section, we review previous particle filter algorithms that have been

applied to robotics. Our proposal is introduced in section 4.3, and its computational

complexity analysis is presented in section 4.4, with experimental results presented

next.
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4.2 Background

In this section we review the underlying ideas of Monte Carlo methods for sequential

Bayesian filtering, focusing on the applications of particle filters to robot localization

and SLAM. For a good introduction to particle filters in tracking problems the reader

can refer to [Aru02], while a more exhaustive review of theoretical advances in the field

can be found in [Dou01,Ris04].

With subtle differences, the solutions to both localization and SLAM include the

estimation of the posterior distribution of the robot poses up to the current instant

of time, given the whole history of available data. Let xt = {x1, ..., xt} denote2 the

sequence of robot poses (the robot path) up to time step t. Then, the posterior of the

robot pose can be computed sequentially by applying the Bayes rule:

p(xt|zt, ut) ∝
Observation likelihood
︷ ︸︸ ︷

p(zt|xt, ut)
Prior

︷ ︸︸ ︷

p(xt|zt−1, ut) (4.2.1)

where the zt and the ut represent the sequences of robot observations and actions,

respectively. In the case of localization, we will be interested just in the last robot pose

instead of the whole path, which it is the case in SLAM.

Under the assumptions of Gaussian distributions and linear systems, the Kalman

filter [Kal60] offers a closed-form, optimal solution to Eq. (4.2.1). Several improvements

have been proposed to overcome the constraint of linear system models, leading to

the Extended Kalman Filter (EKF) [Jul97] (and its dual, the Extended Information

Filter (EIF) [Thr04]), the Unscented Kalman Filter (UKF) [Jul02,Wan00], and other

higher-order approximations [Ten03]. The EKF has been the predominant approach to

localization and SLAM for almost a decade [Dis01]. However, drawbacks like the lack

2Remember that, for the sake of readability, sequences of variables over time are denoted by the
last time step in the sequence placed as a superscript.
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of multihypothesis support in these Gaussian filters led to the popularization of particle

filters for global localization [Fox99a] and for mapping [Gri07a,Mon02a,Mur99].

As opposed to parametric probability distributions (e.g. Gaussians and sum of

Gaussians), in a particle filter the estimated distribution of the pose (and the map

in the case of SLAM) is represented by a finite set of hypotheses, or particles, which

are weighted according to importance sampling. As mentioned, the simplest particle

filter algorithm is the SIS filter [Rub87], which is discussed next in the context of robot

localization. Concretely, let {xt,[i]}Mt
i=1 denote a set of Mt particles, where each of the

samples xt,[i] represents a hypothesis for the robot path up to time step t, denoted

as xt = {x1, ..., xt}. These particles are approximately distributed according to the

posterior pdf, that is:

xt,[i] ∼ p(xt|zt, ut) , i = 1, ...,Mt (4.2.2)

Virtually all previously existing particle filter techniques rely on Mt being constant

for all time steps t (we can find an exception in the work by Fox in [Fox03]). Since

the particles in Eq. (4.2.2) will be not, in general, distributed exactly according to the

true posterior, they are weighted by the so called importance weights ω
[i]
t in order to

obtain at least an unbiased estimation of the density. The SIS algorithm consists of

simulating the Bayes update in Eq. (4.2.1) by drawing samples for the new robot pose

xt from some proposal distribution [Dou00a]:

x
[i]
t ∼ q(xt|xt−1,[i], zt, ut) (4.2.3)

and then updating their weights by:
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ω
[i]
t ∝ ω

[i]
t−1

p(zt|xt, xt−1,[i], zt−1, ut)p(xt|x[i]t−1, ut)

q(xt|xt−1,[i], zt, ut)
(4.2.4)

The simplest choice for the proposal distribution q(·) is obviously the robot motion

model applied to the previous state estimate for t − 1 – that is, the prior term in

Eq. (4.2.1). In this thesis, we will refer to this choice as the standard proposal. Only

in this case, widely employed in robotics [Fox99a,Fox03,Mon02a], the weight update

in Eq. (4.2.4) simplifies to the previous weights times the evaluation of the observation

model at each particle, that is:

ω
[i]
t ∝ ω

[i]
t−1p(zt|xt,[i], zt−1, ut) (4.2.5)

Note how the SIS filter requires only the ability of drawing samples from the robot

motion model and evaluating the observation likelihood pointwise. However, in spite of

its simplicity, the SIS filter presents some important drawbacks that limits its practical

utility: it has been demonstrated that the variance of the weights increases over time

[Dou00a], which eventually leads to the degeneracy of the filter. This is the reason

for the introduction of the SIS with resampling (SIR) algorithm [Gor93], where a

resampling step is introduced to replace those particles with low weights by copies of

more likely particles.

Regarding the specific case of robot SLAM, Rao-Blackwellized Particle Filters

(RBPF) are a practical solution for simultaneously estimating both the robot path

and the map [Mur99]. These particle filters have been used for both landmark maps

(FastSLAM [Mon02a]) and occupancy grids [Gri07a].

The above particle filter algorithms are strongly influenced by the choice of the pro-

posal distribution q(·), which must not have any special relationship to the transition
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model, in spite of the widespread usage of the standard proposal (mainly due to the

simplified formula then obtained for updating the weights). The larger the mismatch

between the proposal q(xt|...) and the observation likelihood p(zt|xt, ...), the more par-

ticles are wasted in non-relevant areas of the state space xt. In particular, this is the

case for mobile robots equipped with accurate sensors like laser range finders [Gri07a].

An improved approach was presented by Pitt and Shephard in [Pit99] through

the Auxiliary Particle Filter (APF), which has also been applied to robot localization

[Vla02]. In an APF, the process of drawing particles is split into two steps. Firstly, each

particle in the previous time step is assigned a measure of its predicted accordance with

the most recent observation, and then only those particles that obtain high weights

are propagated. Thus, a one-step look ahead resampling is introduced at each step t

in this filter. In general, an APF outperforms traditional filters in the cases of peaky

observation models or outliers, reducing the number of wasted particles. However,

the particles are also propagated using the standard proposal distribution, which is a

sub-optimal solution, in contrast to the approach discussed next.

It has been demonstrated by Doucet et al. [Dou00b] that the variance of the particle

weights is minimized by choosing a so-called optimal proposal distribution , which

incorporates the information of the most recent observation while propagating particles.

For landmark maps there exists a closed-form solution to this equation, which has been

reported as FastSLAM 2.0 [Mon03a]. However, for other map representations like

occupancy grids, parametric observation models are not available and the approach

cannot be directly applied.

A solution recently proposed by Grisetti et al. [Gri07a,Gri07b] for grid maps over-

comes this limitation by approximating the sensor model with a Gaussian whose mean

is obtained by scan matching over the grid map, and thus leading to a parametric

formulation where the optimal distribution can be applied to. This approximation has



4. Optimal Particle filtering for non-parametric observation models 49

Table 4.1: A comparison of existing Bayesian filtering algorithms

Proposal

distribution
System models Algorithms

–
Linear

Gaussian
Kalman Filter [Kal60]

–
Non-Linear

Gaussian
EKF [Jul97], UKF [Wan00]

Standard
Non-Linear

Non-Gaussian

SIR [Gor93],

APF [Pit99], RBPF [Mur99],

FastSLAM [Mon02a]

Optimal
Non-Linear

Gaussian

FastSLAM 2.0 [Mon03a],

Grisetti et al. [Gri07b,Gri07a]

Optimal
Non-Linear

Non-Gaussian

Optimal PF

(Proposed in this thesis)

demonstrated its practical utility allowing the efficient mapping of large environments.

However, we should highlight some drawbacks of this approach. Firstly, the observation

likelihood may not be appropriately approximated by a Gaussian in many situations, in

which case the posterior distribution would be severely distorted. Even in those cases

where the observation likelihood resembles a Gaussian, it cannot be proven that the

mean value of the posterior could match well that obtained from scan matching. Ac-

tually, there are some practical situations where scan matching techniques fail. It has

been proposed to discard the information of the problematic observations [Gri07a], but

observe that we could obtain a more precise posterior by integrating all the available

information. Secondly, the prior distribution for each time t (given by p(xt|zt−1, ut)

when using the standard proposal) is ignored due to its inaccuracy in comparison to

the observation likelihood. In contrast, in the exact computation of the posterior,

this prior distribution (computed from the motion model) would provide valuable in-

formation when facing ambiguous sensor measurements, e.g. a robot in a populated

environment where people block the scanner.
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We present in Table 4.1 a classification of the methods discussed in this section,

where it also appears the proposed method for comparison. It must be kept in mind

that, although the present discussion is centered on localization and SLAM, the new

filtering algorithm presented in this chapter can be applied to any other estimation

problem where non-parametric observation models appear. Just as some examples, in

the robotics and computer vision literature we can find several applications of particle

filters for tracking people [Cho01a,Mon02b,Sch01] or arbitrary objects on a sequence

of images [Num03,Oku04].

4.3 Particle filtering with the optimal proposal

4.3.1 Definitions

It has been shown that the proposal distribution q(·) that minimizes the variance of

the particle weights for any generic particle filter, called optimal proposal distribution,

is given by [Dou00b]:

x
[i]
t ∼ q(xt|xt−1,[i], zt, ut) = p(xt|xt−1,[i], zt, ut)

which can be expanded using the Bayes rule as:

q(xt|xt−1,[i], zt, ut) =
p(zt|xt, xt−1,[i], zt−1, ut)p(xt|xt−1,[i], zt−1, ut)

p(zt|xt−1,[i], zt−1, ut)
(4.3.1)

For mobile robots, this proposal requires drawing samples from the product of the

transition (robot motion) and observation models, both terms found in the numerator

of Eq. (4.3.1). Since the system state for the last time step (xt) does not appear in
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the denominator, it becomes a constant value µ for each particle i. Therefore, to draw

samples from that optimal proposal is equivalent to drawing them from:

x
[i]
t ∼

1

µ

Observation model
︷ ︸︸ ︷

p(zt|xt, xt−1,[i], zt−1, ut)

Transition model
︷ ︸︸ ︷

p(xt|xt−1,[i], zt−1, ut) (4.3.2)

By replacing this optimal proposal into the general equation for the weight update

in a SIS filter, in Eq. (4.2.4), we obtain the recursive form:

ω
[i]
t ∝ ω

[i]
t−1p(zt|xt−1,[i], zt−1, ut) (4.3.3)

The presented approach will allow us to generate samples exactly distributed ac-

cording to the density in Eq. (4.3.1), that is, to draw samples from the optimal proposal

q(·). Simultaneously, our method dynamically adapts the number of samples to assure

the best possible representation of the true posterior at each moment.

In order to avoid the problem of particle depletion, we can find two different ap-

proaches in the literature. The first one is to resample particles at every time step of

the filter. Another solution consists of resampling only when a measure of the repre-

sentativeness of the samples is below a given threshold [Rub88]. The first approach

is employed in this chapter to derive our optimal filtering algorithm. This generic

optimal filter fits perfectly to the problem of mobile robot localization. It is left for

Chapter 8 to address the required modifications to make the algorithm more suitable

to the higher dimensionality of the SLAM problem.
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Figure 4.1: The theoretic model of our optimal particle filter. A given set of Mt−1 particles
is first replicated into a larger set of auxiliary particles, which are then propagated according
to the optimal proposal distribution (obtained by rejection sampling). Then, a resampling
stage with an adaptive sample size chooses the final set of Mt samples from the updated
auxiliary particles, taking each one of them with a probability proportional to its weight. As
a result, all the final particles have equal importance weights (omitted in the graph for this
reason).

4.3.2 Derivation of the optimal filter algorithm

In the following we derive the algorithm for generating a dynamically-sized set of

samples according to the exact posterior being estimated, and thus leaving the non-

parametric and finite nature of the filter as the only source of errors in the estimation

of the true posterior. To clarify the exposition we have summarized the process graph-

ically in Figure 4.1.

We start by assuming that at filter time t−1, a set ofMt−1 particles x
[i]
t−1 is available

which are exactly distributed according to the posterior, that is:

x
[i]
t−1 ∼ p(xt−1|zt−1, ut−1) (4.3.4)

Since these samples are optimally distributed, all of them will have equal importance
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weights, and so those weights can be omitted. The assumption of perfectly distributed

particles for the previous time step could be a problem for the first iteration of the

filter, but notice that at this first step the best we can do is to simply consider some

prior of the state. Typical assumptions in the literature for this initial belief prior

include uniform or Gaussian distributions, depending on the available information and

the specific problem.

Now we introduce a set of auxiliary particles x̃
[i,j]
t−1 with associated importance

weights ω̃
[i,j]
t−1, such that:

x̃
[i,j]
t−1 = x

[i]
t−1 , j = 1, ..., N (4.3.5)

ω̃
[i,j]
t−1 =

1

NMt−1

That is, we simply replicate N times each particle x
[i]
t−1, assigning equal weights to

all of them. Notice that this process does not modify the sample-based estimation of

the posterior, since each particle i has the same number of replications. We will use

this set of auxiliary particles just as an auxiliary computation element: in practice only

a few of them will be actually generated, as it will become clear below. Therefore, the

value N is left undefined here, although it is convenient to think of it as a large value,

ideally infinity.

Now, the auxiliary particles x̃
[i,j]
t−1 are propagated into x̃

[i,j]
t following the optimal

proposal in Eq. (4.3.2) in order to obtain a large amount (ideally infinity) of optimally

distributed particles from which we will finally keep only the required ones for providing

a good representation of the posterior. This reduction is achieved by resampling the

set of auxiliary samples x̃
[i,j]
t to generate the new set x

[k]
t .

The key point that allows us to directly generate the optimally distributed particles

without computing all the auxiliary ones is that all the auxiliary particles x̃
[i,j]
t that
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can be traced back to a given sample x
[i]
t−1 have identical weights. This property follows

from the fact that the concrete value of the particle at time step t does not appear in the

computation of the new weights, as can be seen in Eq. (4.3.3) – this is the fundamental

idea that motivated the development of the whole algorithm. These groups of equally-

weighted samples are schematically represented in Figure 4.1.

In order to generate the particles x
[k]
t , the (potentially infinite) set of auxiliary

particles for time step tmust be resampled. Similarly to auxiliary particle filters [Pit99],

we perform this by drawing indexes i of particles for the previous time step. Each index

i has a probability of being selected proportional (due to a constant for normalization)

to the weights ω̃
[i,j]
t , computed as (see Eq. (4.3.3)):

ω̃
[i,j]
t = ω̃

[i,j]
t−1p(zt|xt−1,[i], zt−1, ut) (4.3.6)

The superindices j can be dropped since, as mentioned above, the weights only

depend on the value of the original particle x
[i]
t−1, thus:

ω̃
[i]
t = ω̃

[i,·]
t = ω̃

[i]
t−1p(zt|xt−1,[i], zt−1, ut)

Eq. 4.3.5
︷︸︸︷∝ p(zt|xt−1,[i], zt−1, ut) (4.3.7)

The right hand term (a priori likelihood of the observation zt given all knowledge

up to t− 1) can be expanded using the law of total probability:

p(zt|xt−1,[i], zt−1, ut) =

∫ ∞

−∞
p(xt|x[i]t−1, ut)p(zt|xt, xt−1,[i], zt−1)dxt (4.3.8)

The terms that appear inside the integral above are the system transition and

observation models, respectively, and therefore the integral has no closed-form solution

in a system with non-parametrical models. But since we are assuming in this work
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that we can draw samples from the system transition model and evaluate pointwise

the observation model, a Monte-Carlo approximation p̂(zt|·) ≈ p(zt|·) can be obtained:

p̂(zt|xt−1,[i], zt−1, ut) =
1

B

B∑

n=1

p(zt|x[n]t , xt−1,[i], zt−1) (4.3.9)

with B samples x
[n]
t generated according to the system transition model, e.g. the robot

motion model for localization and SLAM. The number B is a parameter of our algo-

rithm, and is typically well set in the range 10 to 200 depending on the specific problem

addressed by the filter (obviously, the larger the better the Monte-Carlo approximation

above, at the cost of a higher computational time).

Once the weights ω̃
[i]
t have been approximated using Eq. (4.3.9), we proceed with

the resampling of the auxiliary particles. We draw a set of indexes i, and for each one, a

new optimal particle x
[k]
t is generated by taking the value of any auxiliary particle in the

i’th group, since all of them have equal probability of being selected in the resampling.

Notice that this operation avoids the potentially infinite number of auxiliary samples,

without sacrificing their optimality.

Therefore, the new optimal particle x
[k]
t is a copy of x̃

[i,j]
t (whose computation is

discussed next), where the value of j does not need to be specified. Also, notice

that the importance weights of these final particles x
[k]
t can be ignored, since particles

obtained by resampling all have exactly the same weights.

It remains to be explained how to compute the concrete value of the auxiliary

particles x̃
[i,j]
t for some certain value of i. We employ here the rejection sampling

technique to draw from the product of the transition and observation densities – refer

to Eq. (4.3.2). Basically, this technique consists of generating samples x
[k]
t following one

of the terms of the product (the transition model in our case), and accepting the sample

with a probability ∆ proportional to the other term (the observation model) [Liu98]:
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∆ =
p(zt|x[k]t , xt−1,[i], zt−1, ut)

p̂max(zt|xt, xt−1,[i], zt−1, ut)
(4.3.10)

We must remark that this technique has a stochastic complexity (a random execu-

tion time), as discussed in more detail in section 4.4. The only quantity required to

evaluate Eq. (4.3.10) is the maximum value of the observation model p̂max(zt|·). Note

that this value can be estimated simultaneously to the Monte-Carlo approximation in

Eq. (4.3.9) for the same set of samples x
[n]
t , thus it does not imply further computational

cost.

Up to this point we have shown how to generate one particle x
[k]
t according to the

true posterior, given the set of particles for the previous time step. The method can be

repeated an arbitrary number of times to generate the required number of particles Mt

for the new time step t. To determine this dynamic sample size we propose to integrate

here the approach introduced by Fox in [Fox03], which is based on the Kullback-Leibler

divergence (KLD) (see §2.6). As that work shows, the minimum number of particles

Mt to assure that the KLD between the estimated and the real distributions is kept

below a certain threshold ǫ with a probability 1− δ, is given by:

Mt =
1

2ǫ
χ2
l−1,1−δ (4.3.11)

where χ2
k,c stands for the c’th quantile of the chi-square distribution with k degrees of

freedom. In this approach, called KLD-sampling, the state space of the robot is divided

into a regular grid, and l represents the number of bins from that grid occupied by at

least one particle. Please, refer to [Fox03] for further details.

To summarize this subsection, we present an algorithmic description of the overall

method in the Algorithm 1.
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Algorithm 1 optimal particle filter {x[i]t−1}Mt−1

i=1 → {x[k]t }Mt
k=1

1: for all particles x
[i]
t−1 do

2: for n = 1 to B do // Generate a set of B samples from the transition model

3: x
[n]
t ∼ p(xt|x[i]t−1, ut)

4: end for
5: Use the B ·Mt−1 samples to compute p̂(zt|·) and p̂max(zt|·)
6: Compute ω̃

[i]
t using Eq. (4.3.7)–(4.3.9)

7: end for
8: k ← 1
9: repeat

10: Draw an index i with probability proportional to ω̃
[i]
t .

11: repeat // Generate a new sample by rejection sampling

12: x
[k]
t ∼ p(xt|x[i]t−1, ut) // Draw a candidate sample from the transition model

13: Compute ∆ through Eq. (4.3.10)
14: a ∼ U(0, 1) // Draw a random uniform sample
15: until a < ∆// Candidate is accepted with a probability of ∆
16: k ← k + 1
17: until k =Mt// Number of samples determined by KLD-sampling, see Eq. (4.3.11)

[Fox03]

A final issue must be remarked about the implementation of this algorithm (or

any other generic particle filter algorithm): due to the large dynamic ranges that can

be found in particle weights and likelihood values, it is common practice to employ a

logarithmic scale. Apart from the advantage of enjoying a huge increase in the dynamic

range of particle weights, an additional advantage is that multiplying a weight with an

observation likelihood becomes a sum, a more efficient operation than multiplication

in all computer architectures. The only drawback of the logarithmic representation

is that extracting the average of a set of logarithmic likelihood values, required while

computing p̂(·) in Eq. (4.3.9), forces us, in a naive implementation, to recover the linear

weights, leading to a severe risk of numeric overflow. As a workaround, a numerically-

stable method for that end is proposed in Appendix B.1.
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4.3.3 Comparison to Other Methods

We discuss next an example that illustrates the differences between previous meth-

ods and our algorithm for optimal filtering. We have considered for the example a

one-dimensional linear system with Gaussian transition and observation models. The

purpose of using such a simple system is that of contrasting the output of the different

particle filters with the analytical solution from a Kalman filter which provides us the

exact posterior. The exact parameters used in this simulation are:

1. Initial belief for the state x: Gaussian centered at 0.5, with sigma of 0.4.

2. Transition model: Displacement of ∆x = 1 with an additive Gaussian noise with

sigma 0.2.

3. Observation likelihood: The observation z, which directly measures the state x,

was in the case z = 2. Its additive Gaussian noise has a sigma of 0.1.

Notice that the prior before applying Bayes, i.e. taking into account the initial

belief and the transition model, can be modeled as a Gaussian with sigma equal to
√
0.42 + 0.22 ≈ 0.45, which is a large uncertainty in contrast to that of the observation.

Therefore, the situation being simulated is that of an observation model much more

peaked than the prior before applying the Bayes rule (in mobile robotics this may

represent a poor motion model, such as odometry, and a very precise sensor, such as a

laser scanner).

The top graphs of Figure 4.2 represent the location and weights of the obtained

particles with three different algorithms: a SIR filter with a standard proposal dis-

tribution [Rub88], the auxiliary particle filter (APF) proposed by Pitt and Shephard

in [Pit99], and our method.
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Figure 4.2: A comparison of our method to other two particle filters for a linear, Gaussian
system. The top row shows the obtained particles and weights for each algorithm. Below
the weighted histograms of the samples is compared to the exact Gaussian density being
estimated, and it can be seen how our optimal particle filter is the one that best approximates
it. To measure this similarity to the real density, the third row shows the Kullback-Leibler
distance between the real and the estimated distributions for different sample sizes. Observe
how our method achieves a lower distance (a higher similarity) even for a few particles.

We can observe how the standard proposal leads to many of the particles being

wasted in non relevant areas of the state space, where they are assigned negligible

importance weights. The APF introduces a great improvement in this sense, and

particles are more concentrated in the area of interest. However, in that case the

weights still contain a clearly perceptible variance. In contrast to both, our optimal

algorithm generates particles distributed exactly according to the true posterior, thus

they all have the same weights.

To measure the accuracy of each particle filter, we have reconstructed the estimated

densities from the particle-based representation by means of weighted histograms,

which are shown in the middle row of Figure 4.2 along with the ground-truth solution

from the Kalman filter. To evaluate each one, we have computed the Kullback-Leibler

distance (KLD) between the ground-truth and the estimated posteriors for a range of

sample sizes (we have disabled here the capability of automatically determining the
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sample size in our method for comparison purposes). The average KLD for 1000 re-

alizations, shown in the bottom row of Figure 4.2, confirms that our approach gives

estimations closer to the actual posterior (with less particles) than previous methods.

4.4 Complexity Analysis

In this section we analyze rigorously the computational time complexity of our op-

timal filter, using as a guideline the line numbers of the pseudo-code description in

Algorithm 1. Recall that we defined Mt−1 and Mt as the number of particles in the

current and the previous time steps, while B represents the fixed number of auxiliary

samples employed in the Monte Carlo approximation in Eq. (4.3.9). We detail next

the contributions of the individual operations in our algorithm to the overall execution

time of one complete filter step:

• Estimation of p̂(zt|·) and p̂max(zt|·) (Lines 1–7): Here the observation model

is evaluated B times for each particle in t − 1, thus the complexity becomes

O(αBMt−1), where α denotes the constant time factor associated to a single

pointwise evaluation of the observation model.

• Determination of Mt by means of KLD-sampling (Line 17): In principle, the

most time consuming part of this method is counting the bins in the state space

that hold at least one particle. However, this can be reduced to a constant time

operation (with duration β) by implementing the bin counters as a simple array,

as suggested in [Fox03]. Thus, the complexity of the step is O(βMt). More

memory efficient methods could be employed (such as keeping an ordered list of

occupied bins) at the cost of a higher time complexity.
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• Draw index samples i (Line 10): This operation requires the computation of the

cumulative density function (CDF) of the particle weights, then look up (with

O(γMt−1)) a given random value to find the corresponding index to each of the

Mt particles. Thus its overall complexity becomes O(γMtMt−1).

• Rejection sampling (Lines 11–15): If we denote as R the number of trials required

to get an accepted sample in each of the Mt iterations, we have a complexity of

O(αRMt) where α is included since the observation model is evaluated at every

trial. Since R is actually a random variable this operation has a non-deterministic

time complexity (discussed below).

For the applications stressed in this work, i.e. mobile robots with laser scanners and

occupancy grid maps, the overall complexity is strongly determined by the number of

times the observation model is evaluated, since α will be usually larger than the other

time constants. From the individual complexities described above we conclude that

this number is of the order O(BMt−1 +RMt). The amount of particles, Mt−1 and Mt,

will remain approximately constant for localization, whereas in SLAM the sample size

increases as the robot explores long path without closing a loop, decreasing after closing

them (see §8.4). Thus, any bound to the computation time limits the size of the loops

our algorithm can process in real-time, just as also happens in EKF-based methods. A

promising approach to overcome these limitations is to consider hierarchical (or hybrid)

map representations [Bla07b,Bos04,Est05], a topic explored in part III of this thesis.

The other values that determine the performance of our algorithm are B and R. Since

B is a fixed parameter, we will focus next on the factors that determine the random

variable R, the number of trials required to accept one sample in rejection sampling.

Firstly, we can model rejection sampling as a Bernoulli process, since each trial con-

sists of an independent test with just two possible outcomes: acceptance or rejection.
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Figure 4.3: The cumulative distribution function (CDF) of the number of rejection sampling
iterations (R) until the first accepted sample, modeled as a Bernoulli process and for a Bayes
prior (either a real prior or that prior after applying the transition model) and an observation
model normally distributed. In the image on the left, the means of both Gaussians coincide
(∆µ = 0), whereas for the case at the right hand they do not. As a consequence more trials
are required in average to obtain an accepted sample in the second case. The parameter
τ = σo/σp controls the relative variance of each Gaussian (σo and σp stand for the standard
deviations of the observation likelihood and the prior, respectively). Observe how more trials
are needed as the observation model becomes more peaked (lower τ values).

The number of Bernoulli trials required to obtain the first success, denoted by R, is

known to follow a geometric probability distribution:

P (R) = p(1− p)R−1 (4.4.1)

where p states the probability of success for each individual trial. Provided this param-

eter, the expected number of trials until the first success is then given by E[R] = 1/p,

which determines the average performance of our algorithm.

Unfortunately, the parameter p cannot be computed in closed-form for a generic

Bayes prior and observation models. In general, this probability will be high if the Bayes

prior in the filter coincides with the observation likelihood of the last observation. To

illustrate this we have derived an analytical solution for the expected value of p (refer
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to Appendix C) in the specific situation of both the prior and the observation model

being Gaussians. The cumulative distribution function (CDF) of R, given by:

CDF (R) = 1− (1− p)R (4.4.2)

is represented in Figure 4.3 for p values in two different cases: the prior and the

observation likelihood being centered at the same point (∆µ = 0, top graph), and

separate (∆µ = 0.5, bottom graph). It is clear how the first case requires fewer trials

than the later for a given CDF of succeeding. For both cases we have also swept the

ratio between the standard deviations of the prior (σp) and the observation likelihood

(σo), which is reflected by the parameter τ : a low value indicates a “narrow” observation

model, i.e. a precise sensor. The results confirm that a more precise sensor will require

more trials on average, an effect that becomes stronger for a larger mismatch between

the prior and the observations: observe how the curve for τ = 0.25 is farther from the

rest in the case of ∆µ = 0.5.

Therefore, we can state that the whole time complexity of our filtering algorithm

increases as the mismatch between the Bayes prior and the last observation becomes

larger. In other words, the optimal particle filter will run faster for better motion

models, and slower for very precise sensors (in turn, the accepted samples will be

always consistent with both motion and observation models). In principle, there is not

an upper bound for the time consumed by our algorithm due to the randomness of

rejection sampling, although in practice we have obtained acceptable execution times

as shown in the following experiments. However, if we desire a hard bound to this

time, our algorithm could be modified to account for a maximum number of rejection

sampling trials, at the expense of having samples with non-equal weights and thus

losing the optimality in the distribution of samples.
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4.5 Experimental evaluation and discussion

4.5.1 Experimental setup

The following localization experiments consist of tracking the pose of a mobile robot

equipped with a laser range finder while it is manually guided through an office environ-

ment. In this experiment we employed our mobile robot Sancho, shown in Figure 4.4,

which is built upon a Pioneer 3DX mobile base and is equipped with a Bumblebee

stereo camera, a front SICK laser scanner, a rear HOKUYO laser scanner and a laptop

for autonomous performance.

Figure 4.4: Our mobile robot Sancho, employed in the experiments discussed in this chapter.

The path described by the robot and the map (built using our RBPF-based SLAM

technique described in Chapter 8) of the environment are shown in Figure 4.5(a). The

purpose of the first experiment is to compare the accuracy in the localization between

our optimal sampling mechanism and the standard proposal distribution (the robot

motion model). The resolution of the occupancy grid is 0.04m, and the non-parametric
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observation model is the likelihood field proposed by Thrun et al. in [Thr01a,Thr05].

The accuracy of the estimation has been calculated by averaging the localization

errors of all the particles at each time step, and using as the ground truth the robot

poses estimated while the map was first built. To get significant results we have

performed 100 executions for each sample size, ranging from just one particle up to

one hundred. Note that the capability of adapting the sample size in our algorithm has

been disabled in this first experiment to provide a fair comparison to a standard PF.

The most interesting conclusion from the results, plotted in Figure 4.5(b), is that our

optimal PF has an excellent performance starting from just one particle (an average

error of roughly 0.10m), whereas a standard proposal distribution algorithm needs

about 10 particles or more to avoid the filter to diverge (e.g. the average error of 6m

for one particle implies that the estimated path is far from the real one!).

On the other hand, our method requires more computation time than the standard

approach. For example, for 100 particles, ours takes 50.56sec. for tracking the robot

along the whole path, while the standard PF takes only 9.91sec under the same com-

putational conditions. Thus, one could argue that a standard PF with more particles

would achieve a similar accuracy than our optimal PF for the same computation time.

Actually, we can see in the graphs that our method always achieves a better accuracy

than the standard approach, even with much fewer particles and a similar computation

time. For example, our method takes the same time with 12 particles than 80 parti-

cles in the standard filter, though they achieve average errors of 7.03cm and 9.50cm,

respectively (refer to Figure 4.5(b)).

We also report here a second localization experiment where the adaptive sample size

capability of our algorithm is enabled. In this case, we start in the situation of global

localization (or the awakening problem), that is, initially a large number of particles

(104) are distributed uniformly over the whole environment. As shown in Figure 4.5(c),
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Figure 4.5: Results for localization experiments with the proposed algorithm. (a) The
map used for the experiment and the ground-truth path through the environment. (b)
The average errors in positioning along the entire path of the robot, using a particle filter
(PF) with the standard proposal and our optimal algorithm, both for different sample sizes
(results averaged over 100 repetitions). Observe how our method performs well even for just
one particle, whereas the standard method diverges. (c) The adaptive number of particles
for our method, when starting in a situation of global localization (104 uniformly distributed
particles).

the sample size drastically falls in the first few iterations to the range of 20-30 particles,

and it remains approximately fixed along the whole experiment. This is because there

are no situations where the sensor readings become particularly ambiguous. Since our

technique for achieving an adaptive number of samples is the method proposed by Fox

in [Fox03], we do not provide experiments evaluating this feature here.
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4.5.2 Discussion

In this chapter we have identified situations (localization and SLAM with occupancy

grid maps) that require a solution based on particle filters and where optimal filtering

was not directly applicable due to non-parametric observation models. We have in-

troduced a novel algorithm that allows us to apply optimal filtering to those dynamic

systems by means of simulations based on rejection sampling and an adaptive sample

size. The method is able to focus the samples on the relevant areas of the state space

better than previous particle filter algorithms, which has been confirmed experimen-

tally by means of synthetic experiments and also by successfully tracking the pose of a

mobile robot even with just one particle. The presented algorithm has numerous po-

tential applications to a variety of estimation problems where the lack of a parametric

model of observations prevented the usage of optimal filtering.
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CHAPTER 5

A CONSENSUS-BASED

OBSERVATION LIKELIHOOD

MODEL FOR PRECISE SENSORS

5.1 Introduction

A fundamental component of Bayesian filtering is the observation likelihood, since it

contributes the new information gathered by the sensors to the estimation. Unfor-

tunately, the likelihood of an observation z given a robot pose x, usually denoted as

p(z|x), cannot be computed exactly since measurements depend on the sensor pose

into the environment and also on the actual environment itself.

Formally, we could extend the sensor model as p(z|x,m⋆), where m⋆ represents an

exact model of (versus a pdf of) the real environment. In practice, the ground truth

69
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m⋆ is unknown, thus the closest we can be to this model is to consider p(z|x,m) as the

sensor model, with p(m) being an estimation of the map 1.

This approximation is assumed in all works on localization and SLAM, and it is

unavoidable. Its effects (mainly an overconfidence in the estimation) can be ignored for

non-accurate sensors (i.e. sonars), but they become a substantial problem for accurate

ones: small discrepancies between the map and the real world lead to negligible and

useless likelihood values. A workaround used in previous works consists in artificially

inflating the uncertainty of the sensor model to account for the uncertainty in the

map (typically up to two orders of magnitude above the actual sensor uncertainty). In

order to integrate the likelihood values of individual range measurements of a sensor,

conditional independence is typically assumed between them, that is, the product of

the likelihoods of each range becomes the joint likelihood (as illustrated in the top

graphs of Figure 5.1). The problem with this approximation becomes clear in dynamic

environments, where there are significant differences between the expected and the

actual measurements. In the example of Figure 5.1 this is schematically represented

by two close measures and a discrepant one on the left. The effect in the fused likelihood

if following the usual independence assumption is usually a high likelihood at robot

poses that are actually inconsistent with all the measurements (refer to the top graphs

of Figure 5.1).

A possible solution to this would be to detect outliers in the measurements and

filter them out, as mentioned below in §5.2. However, this has the drawback of telling

inliers from outliers, which is prone to decision errors. In this chapter it is proposed

1 Strictly speaking, the sensor model p(z|x) should be written through marginalization as
∫

p(z|x,m)p(m)dm if only a pdf of the map p(m) is known instead of an exact value m = m⋆.

However, the shorter version p(z|x,m) will be often used for brevity (see also Chapter 7).
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Figure 5.1: The likelihood of individual range measurements zi from one single range scan
may be contradictory in dynamic or partially known environments. The usual method to
fuse them is to inflate artificially the measurement uncertainty, to assume independence,
and then compute their product (graphs on the top). The result may be peaked on robot
poses actually inconsistent with observations. In this chapter it is proposed a method from
Consensus Theory to fuse the high-precision likelihood functions of individual measurements
(bottom graphs), which leads to an accurate and robust localization.

a more appropriate approximation of the likelihood function for highly accurate sen-

sors, concretely for laser range-finders. We consider individual likelihood values as

“opinions“ about the likelihood, which is actually calculated then by means of fu-

sion methods from Consensus Theory [Gen86]. This fusion is addressed via a Linear

Opinion Pool (LOP), the most simple and intuitive method from consensus fusion

techniques [Ben92]. The resulting approximation of the likelihood function, that we

name here Range Scan Likelihood Consensus (RSLC), allows considering the actual

(very low) uncertainty of the sensor instead of some artificially inflated version of it.

This approach also leads to more accurate and dependable pose estimations than ex-

isting methods, as shown later on with quantitative experiments. The advantages of

using average combination rules in the presence of outliers are well known in the field

of robust sensor fusion [Bor99, Kit98]. To the best of our knowledge, this approach
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integrates for the first time these ideas into probabilistic robotics.

Although the new approach is applied to mobile robot localization, the sensor model

should be also applicable to SLAM without modifications.

In the next section we review the previous works related to our proposal. Then,

in §5.3 we set up the problem mathematically, while our new method is introduced in

§5.4. We finish the chapter with experimental results that validate our approach.

5.2 Related research

Providing an observation likelihood function for accurate range scan sensors has been

a challenging issue for all probabilistic approaches to localization and map building.

The most physically plausible likelihood function is the beam model (BM) [Hah02,

Thr05], where each range in the scan is assumed to be corrupted with zero-mean,

independent identically distributed (iid) Gaussian noise. This assumption allows the

following factorization:

p (z|x,m) =
∏

i

p
(
zi|x,m

)
(5.2.1)

where z represents the whole scan, zi represents individual ranges, m is the estimated

map, and the expected value of each range (the mean of the corresponding Gaussian

distribution p (zi|x,m)) is computed by performing ray-tracing in the grid-map. The

BM has important drawbacks in practice [Thr05]. Firstly, the resulting distribution is

extremely peaked for accurate sensors, indicating the extremely small uncertainty of

the sensor, thus any tiny error in the map with respect to the real world may make

the distribution to diverge largely from the ground truth. Also, as a consequence of

the previous drawback, if just one measurement out of the whole scan were affected
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by dynamic obstacles (those non-modeled in the map) the joint distribution would

become practically zero. The following solutions have been proposed in the literature

to overcome these problems: (i) to inflate artificially the uncertainty in the range

measurements [Thr01b], and (ii) to preprocess ranges in order to remove outliers, that

is, those measurements clearly caused by dynamic obstacles [Fox99b].

An alternative to the BM is the likelihood field (LF) (also called the end point

model), an efficient approximation that avoids the costly ray-tracing operation by tak-

ing into account the 2-d coordinates of the sensed points, and assigning likelihood values

according to their nearness to correspondences in the map [Thr01a]. This model also

inflates the sensor measurement uncertainty, typically up to values around one meter.

In spite of its lack of a physical foundation, it has been successfully applied to local-

ization and mapping [Gri05,Hah03]. In the context of localization, this approach can

be optimized by means of precomputing the likelihood values over the entire 2-d map,

becoming an extremely efficient solution.

Another alternative to BM was recently reported in [Pla07], where a more elaborate

model is proposed based on Gaussian processes. In this approach, named Gaussian

Beam Processes (GBP), a small uncertainty in the robot pose (most importantly, in

its orientation), is taken into account to predict the uncertainty of each range in the

scan, leading to much more accurate predictions than the simpler BM method.

In the two basic techniques BM and LF it is a common practice to use only a small

fraction of the ranges available in the laser scans, achieving a considerable speed-up in

computation times and making methods more resistant to non-modeled obstacles at the

cost of suboptimal solutions [Thr05]. In the context of SLAM with Rao-Blackwellized

Particle Filters [Dou00a,Hah03], an interesting alternative is proposed in [Gri05]. There

the likelihood function is approximated as the Gaussian resulting from evaluating a

matching function at random robot poses around a local maximum obtained from
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deterministic scan matching. Its dependence on the scan matching makes it prone to

local minima problems (e.g. in long corridors without salient parts).

The new method introduced in this chapter is also related to research in the field of

scan matching (SM), since both observations and maps are modeled as sets of “points”

(more precisely, points distributed according to 2-d Gaussians). This contrasts with

the most common employment of occupancy grids [Mor85] in probabilistic localization

and mapping where the robot is equipped with laser scanners [Gri05]. Most of the

best-known scan matching techniques, like the Iterative Closest Point (ICP) [Bes92]

or the IDC [Lu97b], aim to find the pose that achieves the optimal matching between

scans. In general, these methods do not provide a measure of the uncertainty in the

estimation, and hence they are not directly applicable to probabilistic robotics. There

are some exceptions, like the method proposed in [Lu97a], which considers the sen-

sor measurement uncertainty and the residuals from the least square error optimiza-

tion. However, it does not take into account the uncertainty in the correspondence

between points, which largely dominates the overall uncertainty. This uncertainty in

the correspondences is considered in the probabilistic Iterative Correspondence (pIC)

method [Mon05], but under the restrictive assumption of a normally-distributed prior

of the robot pose, thus making its natural application Kalman filters.

There are still other scan matching methods [Hah02] that provide an estimation of

the pose uncertainty, but they also rely on the traditional assumption of independence

and product-based fusion (refer to Eq. (5.2.1)), thus they suffer from the same above-

mentioned problem in dynamic environments. Unlike iterative methods [Bes92,Lu97b,

Mon05], our approach does neither require distance thresholds nor is iterative, since all

the uncertainty in the pose is already represented by an arbitrarily-distributed prior

density.
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5.3 Problem statement

The problem of mobile robot localization, including the “robot awakening” case [Fox99a],

consists of estimating the robot pose xt from all the observations z1:t = z1, ..., zt and

actions u1:t = u1, ..., ut up to the current instant t, given a known map estimation p(m).

The distribution to estimate is then:

p(xt|z1:t, u1:t,m) (5.3.1)

Sequential estimation can be carried out on this by applying the Bayes rule on

the most recent observation zt, as discussed in Chapter 3, which leads to the equation

(repeated here for convenience):

p (xt|z1:t, u1:t,m) ∝ p (zt|xt,m)
︸ ︷︷ ︸

Observation
likelihood

∫ Motion model
︷ ︸︸ ︷

p (xt|xt−1, ut) p (xt−1|z1:t−1, u1:t−1,m) dxt−1

︸ ︷︷ ︸

Prior

(5.3.2)

This expression indicates how to iteratively filter the robot pose distribution by

means of the observation likelihood function, addressed in the next section.

The notation and the meaning of the involved variables, graphically represented in

Figure 5.2 for clarity, is explained next.

We assume a planar robot pose, represented by xt = [xt yt φt]
⊤ for the time step t.

Let the mapm be represented as a set of fixedM pointsmj, whose location uncertainty

is assumed to be given by the Gaussians:

m = {mj}j=1,...,M (5.3.3)

mj ∼ N
(
µjm,Σ

j
m

)
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Figure 5.2: A schematic representation of the variables involved in our problem. Both the
map and the observations are given by a set of normally distributed 2D points mj . The
robot pose xt is used to project the sensor readings from the sensor-centric reference frame
< x′, y′ > into the global frame < x, y >.

Regarding the observations zt, which represent points from a laser scan, they are

described naturally, for a range scanner, in sensor-centric polar coordinates [dit θ
i
t]
⊤:

zt =
{
zit
}

i=1..L
(5.3.4)

zit =
[
dit θ

i
t

]⊤

Let sjt be the Cartesian coordinates of the sensed point zit in the global reference

system < x, y >, once transformed from the mobile system < x′, y′ > by (see Ap-

pendix A):

sit = f
(
xt, z

i
t

)
=

[

fx (xt, d
i
t, θ

i
t)

fy (xt, d
i
t, θ

i
t)

]

=

[

xt + dit cos (φt + θit)

yt + dit sin (φt + θit)

]

(5.3.5)

If we model points sit as Gaussian distributions, that is,
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sit ∼ N
(
µt,is ,Σ

t,i
s

)
(5.3.6)

their means and covariance matrices can be obtained by propagating the sensor uncer-

tainty through the linearization of the function in Eq. (5.3.5). Assuming that errors in

both angles and ranges are independent and normally distributed with standard devi-

ations σθ and σd respectively, we obtain the following parameters for the distribution

of sit:

µt,is = f
(
xt, z

i
t

)
(5.3.7)

Σt,i
s = Jf |z=zit

[

σ2
θ 0

0 σ2
d

]

J⊤
f

∣
∣
z=zit

where Jf stands for the Jacobian of the function f(·) in Eq. (5.3.5):

Jf =





∂fx
∂θit

∂fx
∂dit

∂fy
∂θit

∂fy
∂dit



 =

[

−dit sin (φt + θit) cos (φt + θit)

dit cos (φt + θit) sin (φt + θit)

]

(5.3.8)

5.4 The range scan likelihood consensus (RSLC)

We define the RSLC as a consensus theoretic method for fusing the likelihood values of

individual ranges of a scan. Consensus techniques have been employed in a variety of

problems where diverse values have to be fused, e.g. for combining different classifica-

tion results. We address data fusion here by means of a particular consensus method:

the Linear Opinion Pool (LOP) [Ben92].

Let p be a probability density to be estimated from a set of L opinions pi. Then,

the general form for a LOP can be written as:
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p =
L∑

i=1

ωipi

where ωi are weight factors for the individual opinions. If each opinion pi is a density

function, we can assure that the result is also a density by imposing the condition:

L∑

i=1

ωi = 1

For the problem we address here, p is the likelihood of a whole range scan, whereas

pi is the set of likelihood values for individual ranges in the scan. Since we cannot

know in advance whether some likelihood values are more confident than others, we

will simply assign an equal confidence factor to each one, leading to:

p (zt|xt,m) ∝
L∑

i=1

p
(
zit
∣
∣xt,m

)

︸ ︷︷ ︸

Individual
likelihood values

(5.4.1)

which is a solution consistent with previous research on robust classification, where it

is shown that this average rule for combination outperforms the classical product rule

in the context of classifiers combination [Kit98].

It remains to be described how to evaluate the individual likelihood values. As

previously discussed, the problem of the BM method [Thr05] is that inaccuracies in

the map lead to drastic variations of the likelihood function for small displacements in

the robot pose variable xt.

As an alternative, we propose a novel approximation for this function that, like the

LF method [Thr01a], avoids the costly ray-tracing operation by considering only the

Cartesian coordinates of sensed points. Concretely, we propose to approximate the

likelihood of a given range measurement with the probability that the scanned point

does correspond to any given map point. Put formally:
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p
(
zit
∣
∣xt,m

)
∝

M∑

j=1

P (cij|xt,mj) (5.4.2)

where cij represents the correspondence between the map pointmj and the sensed point

si, derived from zit through Eq.5.3.5–5.3.7. In the computation of the correspondence

probabilities we also account for the possibility of a si not corresponding with any

particular point of the map, which is represented by ci∅. In order to compute Eq. 5.4.2

we use:

P (cij|xt,m) = ηiCij (5.4.3)

Here Cij is the probability density of the pair of points si and mj to coincide,

normalized to the range [0, 1] – the role of ηi is different and is explained below. The

probability density of the two points to coincide is given by the integral of both point

pdf’s over the whole space, which can be shown to be the evaluation of an auxiliary

Gaussian at the origin (i.e. at 0), that is:

Cij ∝
∞∫

−∞

p
(
sit
∣
∣xt, z

i
t

)

︸ ︷︷ ︸

N(x;µist,Σi
st)

p (mj)
︸ ︷︷ ︸

N(x;µjm,Σj
m)

dx = N
(
0;µist − µjm,Σi

st +Σj
m

)
(5.4.4)

The normalization of this quantity to the range [0, 1] can be achieved by means of

ignoring the normalization factors of the auxiliary Gaussian of the right hand side of

Equation 5.4.4, which can be shown to lead to the expression:

Cij = exp

(

−1

2
D2
M(sit,mj)

)

(5.4.5)

whereDM(p, q) is the Mahalanobis distance between two Gaussians (as defined in §2.5).
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Figure 5.3: An example of how our method computes the probability of the correspondence
cij between a sensed point si and map points mj . A sensed point and four map points are
represented in (a) among with the corresponding probability values, which are graphically
represented in (b), along with the probability of the point not corresponding to any map
point (the symbol ∅).

The constants ηi in Eq. 5.4.3 are computed to satisfy the law of total probability:

∑

∀c
P (c|xt,m) =

P (ci∅|xt,m) +
M∑

j=1

P (cij|xt,m) = 1 (5.4.6)

and we propose to model the probability of no correspondence ci∅ by means of:

P (ci∅|xt,m) =
M∏

j=1

(1− Cij)

To gain an insight into these expressions, consider the example in Figure 5.3(a),

where the probability of correspondence cij of a sensed point si is computed for a map

with four points. Provided that the ellipses represent 95% confidence intervals, it is

apparent that the sensed point si is probably a new point (it does not correspond

to any point in the map). This fact is clearly reflected in Figure 5.3(b), where this
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alternative receives the highest probability. Finally, according to Eq. 5.4.2, our method

would assign a likelihood of p (zi|xt,m) = 0.2224 to the sensed point of this example.

5.5 Experimental evaluation and discussion

Now we provide systematic comparisons between the proposed method and other two

well-known approximations discussed in §5.2: the BM [Hah03] and the LF [Thr01a].

We have chosen robot localization with particle filter [Fox99a] as the framework for

the tests. We also suggest the reader to view the videos available online 2 .

5.5.1 Synthetic Experiments

In the first part of the synthetic experiments, the robot pose has been estimated along

a given trajectory in the environment, shown in Figure 5.4(a). The same reference

map has been employed for both, (i) simulating the 361 sensor readings within the 360

degrees field-of-view of the sensor, and (ii) computing the likelihood values. By doing

so, we are reproducing the situation of a perfectly known static map.

Under these conditions, we contrast the performance of particle filter-based local-

ization for three likelihood methods: BM, LF, and our RSLC. The accuracy of the

estimated pose is evaluated in two different ways:

• By computing the mean error between the ground truth (an arbitrary described

by the robot in its synthetic environment) and the mean robot pose according to

the particles, and

• By recovering a continuous version of the robot pose pdf from the particles by

means of a Parzen window with a Gaussian kernel [Par62]), then evaluating its

2 See: http://www.youtube.com/watch?v=atp7sYtT dc

http://www.youtube.com/watch?v=atp7sYtT_dc
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Figure 5.4: First experiments in a synthetic environment with (a) a map that perfectly
models the environment. The resulting mean error from the ground truth and the likelihood
assigned to the actual robot pose are shown in (b)–(c) respectively for the three methods
(BM, LF, and RSLC). The graphs show the evolution of the results with the percentage of
employed ranges from the scan. Confidence intervals of 68% are marked in all the graphs.
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Figure 5.5: Second experiment for a synthetic, dynamic environment, emulated by using
a slightly different map (a), whose results are plotted in (b)–(d), which reveal that RSLC
outperforms the other methods. (e) A close look at part of the estimated trajectory, according
to each method.

value at the ground truth. Notice that this method should assign a higher score

to a pdf more focused on the actual robot pose.

The results are shown in Figure 5.4(b)–(c), respectively. Due to the stochastic

nature of the experiments we represent the mean values and 1σ confidence intervals

for each chart after executing each experiment 10 times. The ordinates of the graphs

stand for the ratio of range values employed from the whole scan: the experiments

have been repeated for ratios starting at 2% (7 ranges) and up to the whole scan (361

ranges). These results reveal that RSLC provides the most accurate pose estimation
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(1cm mean error, approximately), even using only 2% of the ranges in the scan, while

the LF method requires almost 100% of them to achieve the same accuracy. Regarding

the probability assigned to the ground truth (see Figure 5.4(c)), the RSLC method is

surpassed by the LF and BM: RSLC is too pessimistic in assigning likelihood values.

Thus, for perfectly known environments, the estimations from BM and LF are less

uncertain than the one from RSLC, thus RSLC is excessively pessimistic for this ideal

situation and may lead to particles being more spread than actually necessary.

To emulate a dynamic scenario, sensor readings are simulated through the modi-

fied map shown in Figure 5.5(a), whereas the robot uses the “reference” map in Fig-

ure 5.4(a) to compute likelihood values. In the “dynamic” map some obstacles have

been moved, removed or added to simulate typical problems. These experiments reveal

a superior performance of RSLC: the mean error for our method, in Figure 5.5(b), is

the lowest from the three methods over the whole range of ratio values. Even more

significant are the results for the probability assigned to the ground truth: by compar-

ing Figure 5.4(c) and Figure 5.5(c) it can be seen how this indicator decreases slightly

for the RSLC, whereas it abruptly falls for the other methods. Please, notice that

particle filters perform a resampling process that discard particles at poses with a low

likelihood value, thus RSLC is the most robust method in the sense that it minimizes

the probability of a correct particle to be removed. The robustness of RSLC can be

better visualized in Figure 5.5(d), where the estimated path is shown according to each

method. For ease of representation, the 99.7% confidence intervals are used instead of

the original particles. It is clear that the estimation from RSLC is closer to the ground

truth and less biased than the others.
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5.5.2 Real Robot Experiment

To test the robustness of the different likelihood estimation methods against dynamic

objects and discrepancies between the map and a real environment we have carried out

an experiment where the robot moves throughout a dynamic cluttered room populated

with people. A map of the environment was previously built using a RBPF (see

Chapter 8), and then the scenario was modified by moving furniture, removing objects,

etc. The results are summarized in Figure 5.6, where the particles are plotted for some

instants of time together with the scanner readings projected from the weighted mean

given by the particles. It can be visually verified that the estimation using RSLC

provides a better alignment of the readings with the map, even in situations where

most ranges do not have correspondences into the map.

It is remarkable the poor performance of the BM, whose estimation is absolutely

wrong from time t = 20sec on, approximately (please, observe that the sensed scans

do not match the map at all). This is due to the inability of this model to cope with

objects that appeared in the map but were removed afterwards. The opposite case

(sensing new objects not present in the map) is typically solved by pre-processing the

range scan [Fox99b]. By contrast, the RSLC does not require additional artifacts to

deal with the problems derived from dynamic environments.
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Snapshots
Estimation

from LF

Estimation

from BM

Estimation

from RSLC

Removed

object

New

object

People

t=0sec

t=10sec

t=20sec

t=50sec

t=80sec

Figure 5.6: Results for localization in a real dynamic scenario. Snapshots on the left column
show some instants of time along the robot navigation, while the other columns illustrate
the evolution of the particle filter for each likelihood computation method. See the text for
further discussion.
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5.5.3 Discussion

In this chapter we have addressed the problem of deriving a likelihood function for

highly accurate range scanners. Instead of assuming an unrealistic measurement un-

certainty for each range, as most previous works do, an alternative approach has been

presented where accurate likelihood model for individual ranges are fused by means of

a Consensus Theoretic method.

Simulations in static, synthetic environments reveal an excellent performance of

the RSLC method even when considering only a small fraction of the whole range

scan (e.g. 7 range values), while other methods require significantly more measure-

ments to achieve similar results. Furthermore, results for real dynamic environments

demonstrate a qualitative improvement in the robustness of the robot pose estimation.
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CHAPTER 6

FUSING PROPRIOCEPTIVE

SENSORS FOR AN IMPROVED

MOTION MODEL

6.1 Introduction

As discussed in Chapter 3, the Bayesian filtering approach to mobile robot localization

demands the usage of probabilistic models for both the robot observations about the

environment, and also for its own “actions” – typically in this context, the motor

commands sent to the wheels.

Previous chapters have focused on the important topics of optimal filtering and

how to model the observation likelihood function. In contrast, in this chapter we aim

at obtaining an accurate probabilistic motion model by means of combining different

89
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ego-motion sensors on the robot.

We will address this goal as an optimal estimation problem under the assumption of

Gaussianity for the pdf of robot displacements, which is plausible for pose increments

sampled with periods of a few seconds or less, which is indeed the typical situation in

mobile robotics.

In spite of a number of proprioceptive ego-motion sensors existing for ground mobile

robots [Bor96], odometers are included into virtually all commercially available ones.

Actually, in most cases odometry is the only ego-motion sensor on the robot. Although

other proprioceptive sensors like inertial measurement units (IMUs) may provide valu-

able information to the displacement estimation, they are not usually integrated into

commercial robots. Our aim is to integrate different kinds of ego-motion sensors into a

mathematically grounded way, concretely probabilistic Bayesian estimation, while still

being a solution efficient enough to be integrated into the low-level firmware onboard

a real robot. The utility of sensor fusion is revealed by noticing that different sensor

weaknesses and advantages may complement to each other: typically, an odometer pro-

vides a quite precise estimation of translational movements but performs poorly when

the robot turns. On the contrary, IMUs typically measure rotations more precisely

than translations, due to the additional time integration required in the latter.

In the next section we describe the employed sensors. Then, we will derive the

probabilistic filtering equations for the sensor fusion and introduce our physical imple-

mentation onto an onboard microcontroller. We finish presenting experiments for our

design at work onboard a real robot.
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Figure 6.1: The kinematic model of a planar, differential-driven vehicle.

6.2 The sensors

In this chapter we consider a robotic wheelchair [Gon06b] equipped with two ego-

motion sensors: an odometer and a gyroscope. We describe next the general kinematic

model of this robot and its relation to each of the sensors. Assuming that the mobile

robot moves in a planar environment, its pose is completely defined by its 2-d coordi-

nates (x, y) and its heading angle φ, as sketched in Figure 6.1. The kinematic model

is the well-known “tricycle model”, where the robot is constrained to move in circular

paths only. Provided that the robot pose is sampled at a high rate (with respect to

its speed), it is reasonable to approximate the real robot path by a sequence of short

circular arcs. Odometry sensors comprises two encoders1 (one for each wheel motor),

from whose readings we can compute a robot pose change (∆x,∆y,∆φ) for small peri-

ods of time assuming a circular path, then compose (see Appendix A) all of those arcs

as a sequence in time to approximate any arbitrary path the robot followed.

On the other hand, a gyroscope is an inertial sensor which measures the instanta-

neous change rate of the robot orientation φ(t), that is, the yaw-rate dφ(t)
dt

. Please refer

1 In the case of our robotic wheelchair SENA, the model of the encoders is BHK 06.05A-1024-12-5.
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Odometry

encoder:

Gyroscope:
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Figure 6.2: The proprioceptive sensors employed in this chapter.

to Figure 6.2 for an illustration of how these variables are related to the robot kinemat-

ics. Since each sensor has its own error sources and they measure different variables

from the kinematic model, their combination into a single, optimal estimation is not

straightforward. How to achieve this is the topic of the next section.
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6.3 Proprioceptive sensor fusion

Here we employ an EKF [Jul97] for fusing the readings from heterogeneous propri-

oceptive sensors. This filter is an iterative Bayesian filter that represents, for each

instant of time, a probability distribution for the system state by means of multivari-

ate Gaussians, that is, a mean value and a covariance matrix. This distribution is

modified according to actions (prediction step) and then is corrected according to the

sensors measurements or observations (update step). Probabilistic models are required

for both the evolution of the system and for the sensors. In the following we present

the complete design of an EKF filter for the problem of tracking the pose of a mobile

robot equipped with proprioceptive ego-motion sensors only. We will take odometry

readings as the action of the robot since they represent what the motors have done2,

whereas gyroscope readings are considered observations of the system state because it

is completely passive.

Let xk be the state of our system at the discrete time-step k:

xk =










xk

yk

φk

φk−1










(6.3.1)

where the memory term φk−1 stands for the robot orientation at the last time step. If we

define ∆t as the filter sampling period, the last memory term allows us to approximate

the robot angular velocity ωk as:

ωk ≈
φk − φk−1

∆t
(6.3.2)

2This will always be more accurate than the actual commands sent out to the robot motors.
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Let the estimation at time step k − 1 be given by the normal distribution

N (xk−1; x̂k−1,Pk−1)

with x̂k−1 and Pk−1 being the mean and the covariance matrix, respectively. Then, the

prediction step of the EKF filter reads:

x̂−
k = f

(
x̂k−1, uk

)
(6.3.3)

P−
k =

(

∇xk
f ∇ukf

)
(

Pk−1 0

0 Cuk

)(

∇xk
f⊤

∇ukf
⊤

)

= ∇xk
fPk−1∇xk

f⊤ +∇ukfCuk∇ukf
⊤ (6.3.4)

with f(·) being the transition function of the system, and uk the action performed

at time step k whose covariance matrix is Cuk. The minus sign in the superscript of

Eq. (6.3.3) means that the estimation is the prior in the Bayesian filter, that is, sensor

observations have not being incorporated into the estimation yet. Since odometry

readings are considered as the robot actions, we have uk = (∆xk,∆yk,∆φk)
⊤, and,

according to the robot kinematic model, the transition function becomes:

f
(
x̂k−1, uk

)
=










xk

yk

φk

φk−1










=










xk−1 +∆xk cosφk−1 −∆yk sinφk−1

yk−1 +∆xk sinφk−1 +∆yk cosφk−1

φk−1 +∆φk

φk−1










(6.3.5)

It is straightforward to derive from Eq. (6.3.5) the Jacobian matrixes ∇xk
f and

∇xuk
f required to evaluate Eq. (6.3.3), hence they are omitted here. Next, the update

step is performed in the iterative filter:

x̂k = x̂−
k +Kkỹk

Pk = (I4 −KkHk)P
−
k

(6.3.6)
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where I4 is the 4× 4 unit matrix, and:

ỹk = zk − h
(
x̂−
k

)

Sk =
(

∇xk
h ∇SA

h ∇nh
)







P−
k 0 0

0 σ2
SA

0

0 0 σ2
n













∇xk
h⊤

∇SA
h⊤

∇nh
⊤







Kk = P−
kH

⊤
k S

−1
k

(6.3.7)

Basically, this step predicts the expected sensor (gyroscope) outcome through the

sensor model h(·), its uncertainty (covariance matrix Sk), and also fuse this information

with the prior estimation. The gyroscope sensor model could be defined as:

h (x̂k) = ω̂k =
φ̂k − φ̂k−1

∆t
(6.3.8)

However, the actual sensor readings are analog voltage values, thus we must consider

two uncertainty sources in the gyroscope readings zk: (i) electrical noise, modeled as

additive white Gaussian noise (AWGN) with variance σ2
n, and (ii) uncertainty in the

actual sensor sensitivity, i.e. the volts to deg/s ratio. To integrate the effects of both

error sources into the EKF we rewrite Eq. (6.3.8) to account for SA and SN , the actual

(unknown) and nominal sensor sensitivity, respectively, and for the noise nk:

h (x̂k) =

(

φ̂k − φ̂k−1

∆t
SA + nk

)

1

SN
(6.3.9)

According to the data available in the manufacturer supplied datasheet for our

gyroscope, an ADXRS4013, it seems that the sensitivity of the device, taken as the

outcome of a random variable for each chip specimen, approximately follows a Gaus-

sian distribution. Therefore, it makes sense to estimate the covariance matrix Sk by

3Online datasheet is available at http://www.analog.com/

http://www.analog.com/
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linearization of the sensor model in Eq. (6.3.9), as shown in Eq. (6.3.7). There, the three

Jacobians of the function h(·), ∇xk
h, ∇SA

h, and ∇Snh, describe how the uncertainty

in the system state xk, the sensitivity SA, and the electrical noise nk, correspondingly,

are reflected in readings from the gyroscope. After each iteration of the filter we obtain

the updated optimal estimation, disregarding linearization errors.

6.4 Implementation

Next we discuss how the theoretical filter described above has been integrated into the

low-level firmware of a mobile robot. The system has been designed to work in a timely

fashion, under hard real-time requirements. At a working rate of 100Hz, the system

collects readings from encoders (odometry) and the gyroscope, performs the required

preprocessing of signals, and executes an iteration of the EKF as detailed in §6.3. A

logical overview of the system is provided in Figure 6.3. The signal conditioning stage

is required since our gyroscope (ADXRS401) presents a nonratiometric analog output,

while analog-digital converters (ADCs) are ratiometric4. Therefore, the resulting read-

ings are highly sensitive to electrical noise coupled to the power supply, which is a

major issue on a mobile robot, where motors produce large noise while in operation.

To solve this problem, both the sensor output voltage and its 2.5V constant voltage

reference are converted through ADCs. The purpose of the signal conditioning stage

(please, refer to Figure 6.3) is two-fold: (i) to scale the sensor readings according to

the constant voltage reference; and (ii) to remove the sensor offset, that is, to precisely

determinate the voltage corresponding to a null yaw-rate.

The offset voltage can be easily estimated by averaging over a time sliding window

4Ratiometric means that the output is proportional to the power supply voltage and nonratiometric
means it is independent of that voltage.
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Figure 6.3: A schematic view of our implementation of the ego-motion estimation system.

when the robot is very likely at rest, e.g. when odometry does not detect motion for a

few seconds.

After removing the offset from the gyroscope signal, it still contains high-frequency

electrical noise, which does not carry information about the mechanical system. Since

the analog circuitry of the gyroscope has been set up for a measuring bandwidth

of 5Hz, we can disregard the signal components at higher frequencies as undesirable

noise. In our system, the noise is filtered out through a Finite Impulse Response

(FIR) implementation of a fourth order elliptic low-pass filter, with a nominal pass-

band ripple of 0.1dB, 30dB stopband attenuation, and a cut-off frequency of 5Hz. An

example of the signal before and after noise filtering is illustrated in Figure 6.4.

The whole system has been implemented on an ATMEGA128 5: a low-cost, 8-bit

RISC microcontroller that runs up to 16MHz. In Figure 6.5 it is shown the proto-

type developed in this work, which includes two Micro-Electro-Mechanical Systems

(MEMS): the already introduced gyroscope ADXRS401, and a two-axis accelerometer

ADXL203, which can be used to detect the gravity vector, i.e. tilt sensing, although

5Refer to the manufacturer website: http://www.atmel.com/

http://www.atmel.com/
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Figure 6.4: The real signal gathered from the gyroscope, (a) unprocessed, and (b) after
filtering out the noise.

such issue is not addressed here. The system runs autonomously and periodically re-

ports the EKF estimation results to a host-PC via a high-speed USB connection. This

prototype has been designed with the aim of minimizing costs and weight.
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a

b

c

Figure 6.5: The prototype used in this work as a test bed for sensor fusion. They have been
highlighted: (a) the MEMS gyroscope, (b) odometer encoders input, and (c) accelerometers
for tilt sensing.

6.5 Experimental evaluation and discussion

Two comparative experiments are reported next where the robot follows two different

paths while its pose is estimated simultaneously from both odometry only, and from

our sensor fusion system. The actual final robot pose for each trajectory has been

determined by a highly-precise laser range scan matching algorithm [Bes92], which

we will consider the ground-truth for comparison purposes. The two different paths

consist of moving the robot on a twisty forward, and a spinning trajectory, respectively.

Results for the first experiment are summarized in Figure 6.6(a)–(d). It is noticeable the

reduction in the final pose uncertainty, both in the robot position and its orientation,

for the case of sensor fusion with respect to the odometry estimation only. This is

numerically confirmed by the values of the covariance matrix determinant: 1.5461·10–11

from odometry only, and 2.0429 · 10–13 for sensor fusion.

In the case of the spinning trajectory, shown in Figure 6.6, the robot turns three

times, which causes the odometry-only estimation to completely lose the robot ori-

entation. The incorporation of yaw-rate information in the estimation provides an

impressive qualitative improvement here: the determinant of the covariance matrix,
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Figure 6.6: First part of the experimental results from our method for sensor fusion. The
robot follows here a twisty forward trajectory. (a)–(b) Final estimated pose using odometry
information only, and (c)–(d) using both odometry and the readings from the gyroscope.
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Figure 6.7: Second part of the experimental results from our method for sensor fusion.
The robot follows here a spinning trajectory. (a)–(b) Final estimated pose using odometry
information only, and (c)–(d) using both odometry and the readings from the gyroscope.
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Experiment I: Forward Experiment II: Spinning 

x y φ x y φ 
Odometry 4.194m 0.849m 34.42º 0.350m 0.114m -49.55º 

Sensor 

fusion 
4.187m 0.934m 25.32º 0.096m 0.233m 2.65º 

Ground 

truth 
4.169m 1.031m 25.80º 0.072m 0.282m 2.50º 

Figure 6.8: Summary of the experimental results: final estimated pose from each method.

3.9538 · 10–3 for the odometry-only estimation, becomes 9.1411 · 10–15 for the sensor

fusion case. As expected, the absolute positioning errors (relative to the ground-truth)

are also reduced by the fusion of the two sensors, as summarized in Figure 6.8.

To sum up, in this chapter we have presented the problem of proprioceptive sensor

fusion for ego-motion estimation for a mobile robot. An efficient solution has been pro-

posed for the case of a robot equipped with odometry and a gyroscope, which has been

implemented in the low-level firmware of a real robot and runs in real-time. Experimen-

tal results demonstrate that the sensor fusion system provides a major improvement

in the quality of the robot pose estimation.
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Part II

Simultaneous Localization and

Mapping (SLAM)
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CHAPTER 7

OVERVIEW

Automated mapping of unknown environments is one of the fundamental problems to

be solved for achieving truly autonomous mobile robots. The hardness of this task fol-

lows from the fact that a precise map can only be obtained from a well-localized robot,

but in turn the quality of the robot pose estimation depends on the map accuracy: this

is the Simultaneous Localization and Mapping (SLAM) problem.

Although we can find pure topological approaches to SLAM [Ran06], in the following

chapters the focus is on pure metric methods only. In the last years, methods based

on Estimation Theory have dominated the research in this field.

In this paradigm, a sequence of robot actions ut = {u1, .., ut} and observations

zt = {z1, ..., zt} are used to infer the probability distributions of robot poses xt =

{x1, .., xt} and of the map m. Note the lack of subscript for the map m, which means

that we assume a static world model. The corresponding DBN reflecting the causal

relationships between the variables is displayed in Figure 7.1.
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xt-1 xt xt+1

ut ut+1ut-1

… …

zt-1 zt zt+1

m

Robot path

Figure 7.1: The dynamic Bayesian network for mobile robot SLAM, where robot poses xt
and the map m are hidden variables (represented as shaded nodes) to be estimated from
actions ut and sensor observations zt.

Within probabilistic SLAM based on Bayesian filtering, there exist two different

approaches for estimating the robot pose and map joint distribution [Thr05]:

• Full SLAM: The map and the complete history of robot poses are estimated at

each instant t, that is,

p(xt,m|ut, zt).

• Online SLAM: Only the latest robot pose and the map are estimated for each

time step t, that is,

p(xt,m|ut, zt).

All the methods presented in subsequent chapters will focus on full SLAM, but a

probabilistic derivation of the filtering equations for both methods is presented next

for completeness.

In the case of online SLAM, we have
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p(xt,m|zt, ut)
︸ ︷︷ ︸

Posterior for t

Bayes rule on zt∝

p(zt|xt,m, zt−1, ut)p(xt,m|zt−1, ut)
zt ⊥⊥ zt−1, ut | xt,m

=

p(zt|xt,m)
︸ ︷︷ ︸

Observation model

p(xt,m|zt−1, ut)

Law of total
probability on xt−1

to obtain recursivity
=

p(zt|xt,m)

∫ ∞

−∞
p(xt,m|zt−1, ut, xt−1)p(xt−1|zt−1, ut)dxt−1

xt ⊥⊥ m | xt−1, ut
=

p(zt|xt,m)

∫ ∞

−∞
p(xt|zt−1, ut, xt−1)p(m|zt−1, ut, xt−1)
︸ ︷︷ ︸

Factored due to conditional independence

p(xt−1|zt−1, ut)dxt−1 =

p(zt|xt,m)

∫ ∞

−∞
p(xt|zt−1, ut, xt−1) p(m|zt−1, ut, xt−1)p(xt−1|zt−1, ut)

︸ ︷︷ ︸

These terms can be joined

dxt−1
p(a|b)p(b) = p(a, b)

=

p(zt|xt,m)

∫ ∞

−∞
p(xt|zt−1, ut, xt−1)p(xt−1,m|zt−1, ut)dxt−1

ut ⊥⊥ xt−1,m | ∅
=

p(zt|xt,m)

∫ ∞

−∞
p(xt|zt−1, ut, xt−1) p(xt−1,m|zt−1, ut−1)

︸ ︷︷ ︸

Posterior for t− 1

dxt−1
xt ⊥⊥ zt−1, ut−1 | ut, xt−1

=

p(zt|xt,m)

∫ ∞

−∞
p(xt|ut, xt−1)
︸ ︷︷ ︸

Transition model

p(xt−1,m|zt−1, ut−1)dxt−1

In principle, the filtering expression obtained for online SLAM can be implemented

by means of both Kalman-like filters (EKF, IKF,...) and particle filters. Neverthe-

less, the characteristics of the problem make the former more suitable and thus they

are widely employed in this context [Dis01, Por06]. The reason for this advantage of

Kalman-like filters is that they model the robot pose and the map as a single state

vector, including the cross-covariances between all its elements, and therefore making
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unnecessary to keep other robot poses except the latest one 1. For example, in a loop

closure the whole robot path suffers a correction, but, as long as correlations are known

between all the landmarks in the map, the observation of the latest landmarks auto-

matically modifies all the previous ones without the need of recomputing the corrected

robot path.

EKF-based SLAM is probably the most oft-used solution to SLAM found in the

literature, sometimes even becoming a synonymous with SLAM [Bai06a]. However, in

spite of its success for small or mid-sized landmark maps, EKF-based SLAM suffers

from severe limitations due to errors introduced by linearization and its poor scalability,

a consequence of the need to keep non-sparse covariance matrices with sizes in the order

of N ×N for maps of N elements.

Full SLAM was proposed as a response to these limitations, since the estimation of

the whole robot path makes the elements in the map independent 2, and therefore the

covariance matrices of the whole map (or its equivalent for maps not based on land-

marks) become diagonal block matrices, which greatly simplifies the overall estimation

problem.

On the other hand, full SLAM carries the cost of parametric filters not being appli-

cable anymore to the joint distribution [Hah03], leaving particle filters as the unique

feasible solution. The idea on which full SLAM relies is Rao-Blackwellization [Dou00a],

where the factorization of the full joint

1This follows from the robot poses being a Markov process, as can be verified in the graphical
model in Figure 7.1.

2Actually, conditionally independent between them, given the robot path.
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p(xt,m|zt, ut) p(a, b) = p(b)p(a|b)
=

p(xt|zt, ut)p(m|xt, zt, ut) m ⊥⊥ ut | xt, zt
=

p(xt|zt, ut)
︸ ︷︷ ︸

Robot path

p(m|xt, zt)
︸ ︷︷ ︸

Map

(7.0.1)

is introduced with the aim of estimating the robot path xt with one particle filter

(first term in Eq. (7.0.1)), then update the map m independently (second term). This

approach will be revisited and discussed in more detail along subsequent chapters.

Regarding the second term in Eq. 7.0.1, the map density p(m|xt, zt) has closed-form

solutions for occupancy grid maps [Thr03] and landmark maps (in which case, para-

metric filters can indeed be employed [Mon03a]). The interesting estimation problem

arises then in the first term: the robot path. Operating on that term, we obtain:

p(xt|zt, ut)
︸ ︷︷ ︸

Posterior of the path for t

Bayes rule on zt∝ p(zt|xt, zt−1, ut)p(xt|zt−1, ut)

Law of total
probability on xt−1

to obtain recursivity
=

p(zt|xt, zt−1, ut) ·
∫

· · ·
∫ ∞

−∞
p(xt, x

t−1|zt−1, ut, xt−1)p(xt−1|zt−1, ut)dxt−1

xt−1 ⊥⊥ ut | ∅
=

p(zt|xt, zt−1, ut) ·
∫

· · ·
∫ ∞

−∞
p(xt, x

t−1|zt−1, ut, xt−1) p(xt−1|zt−1, ut−1)
︸ ︷︷ ︸

Posterior of the path for t− 1

dxt−1

p(a, b|b) = p(a|b)
=

p(zt|xt, zt−1, ut) ·
∫

· · ·
∫ ∞

−∞
p(xt|zt−1, ut, xt−1)p(xt−1|zt−1, ut−1)dxt−1
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xt ⊥⊥ xt−2, ut−1, zt−1|xt−1, ut
=

p(zt|xt, zt−1, ut) ·
∫

· · ·
∫ ∞

−∞
p(xt|xt−1, ut)
︸ ︷︷ ︸

Transition model

p(xt−1|zt−1, ut−1)dxt−1

Law of total
probability on m

=
∫ ∞

−∞
p(zt|xt, zt−1, ut,m)p(m|xt, zt−1, ut)dm ·

∫

· · ·
∫ ∞

−∞
p(xt|xt−1, ut)p(x

t−1|zt−1, ut−1)dxt−1

︸ ︷︷ ︸

Bayes prior of the robot pose for t

zt ⊥⊥ xt−1, zt−1, ut | xt,m
=

∫ ∞

−∞
p(zt|xt,m)
︸ ︷︷ ︸

Observation model

p(m|xt, zt−1, ut)dm ·
∫

· · ·
∫ ∞

−∞
p(xt|xt−1, ut)p(x

t−1|zt−1, ut−1)dxt−1

m ⊥⊥ xt, ut | xt−1, zt−1

=
∫ ∞

−∞
p(zt|xt,m) p(m|xt−1, zt−1)

︸ ︷︷ ︸

Map estimate for t− 1

dm ·
∫

· · ·
∫ ∞

−∞
p(xt|xt−1, ut)p(x

t−1|zt−1, ut−1)dxt−1

where the first integral in the last expression is the sensor model, p(zt|xt,m), integrated

in order to account for the uncertainty in the map m.

When full SLAM is implemented with particle filters, the first integral in that

expression should be performed over the robot path hypothesis x[i],t−1, corresponding

to some given particle index i. In order to simplify the notation of this integral, which

appears quite often in particle filter-based SLAM, it will be denoted as conditioned to

m[i], that is,

p(zt|xt,m[i])
.
=

∫ ∞

−∞
p(zt|xt,m)p(m|x[i],t−1, zt−1)dm (7.0.2)

In spite of the utility of this notation, sometimes employed in the literature, it

can be considered an abuse of notation and be misleading, since the meaning of m[i]

is not the same that x[i],t, which represents an exact value hypothesis (not a pdf) of
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the robot path. Hence, writing p(·|x[i],t) makes sense whereas p(·|m[i]) does not, unless

interpreted as in Eq. 7.0.2.

At this point, it is worth mentioning a new concept in SLAM that did not appear

in probabilistic localization, which is related to the term:

p(zt|xt,m) (7.0.3)

In both the present chapter and in Chapter 3, the term above has been referred to

as the sensor (or observation) likelihood function. The reason for that is that the pdf

was considered as a function where the “free” variable was the observation zt, whereas

both the robot pose xt and the map m remained fixed.

Nevertheless, we will arrive at situations where the “free” variable is the, now

unknown, map m. In those cases the same term will be called the inverse sensor

model , following the conventions found in the literature [Thr05]. Although conceptually

related, in general the inverse sensor model and the observation likelihood function will

be implemented differently.

The content of the rest of this part is structured as follows. Firstly, Chapter 8 will

extend the optimal filtering algorithm already presented for localization in such a way it

can also be applied to SLAM. Next, the problem of SLAM with range-only sensors will

be discussed in Chapter 9 and an efficient probabilistic solution presented. Finally,

we also address the problem of measuring the uncertainty in SLAM in Chapter 10,

including applications to robot active exploration.
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CHAPTER 8

OPTIMAL PARTICLE

FILTERING IN SLAM

8.1 Introduction

In this first chapter in the part devoted to SLAM, we revisit the optimal filtering

algorithm presented in Chapter 4 in order to introduce the required modifications for

its application to SLAM.

As mentioned in [Liu98], sequential Bayesian estimation typically considers state

spaces with a dimensionality that either increases or remains constant with time. The

latter, which includes the problem of mobile robot localization, can be perfectly man-

aged by the optimal algorithm derived in Chapter 4. However, there are other problems

whose dimensionality increases over time, such as the previously explained full SLAM

(see [Thr05] and Chapter 7). In these cases, the resampling that the filtering algorithm

113
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performs at every step may lead to a loss of information in some dimensions, e.g. the

past poses of the robot. In SLAM this means that the diversity of particles for repre-

senting the robot path will be lost very quickly. This is a common problem of all particle

filters, and can be alleviated by introducing selective resampling steps [Liu98,Gri07a],

as explained in the next section.

Apart from the improvements of the new method that were mentioned in Chapter 4,

this is the first time, to the best of our knowledge, that the number of particles is

automatically adapted to the uncertainty present at each time step in the context of

SLAM. This implies that memory and computational requirements are self-adjusted

during the map building process (e.g. after closing a long loop the number of samples

is largely reduced).

In the next section we explain how to integrate selective resampling into the original

algorithm presented in Chapter 4. Then, in §8.3 we discus the expected evolution with

time of the overall number of samples of our method, and we finish with experimental

results for different real datasets.

8.2 The optimal PF with selective resampling

The presented approach is based on delaying resampling in the algorithm presented

in Chapter 4 as much as possible in order to avoid the loss of diversity. This can be

achieved by monitoring a measure of diversity such as the effective sample size (ESS)

(see §2.8 or [Liu96]).

Thus, at each iteration we compute the ESS and, only if it is below a given threshold

(typically 0.5 times the number of particles), the particles are resampled. In that

case the procedure will be exactly as described in the filtering method described in

Algorithm 2.
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Otherwise, particles are not resampled, and their weights must be multiplied by

Eq. (4.3.7). Since that expression determined the likelihood of each sample to be

selected in the resampling (which has not been performed), we are integrating the

particle “probability of surviving the resampling” directly into its importance weight.

In this way, the modification of weights acts as a replacement of the actual re-

sampling. This is the crucial operation that assures the mathematical validity of the

importance sampling representation at those steps when resampling does not take

place.

For the sake of clarity, the modified filter is described in Algorithm 2, which can be

contrasted to the original method (without selective resampling) shown in Algorithm 1

(§4.3.2). Notice that the main difference is the management of the particle weights,

which were discarded in the former algorithm since resampling was performed at all

iterations and thus all the particles always had the same weight.

In principle, the new method may seem very similar to standard SIR filters for

the case of not resampling. However, the use of a variable number of particles in

our algorithm makes more complex the method to draw particle indexes (the i in

Algorithm 2) since it must be assured that all particles have the same probability of

passing to the next iteration if resampling is not performed. In a traditional filter with

a fixed sample size this is achieved by propagating each particle from the previous time

step just once [Liu98,Gri07a]. Here we propose the following mechanism to generate

the particle indexes i[k], for k = 1, ...Mt (recall indexes i indicate which particles from

the previous time step t− 1 are selected to generate the Mt new ones):

i[k] :

{

i[k] = p[k] k ≤Mt−1

i[k] ∼ U(1,Mt−1) k > Mt−1

(8.2.1)
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Algorithm 2 optimal pf selective resampling {xt−1,[i], ω[i]}Mt−1

i=1 → {xt,[k], ω[k]}Mt
k=1

1: for all particles x
[i]
t−1 do

2: for n = 1 to B do // Generate a set of B samples

3: x
[n]
t ∼ p(xt|x[i]t−1, ut)

4: end for
5: Use the samples to compute p̂(zt|·) and p̂max(zt|·)
6: end for
7: k ← 1
8: p← perm([1, 2, ...,Mt−1]) // Random permutation of the Mt−1 indices

9: doResampling ← ESS({ω[i]}Mt−1

i=1 ) < 0.5 // Selective resampling
10: repeat
11: if doResampling then
12: Draw an index i with probability given by ω̃

[i]
t . See Eq. (4.3.7)

13: else
14: if k ≤Mt−1 then
15: i← p[k] // Deterministic sampling
16: else
17: i ∼ U(1,Mt−1) // Uniform ( integer) sampling
18: end if
19: end if
20: repeat // Generate a new sample from i by rejection sampling

21: x
[k]
t ∼ p(xt|x[i]t−1, ut) // Draw a candidate sample

22: a ∼ U(0, 1) // Draw a random uniform sample
23: until a < ∆// Candidate accepted with a probability ∆ – see Eq. (4.3.10)
24: if doResampling then // Now, assign the weight
25: ω[k] ← 1 // Reset weights on resampling
26: else
27: ω[k] ← ω[k] · ω̃[i]

t // Apply likelihood factor
28: end if
29: k ← k + 1
30: until k =Mt// Number of samples determined by KLD-sampling [Fox03]
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with p[k] = perm([1, ..,Mt−1]) being a random permutation 1 of the vector [1, ..,Mt−1],

which is computed only once at each particle filter iteration. Therefore, if the number

of new particles is smaller than in the previous time step, the permutation assures that

each particle has an equal probability of being removed. If the number of particles

remains constant, our method becomes the same as in traditional fixed-sized particle

filters, disregarding the re-ordering of the samples, which does not affect the estimated

density. Finally, in the case of more particles, it is also assured that all the previous

particles have the same probability of being selected more than once. Hence, the overall

selection method can be seen as sampling from a uniform distribution of indexes, with

the advantage of asserting that no hypothesis will be lost as long as Mt ≥ Mt−1

(otherwise it would mean that there are too many particles and we really want to

remove some hypotheses).

8.3 Evolution of the sample size

As stated above, the adaptive number of samples in our optimal filter is determined

by means of the proposal by Fox in [Fox03]. In that method, called KLD-sampling,

the continuous d-dimensional state space of the particle filter is approximated by a

d-dimensional discrete grid where the number of occupied bins settles the final number

of required particles.

In the original context of KLD-sampling, robot localization, the dimensionality of

the problem is fixed to d = 3 (2-d position plus heading) – which certainly also holds

for our first optimal filtering algorithm presented in Chapter 4. Under such a bounded

dimensionality we can expect a limited number of samples in most common situations.

1The exact algorithm employed for this task is that one implemented in the C++ STL function
random shuffle, which assures a uniform distribution over the N ! possible permutations of an N -
vector (see section 3.4.2 of [Knu81]).
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A preeminent (although transient) exception is global localization.

In contrast, in this chapter we face full SLAM, a problem whose dimensionality in-

creases with time t since the filter estimates the whole robot path, with a dimensionality

of dt, that is, in the order of O(t).

When the number of samples is dynamically adapted in such a problem, it is in-

evitable for the required number of particles to grow without bounds. This is nothing

else than the need of performing importance sampling properly on each of the dimen-

sions, which intuitively can be seen to demand an exponential number of samples (this

claim is mathematically proven below).

In order to alleviate this rapidly-increasing demand of particles, we propose the

following alternative: instead of applying KLD-sampling to the state space of the

whole robot path, it can be applied to just the most recent robot pose xt. Although

in this case the dimensionality also stays fixed as in robot localization, there is an

important difference: when a robot explores new terrain, its pose uncertainty will grow

until a loop closure occurs, hence that in this case the number of samples increases as

well.

To sum up, we can devise two ways of computing the adaptive number of samples

in our optimal particle filter for SLAM: (i) employ KLD-sampling over the whole robot

path, and (ii) use it just over the latest robot pose. It has been shown that, intuitively,

both approaches will lead to a growth in the number of samples, although in the first

case this growth is unbounded and in the latter the population of particles will reduce

after closing a loop.

In order to arrive at a quantitative comparison between both alternatives some sim-

plifications need to be done, given that the exact evolution of uncertainties in SLAM

depends on the sensors employed, the properties of the environment and the specific
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Figure 8.1: (a) The amount of particles required to maintain a proper sampling of the whole
state space in full SLAM grows exponentially with time. (b) An alternative proposed in the
text, where only the marginal for the latest robot pose is employed to determine the number
of required samples.

path followed by the robot. Firstly, we will assume that the estimates for the d dimen-

sions of the robot pose are uncorrelated between them, thus the problem is equivalent

to estimating d uni-dimensional variables. Focusing on the case of full SLAM, let’s

consider the evolution along time of one single particle, as the one represented in Fig-

ure 8.1(a) for xt. After one filter iteration, this single hypothesis should spread over the

space due to the combined uncertainties of both transitions and observations. Assum-

ing that this increase of uncertainty “converts” a single particle into a Gaussian with a

standard deviation of σ0, it is obvious that several samples will be required to perform

a proper sampling of xt+1. When sampling a Gaussian, it is plausible to assume that

KLD-sampling will lead to a number of samples proportional (through a constant k)

to its standard deviation.

Therefore, for t + 1 we have a number of samples Mt+1 = kσ0. Following Fig-

ure 8.1(a), it can be seen that for the next time step t+ 2 the process is repeated, but

now we have several samples as the start point (those for xt+1). It is easy to see that
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kσ0 samples will be required to sample xt+2 for each “parent” sample in xt+1, from

which it can be deduced by induction that:

Mt = O
(
kdt
)

(8.3.1)

where the factor d needs to be introduced since the above derivation was carried out

for just one dimension. This result confirms our intuitive claim at the beginning of this

section about the exponential growth in the number of samples required to perform

full SLAM.

We now focus on the alternative approximation, where KLD-sampling is applied to

just the latest robot pose, xt+2 in the present example. Under the same assumptions

stated above, it can be shown that the pdf for each uni-dimensional component of the

robot pose is a Gaussian, whose variance can be computed by means of a Kalman

filter, and being σt ∝ σ0
√
t. As above, if KLD-sampling gives us a number of required

particles linear with the standard deviation of the Gaussian being sampled, we arrive

at Mt ∝
√
t, or, considering the d dimensions of each robot pose:

Mt = O
(

t
d
2

)

(8.3.2)

Given the drastic reduction in the evolution of the number of samples, from being

exponential to being polynomial, we have considered employing this second alternative

in our experiments.

An important final remark is that these growths in complexity are not a characteris-

tic of our proposed method, but of any RBPF-based approach to SLAM in general. In

fact, the analysis presented in this section has made patent the degree of sub-optimality

of all previous works where the number of particles always remain constant.
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8.4 Experimental evaluation and discussion

This section demonstrates an application of the proposed algorithm to occupancy grid

mapping through a RBPF. For comparison, our approach is contrasted to a recent

proposal [Gri07a] which approximates the observation model by a Gaussian through

scan matching (SM) – we will refer to this approach as SM-based particle filter. The

non-parametric observation model employed here is the likelihood field, described in

[Thr05].

The sensory data used as the input to the filters are a part of the Málaga University

campus dataset 2 , where our mobile robot SENA [Gon06b] closes a loop of about 60

meters in a semi-outdoor scenario, moving around one building. Snapshots of the

evolution of the PF using our algorithm can be seen in Figure 8.2(a)–(d) at different

time steps. The final map obtained for the SM-based filter, which used a fixed sample

size of 15, is represented in Figure 8.2(e). All those maps are the most likely grids at

each time step, overlapped with all the robot path hypotheses in the filter.

Note that the loop closure, which happens approximately at time steps 140-160,

reduces the uncertainty in the robot path in both methods, though it is managed

differently in our method and in the SM-based filter. In the latter, since the number

of particles remains constant while estimating a space with a growing dimensionality

(the robot path), the samples will become more and more sparse with time, providing

a poorer representation of the actual state space. As a result, after closing the loop

just a few hypotheses will survive. The problem that arises with this approach is that

typically only one hypothesis remains for a large part of the robot path: its uncertainty

has been lost and there is not a well-defined probability distribution for the path. This

can be observed for the concrete case of this experiment, in Figure 8.2(e). In contrast,

2Available online: http://babel.isa.uma.es/mrpt/downloads/.

http://babel.isa.uma.es/mrpt/downloads/
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Time step #60 Time step #130 Time step #160 Time step #200
10m

Time step #200

(a) (b) (c) (d)

(e)

Malaga campus dataset – Optimal PF Malaga campus dataset – Optimal PF Malaga campus dataset – Optimal PF Malaga campus dataset – Optimal PF

Malaga campus dataset – SM-based PF

SM-based PF:

Optimal PF:
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Figure 8.2: Experimental results for map building. (a)–(d) Four snapshots of the evolution
of our optimal filter while building the map for the Málaga campus dataset. (e) The final
result for a SM-based particle filter, for comparison. (f) Detailed views of certain areas of
the final paths and maps for our optimal algorithm and the SM-based PF. Inconsistencies
can be observed in the latter.
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Figure 8.3: (a) The number of particles dynamically chosen by our method. The sample
size increases until the loop is closed, about time step #140. (b) A comparison of the overall
computation times taken by both methods.

our filter dynamically increases the number of samples as the robot moves along the

loop in order to provide a proper sampling of the state space. Observe how this

number decreases after closing the loop, a reflection of our usage of the alternative

approximation described in §8.3 to estimate the number of required samples at each

time step. Notice as well that there are more path hypotheses before closing the loop

than after it (refer to Figure 8.2(b)–(c), respectively). The complete evolution of the

sample size is sketched in Figure 8.3(a).

The memory usage of the filter closely follows the same evolution, since each particle

carries a hypothesis for the whole map: in our method both the computation and

memory requirements increases as the robot follows longer loops.

Additionally, the SM-based filter may lead to inaccuracies due to small errors in the

scan matching procedure (refer to the discussion in section 4.1). We have highlighted

some areas in the resulting maps to illustrate that our optimal filter gives a more precise

robot localization, which turns into maps without the inconsistencies that do appear

for the SM-based filter in both the path and the map. Refer to the detailed views in

Figure 8.2(f).
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100m

Victoria park dataset – Optimal PF

Figure 8.4: The map built for the Victoria Park dataset using our optimal filter.

Regarding the computation time of our method, it takes 50.2s to process the whole

dataset, while the SM-based approach only needs 23.8s – see Figure 8.3(b). Thus, the

accuracy of our optimal filter is gained at the cost of both a higher computational

complexity and memory consumption. Therefore, if a given application requires a very

fast processing time, SM-based methods such as [Gri07a], or the even more optimized

version in [Gri07b], should be used. If it is more important to assure the consistency

of the estimation and to obtain more accurate maps, then our optimal filter should be

preferred.

The method has also been tested with an outdoor scenario, in particular, using the

standard dataset gathered at Sydney’s Victoria Park [Gui01]. The most likely grid map

at the end is shown Figure 8.4, along with a detailed view of the central part of the

environment, where the trees can be appreciated clearly. To the best of our knowledge,

this is the first time a grid map has been built for this dataset, which has been largely

used to test EKF-like SLAM methods. In spite of a greater memory usage than in a
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landmark map, using a grid map avoids the problems of landmark (tree) detection and

data association, and exploits the most of the information in the laser scans whereas in

a EKF-like approach only the trees, once detected, could be used to localize the robot.
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CHAPTER 9

AN EFFICIENT SOLUTION TO

RANGE-ONLY SLAM

9.1 Introduction

Most works in the field of SLAM focus on sensors that provide either range and bearing

information (e.g. the “classic” solution to SLAM [Dis01]) or bearing-only information

(e.g. Mono-SLAM [Civ08,Dav07]). Relatively few works have addressed the problem

of building maps with range-only (RO) sensors in despite of the important applications

where they are an appropriate choice, such as submarine autonomous vehicles [New03]

or ground vehicles in industrial environments [FM07]. There are two fundamental

characteristics that render RO-SLAM specially challenging: the existence of outliers

due to the sensor nature (typically sonar or radio pulses), and more importantly, the

high ambiguity of the measurements (in the sense that we have no bearing information
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Figure 9.1: One peculiarity of range-only SLAM is that map estimations may converge to
multi-modal densities. In this example, the symmetry in the distance (range) observations
made by a robot to one fixed beacon as it travels over a straight path eventually leads to two
regions with a high probability of containing the sensed beacon.

at all). This later issue is illustrated in Figure 9.1, where a robot measures its distance

to one fixed beacon from three different positions along a straight path. For each

position it is shown the ring-shape area of the estimated position of the beacon that

is consistent with the measurement. Concretely, the figure represents the probabilistic

inverse sensor model (refer to Chapter 7).

Therefore, these sensors carry two hurdles: (i) the large portion of the environment

where a beacon could be, given just one observation, and (ii) a very likely possibility

of multiple plausible hypotheses. These issues become more severe when building 3-d

maps, where beacons can be placed at different heights. Thus, RO-SLAM may become

a problem even more challenging than bearing-only SLAM ( [Dav07,Kwo04]), where the

landmark estimates typically converge to a single mode. On the other hand, depending

on the sensor technology, RO-SLAM has the advantage of avoiding the data association
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problem, since beacons usually can self-identify themselves.

Regarding previous proposals for RO-SLAM, in [Sin02] it is reported a geomet-

ric method for adding new beacons to a map using delayed initialization, but a par-

tially known map is required at the beginning. Sub-sea RO-SLAM is demonstrated

in [New03] with good results, even with the lack of a reliable ego-motion estimation

(e.g. from odometry). The main difference with the present work is the usage of a

least-square error minimization procedure instead of a probabilistic filter where several

robot path hypotheses can be considered simultaneously. The work in [Ols04] achieves

RO-SLAM through a different strategy: firstly, an initial estimation of the position of

each beacon is computed using a voting scheme over a 2D grid, then a standard EKF

deals with the SLAM problem. A similar scheme is adopted in [Dju06], where the au-

thors also explore the possibility of inter-beacon range measurements to improve map

building. A recent work [Dju08] is similar to ours but formulated in polar coordinates,

hence requiring a reduced number of Gaussians. However, that approach raises the

issues of when to create new hypotheses from noisy range intersections, and whether

the linear approximation of uncertainty in an EKF suffices to capture the actual large

uncertainty of predicted ranges, an interesting point worthy of further analysis.

We reported a probabilistic formulation of RO-SLAM based on a Rao-Blackwellized

particle filter (RBPF) in [Bla08e]. This approach, also adopted in the method discussed

in this chapter, has the advantage of decoupling the conditional distributions of each

beacon in the map for each path particle, which entails freedom in the design of each

of these distributions in such a way that at some given instant several already well-

localized beacons may coexist in the map with more recently added beacons that have

higher uncertainty.

The contributions of the new method described here are: (i) a new inverse sensor

model for initializing map distributions as weighted Sums of Gaussians (SOGs), (ii)
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the explanation of how to update those Gaussians and their weights using a multi-

hypothesis EKF, and (iii) the derivation of the corresponding observation model re-

quired for the RBPF.

The present approach has the advantage of always providing an immediate esti-

mate without delayed decisions, while still providing an accurate approximation of the

strongly non-Gaussian and frequently multi-modal distributions found in RO-SLAM:

all the available information is exploited to perform localization without waiting until

the beacon distributions converge as in other proposals. In addition, new beacons can

be inserted at any time in the filter, which is unfeasible under EKF-based solutions to

RO-SLAM that need a first stage until the distributions can be properly approximated

by Gaussians. Finally, a statistical analysis from simulations is also provided demon-

strating that the presented approach can cope with highly noisy sensors and reduces in

one order of magnitude the average errors of our previous method proposed in [Bla08e]

at a fraction of its computation time.

The rest of this chapter is outlined as follows: the next section provides the notation

and background required to our formulation of RO-SLAM, which is discussed in depth

in §9.3 and subsections therein. The final section presents diverse experiments with

both synthetic and real data in order to validate our method.

9.2 Problem statement

Firstly, we briefly review the notation of the variables involved in the problem. We

denote the robot path as the sequence of poses in time xt = {x1, ..., xt}, while robot

actions (odometry) and observations (range measurements) for each time step t are

represented by ut and zt, respectively.

As already mentioned in Chapter 7, the RBPF approach to estimating the SLAM
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Figure 9.2: The dynamic Bayesian network for mobile robot RO-SLAM, where robot poses
xt and the map m are hidden variables (represented as shaded nodes) to be estimated from
actions ut and sensor observations zt. The map comprises a set of variables {m1,mL}, one
for each individual beacon.

joint posterior p(xt,m|ut, zt) consists in approximating the marginal distribution of

the robot path xt using importance sampling, then computing the map as a set of

conditional distributions given each path hypothesis. We denote the i’th particle as

xt,[i] and its corresponding importance weight as ω
[i]
t . By choosing a RBPF approach

to RO-SLAM, we can factor the distribution of the map associated to each particle as:

p
(
m|xt, zt, ut

)
=

L∏

l=1

p
(
ml|xt, ztl

)
(9.2.1)

ml being the different individual beacon positions in the map m. The factorization in

Eq. (9.2.1) follows from the conditional independence of each beacon in the map given

the robot path and the observations. From the DBN of the problem, in Figure 9.2, it

can be inferred that {xt, zt} d-separates (see §2.10) any pair of beacons in the map,

that is,
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mi ⊥⊥ mj | xt, zt ∀i 6= j (9.2.2)

As a consequence of this conditional independence between individual beacons in

the map, we can employ the most convenient representation for their pdfs at each

time step without affecting either the robot path or the other beacons. Section 9.3 is

devoted to the computation and the update of these densities within the main RBPF.

For completeness, the sequential algorithm to be executed at each time step is

summarized next. Assume that the set of particles for the previous time step xt−1,[i]

are approximately distributed according to the real posterior. In the case of the first

time step, all the particles can be arbitrarily initialized to the origin. In subsequent

iterations, new particles are drawn using the robot motion model (in our case, de-

rived from odometry readings), that is, x
[i]
t ∼ p(xt|x[i]t−1, ut). Next, the importance

weights are updated as ω
[i]
t ∝ ω

[i]
t−1p(zt|xt,[i], zt−1) with the probabilistic observation

model p
(
zt|xt,[i], zt−1

)
that will be derived in §9.3.4. If necessary, the particles may be

resampled to preserve their diversity. This is typically performed whenever the effec-

tive sample size falls below a given threshold [Liu96]. After updating the estimate of

the robot path, the corresponding conditional distributions of the map must be also

updated to account for the new range readings, as discussed in the next section.

Notice that the algorithm described above corresponds to a standard SIR particle

filter (see §4.1), although the proposed approach to RO-SLAM is also wholly compatible

with the optimal filtering algorithm presented in Chapter 4.
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9.3 Proposed solution

As already mentioned, each robot path hypothesis is associated with the corresponding

conditional map distribution p(ml|xt,[i], zt) for each beacon l. Note that in the following

we drop the l subscript for clarity, since subsequent derivations apply equally and

independently to any number of beacons in the map.

Incorporating new information (the new robot pose xt and the observation zt) into

the map belief m of one beacon is carried out by applying the Bayes rule, as follows:

p(m|xt, zt)
︸ ︷︷ ︸

Posterior

Bayes rule∝ p(m|xt−1, zt−1)p(xt, zt|m,xt−1, zt−1)

= p(m|xt−1, zt−1) p(xt|m,xt−1, zt−1)
︸ ︷︷ ︸

Constant among all particles

p(zt|m,xt, zt−1)

∝ p(m|xt−1, zt−1)
︸ ︷︷ ︸

Bayes prior

p(zt|m,xt, zt−1)
︸ ︷︷ ︸

Inverse sensor model

(9.3.1)

where the marked term is constant among all the RBPF particles since neither the

last action ut nor the last observation zt appear. Put in words, the posterior belief is

obtained by multiplying the previous belief by the inverse sensor model, which deter-

mines the likelihood of finding the beacon at any position m given the observed range

value zt and assuming xt as some fixed hypothesis for the robot pose.

The next subsections address the maintenance of the beacon pdfs within the map

and how to employ them to derive the sensor observation likelihood function.

9.3.1 Inserting a new beacon

When a beacon is firstly observed at some given instant of time t (not necessarily

the first time step), the prior belief in Eq. (9.3.1) is undefined. If there is no a pri-

ori information about the spatial disposition of beacons it is plausible to assume a



134 Proposed solution

uniform prior. There is however one interesting exception with important practical

consequences: in the case of a ground vehicle that is building a 3-d map, if we know in

advance that all the beacons have been placed at a height above (or below) the robot

(a typical situation for an industrial environment), the prior becomes a uniform distri-

bution over half of the space and zero in the complementary part. This is important

since, as will be illustrated with experiments, a vehicle moving on a flat, horizontal

scenario can build a 3-d map only up to a symmetry with respect to the robot plane:

it cannot be disambiguated whether a given beacon is above or below the robot.

Once the prior belief has been defined as a uniform pdf, it follows from Eq. (9.3.1)

that the initial map distribution becomes simply the inverse sensor model p(zt|m,xt, zt−1)

(or its evaluation over half of the 3-d space in the special case commented above). As-

suming a range sensor model with additive Gaussian noise of variance σ2
s , the inverse

observation model for a beacon m is:

p(zt|m,xt, zt−1) ∝ exp

(

−1

2

|xt −m|2
σ2
s

)

(9.3.2)

The evaluation of this model gives the typical fuzzy-ring shapes associated to RO-

SLAM. The problem is that this density cannot be filtered iteratively in an analytical

form if the beacon locations are represented in Cartesian coordinates 1, hence we must

rely on approximations. In this work we propose to adopt a Sum of Gaussians (SOG)

approximation2 to the exact ring-like shape, such as:

p(zt|m,xt, zt−1) ≈
N∑

k=1

υktN (m; m̂k
t ,Σ

k
t ) (9.3.3)

1Refer to the comments in §9.1 about the alternative polar representation of [Dju08] and its
drawbacks.

2The effects of this approximation are quantified below in this section – refer to the discussion on
the Figure 9.4.
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Figure 9.3: The variables involved in the generation of the Gaussian modes within each
SOG of the inverse sensor model. Azimuth and elevation angles from the sensor position
(the coordinate origin in the figure) are represented by α and β, respectively. The covariance
matrix is computed by mapping the uncertainties in the radial (v1) and tangent (v2, v3)
directions using the appropriate transformation matrix. Refer to section 9.3.1 for further
details.

being υkt the weight of each individual Gaussian, and m̂k
t and Σk

t its mean and covariance

matrix, respectively.

In particular, for a given range measurement zt = r, we have to generate a number

of Gaussians equally spaced over a sphere centered at the sensor position and with

radius r (see Figure 9.3), following the procedure described next3 Each of the individual

Gaussians is thus placed at a direction stated by a discrete set of azimuth (−π < α ≤ π)

and elevation (−π/2 < β ≤ π/2) angles. Let ∆ denote the angular increments between

consecutive Gaussians along either α or β. Since the model approximation will become

3An alternative approach would be to consider a distribution of Gaussians following a spiral as
described in [Saf97].
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Figure 9.4: (a)–(b) Inverse sensor model for a sensed range of r = 1 meter computed from
our SOG approximation (simplified here to 2-d for clarity) and two different values of the
constant K, which determines the standard deviation of Gaussian nodes in tangential direc-
tions. (c) The Kullback-Leibler divergence (KLD) of our SOG approximation as a function
of K and for r between 1 and 10.

poorer for larger distances between Gaussians, let dm represent the maximum distance

allowed between adjacent Gaussians in the regular grid over the sphere. Under this

constraint, the angular increment ∆ can be computed as ∆ = 2π/B, beingB the integer

number of modes along any great circle of the sphere, determined as B = 2 ⌈πr/dm⌉,

where the factor 2 is out of the ceiling operator to force an even number of modes and

therefore to assure symmetry.

At this point we have computed the discrete sequences of angles αi and βj for

i = 1, .., B and j = 1.., B
2

that define a regular grid over a sphere centered at the

sensor. Thus, the mean of each SOG mode is given simply by:

m̂ij
t =







x0 + r cosαi cos βj

y0 + r sinαi cos βj

z0 + r sin βj







(9.3.4)

Here (x0 y0 z0)
T stands for the absolute coordinates of the robot range sensor, which
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are known since we are assuming a robot pose hypothesis x
[i]
t .

To compute the covariance Σij
t , let’s define three unit orthogonal vectors with origin

the mean of the Gaussian. For convenience, the first vector v1 will be always pointing

radially, while the others (v2 and v3) are tangential to the sphere, as illustrated in

Figure 9.3. Such a vectorial base is well-defined for any sphere of non-zero radius.

Note that the uncertainty in the radial direction (the “thickness” of the sphere) is

determined by the noise σs in the sensor model stated by Eq. (9.3.2). Since we desire

radial symmetry by design, the uncertainty σt in both tangential directions should be

equal and proportional to the separation between Gaussians, that is, σt = rK∆, with

K being a proportionality factor. The covariance is then built as:

Σij
t =

(

v1 v2 v3

)







σ2
s 0 0

0 σ2
t 0

0 0 σ2
t













vT1

vT2

vT3







(9.3.5)

Finally, the weights υijt of all the generated Gaussians in Eq. (9.3.3) are equal since

all of them are equally probable. It is worth noting that the above process can be also

applied to 2-d maps by fixing β to 0 and discarding one tangent vector.

The constant K deserves further comment since it determines the quality of the

approximation to the real inverse sensor model. To illustrate graphically the effects of

this constant, please refer to Figure 9.4(a)–(b), where a SOG is generated for K = 0.5

and K = 0.3 and a 2-d map model. Simple visual inspection reveals that the second

case leads to a worse approximation of the actual “ring” density. We have computed

the Kullback-Leibler divergence (KLD) (see §2.6) as a proper measure of similarity

between the approximate and the actual densities for different measured ranges r from

1 to 10 meters, and for different values of K. The results, in Figure 9.4(c), reveal that

good approximations can be obtained, but unfortunately the optimal K varies with



138 Proposed solution

the sensed range r. However, values of K near 0.4 lead to good approximations, hence

it is the one employed in our experiments.

9.3.2 Updating the map SOG distribution

Once a beacon has been inserted in the map, subsequent range measurements zt update

its belief through Eq. (9.3.1), which in this particular case of the prior density defined

as a SOG can be efficiently implemented as a multi-hypothesis EKF. Basically, the

mean and covariance are updated using a standard EKF [Jul97], while the weights

are updated by evaluating the actual reading zt into the Gaussian of the observation

predicted by each SOG mode [Als72], that is,

υkt ∝ υkt−1N (zt;h
k
t , σ

k
t

2
) (9.3.6)

where the mean hkt = h(x
[i]
t , m̂

k
t ) is computed using the sensor model h(·), and the

variance σkt
2
includes the sensor noise σs and the projection of the beacon uncertainty:

σkt
2
= HΣk

tH
T + σ2

s (9.3.7)

being H the Jacobian of the sensor model. An important insight into this approach is

that, eventually, most of the Gaussians in a SOG will have negligible weights as they

become inconsistent with the complete history of observations. Since the contribution

of these modes to the overall density will be negligible as well, we can simply remove

them from the SOG when their weights fall below a given threshold. Thus, our approach

can automatically adapt its computational burden to the actual uncertainty present at

each instant of time, as will be shown later on with real experiments (this is analogous

to approaches that scale the number of samples in particle filters [Fox03]).

Another alternative to simply deleting Gaussian modes is to apply SOG reduction
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methods such as that proposed in [Run07], where two SOG modes are “fused” only

if the lost information is below a certain threshold. This approach has not been im-

plemented, and in spite of possibly yielding good results, it would also carry a higher

computational load than the simpler method of removing very unlikely modes.

9.3.3 An illustrative example

To illustrate and clarify all the ideas discussed up to this point, consider the example

depicted in Figure 9.5, where a perfectly localized robot estimates the position of just

one beacon (i.e. there is only mapping, no localization). At the initial instant t1, the

SOG is created as the robot observes the beacon for the first time, following the proce-

dure described in §9.3.1 (in this case reduced to 2D for clarity in the representation).

Next, as the robot moves along a straight path, the mean and covariances of all the

Gaussians are modified by subsequent observations, as can be appreciated at instant

t2. At this point many modes already have negligible weights, hence they have been

removed from the filter. Later on, at time t3, the beacon has converged to two sym-

metrical modes with respect to the robot path. The symmetry is finally broken when

the robot moves away from its previous straight path, as it can be seen in t4.

9.3.4 The observation likelihood model

Taking into account our approximation of each map distribution as a SOG in Eq. (9.3.3),

we can expand the observation model required to update the weights of the RBPF as

follows:
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Figure 9.5: An example of how our approach iteratively estimates the location of one
beacon. It is shown how the Gaussian modes with lowest weight in the SOG are discarded
over time, and how symmetrical results are obtained for straight paths. In t4 it can be seen
how this symmetry quickly disappears when the robot deviates from the straight path.

p(zt|xt,[i], zt−1) =

∫ ∞

−∞
p(zt|x[i]t ,m)p(m|xt−1,[i], zt−1)dm

=
N∑

k=1

υkt−1N
(

zt;h
k
t , σ

k
t

2
)

(9.3.8)

where each normal distribution represents the predicted observation for one mode

within the SOG. The parameters of these Gaussians have been already described in

Eq. (9.3.6)–(9.3.7).

As an implementation note, it has been already mentioned (§4.3.2) the convenience

of considering logarithmic weights and likelihood. In this case, implementing Eq. (9.3.8)
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requires recovering the non-logarithmic weights and thus it is prone to numeric overflow.

A numerically-stable method is described in Appendix B.2 that avoids this issue, thus

greatly extending the dynamic range of all the involved values.

9.4 Experimental evaluation and discussion

In order to validate the proposed approach, we have performed extensive simulations in

order to (i) characterize its performance against different levels of sensor noise, and (ii)

to compare it with one of our previous work on RO-SLAM [Bla08e] which did not rely

on a SOG representation for the beacons. Additionally, we present the construction

of a 3-d map from data gathered by a real robot. A video illustrating the following

results and the source code are available online in [Bla10a].

9.4.1 Performance characterization

Firstly, we have carried out three series of simulations in order to characterize statisti-

cally the accuracy of the maps generated by the present approach. The first experiment

characterizes the average localization error for beacons in the final map as a function

of the sensor noise σs. The results are represented in Figure 9.6(a) through the mean

errors and their corresponding 67% confidence interval. To obtain statistically signif-

icant results we have executed our approach 50 times for each parameter value, with

20 randomly placed beacons each time. Average errors as a function of odometry noise

and the number of particles in the RBPF have been computed similarly, and the results

are plotted in Figure 9.6(b)–(c). Errors in odometry are represented as the ratio be-

tween the standard deviation of the Gaussian noise and the actual increment between

consecutive robot poses.
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Figure 9.6: Statistical results from simulations sweeping different parameters: (a) the sensor
noise (σs), (b) odometry errors, and (c) the number of particles in the RBPF. Results present
average errors for beacon locations among 67% confidence intervals.
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The interpretation of these statistical results is that, as expected, lower levels of

noise or more particles lead to lower average errors. Our method can cope with heavily

corrupted range observations (e.g. σs up to 1m in a 20 × 20m map) exhibiting map

errors approximately proportional to the sensor noise (see Figure 9.6(a)). However,

quite small errors in odometry – above 5% in our experimental setup, see Figure 9.6(b)

– lead to a faster raise in the map errors. The reason is the usage of the standard

proposal in the RBPF, while the more optimal choice presented in Chapter 4 would

give increased robustness at the cost of a larger computational burden.

9.4.2 Comparison to a the Monte-Carlo approximation

We have compared our method to the previous work [Bla08e], where a Monte-Carlo

(MC) approximation was employed instead of the SOG. In order to provide a fair

comparison between both methods, we have analyzed the average errors in the maps

for similar computational burdens and the average execution times for similar map

errors. The results are summarized in Figure 9.7(a) and (b), respectively. For similar

computation times, the MC approach obtained an average error of 0.28m while for our

new proposal this error reduces to 0.03m. Furthermore, in the second situation (similar

map errors) the average execution times are 3.9 and 32.4 ms per particle for the SOG

and MC solutions, respectively. Therefore, the new proposal outperforms [Bla08e] by

one order of magnitude in both efficiency and accuracy.

We also have analyzed the tolerance of both methods to outliers in the range data,

which in our approach are specially problematic if we get an outlier the first time a

beacon is observed, since we rely on this first range to initialize the map distribution

(see §9.3.1). With this purpose, we have set up an experiment simulating a highly noisy

sensor, σs = 1m, whose ratio of outliers is 30% the first time a beacon is observed and
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Figure 9.7: A comparison of the new presented approach (SOG) and the method in [Bla08e]
(MC). (a) Average beacon error (m) for similar computation time in both approaches. (b)
Average computation time per particle (ms) for similar final beacon errors. (c) Beacon errors
for a simulated sensor heavily corrupted with noise and outliers.
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5% otherwise. Outliers have been simulated by adding to the range measurements

a uniform noise between 1 and 10 meters. The average map error histograms for 50

repetitions are shown in Figure 9.7(c). In this case, a mean error of 1.12m is obtained

for the MC approximation, while the present approach achieves a significant reduction

to 0.32m. These better results of the SOG representation arise from the better adapt-

ability of Gaussian modes to newer observations, i.e. they can be “displaced”, even

recovering from a heavily corrupted initial distribution.

9.4.3 Evaluation with a 3-d map from a real dataset

Finally, we have applied our approach to a sequence of UWB range measurements

[FM07] within an indoor environment. The experimental setup consists of a Pioneer

mobile robot with a UWB transceiver onboard, while other three UWB devices act as

static radio beacons. The position of the three beacons has been measured manually

to provide the ground truth required to evaluate the results. In this case we have

employed the a priori knowledge that beacons are above the robot in order to limit the

map prior distribution to one half of the 3-d space, as discussed in section 9.3.1.

After completing one loop along the room, the estimates for all three beacons have

converged to unimodal distributions, as shown in Figure 9.8(b)–(c). In despite of the

noisy sensor (σs = 0.10m), it can be observed in Figure 9.8(a) how the errors in the

location of each beacon quickly vanish as the robot moves just a few meters. The

better estimation of the z-coordinate in the case of beacon #3 (refer to Figure 9.8(c))

is a consequence of its higher height relative to the robot, which makes the range

observations less ambiguous. The errors between the final beacon estimates (their

means) and the ground truth are summarized in Table 9.1.

Finally, observe in Figure 9.9(a)–(b) how the computational burden of the algorithm
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Figure 9.8: Results from data gathered by a real robot equipped with a UWB transceiver.
(a) Errors in each beacon estimated localization with respect to the ground truth. (b)–(c)
A bird-view and a 3-d representation of the final state of the filter, respectively. The map
shown is the one associated to the particle with the highest probability.
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Figure 9.9: Results from data gathered by a real robot equipped with a UWB transceiver.
(a)–(b) Overall number of Gaussians in the most likely map and computation time, respec-
tively, for each iteration of the algorithm.

Table 9.1: Summary of Errors for the 3-d Map Built from UWB Data

Beacon coordinate Ground truth (m) Estimate (m) Error (m)

x 0 -0.059 0.059
#1 y 0 -0.278 0.278

z 0.912 1.17 0.257

x -0.320 -0.392 0.072
#2 y 4.332 4.419 0.087

z 1.374 1.214 0.159

x 3.403 3.513 0.109
#3 y 2.802 2.740 0.062

z 2.175 2.108 0.067

decreases with time as the map estimate becomes more precise and fewer Gaussians

are required to represent the maps densities. Unlike in our previous MC-based ap-

proach [Bla08e], a reduced number of Gaussians will not lead to the degeneracy of the

filter. At the point of maximum complexity, just after initializing the three beacons,

the computation time is 6ms per particle. Thus, our method is efficient enough for

performing online on a real robot.
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9.4.4 Discussion

In this chapter we have presented a novel representation for the map conditional densi-

ties associated to the particles of a RBPF for RO-SLAM, which is based on a SOG. This

approach has revealed well-suited to the particular problems that arise in RO-SLAM,

being significantly more efficient and accurate than other alternatives based on MC

approximations. We have verified experimentally the robustness of the method against

readings heavily corrupted with noise and outliers, as well as its ability to build 3-d

maps from a real dataset gathered by UWB radio transceivers. Future research in this

line will address the problem of the dependency on odometry by analyzing alternatives

to the proposal density in the RBPF that do not rely on odometry. Another interesting

topic is the evaluation of other strategies to reduce the number of SOG modes, e.g.

enabling the fusion of Gaussian hypotheses.



CHAPTER 10

MEASURING UNCERTAINTY IN

SLAM AND EXPLORATION

“You should call it entropy, for two reasons. In the first place your uncertainty
function has been used in statistical mechanics under that name, so it already
has a name. In the second place, and more important, no one really knows what
entropy really is, so in a debate you will always have the advantage.“

Scientific American 1971, vol. 225, page 180.

John von Neumann

10.1 Introduction

As already made patent in previous chapters, Rao-Blackwellized Particle Filters (RBPFs)

[Dou00a] have been intensively employed in recent years to address the SLAM prob-

lem [Gri07b,Mon02a]. In this scheme, probability densities are maintained by a set

of weighted particles, each representing one hypothesis for the robot path. The Rao-

Blackwellization consists of deriving maps analytically from these paths, which reduces

149
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(a)

(b)

Start location

Most likely 

robot path

Current  path 

hypotheses

Figure 10.1: (a) The most likely map in RBPF mapping is the map associated to the
particle with the highest weight. (b) In this work we introduce the expected map (EM), an
average map where all particles are reflected in. The uncertainty of the RBPF in both the
robot path and the map content can be effectively determined by this new map.

the dimensionality of the SLAM problem (recall Eq. 7.0.1). The most likely path (and

therefore map) is usually considered to be the one associated to the particle with a

highest weight, as the example in Figure 10.1(a).

In general, SLAM methods passively process incoming sensor data and iteratively

update the estimates of the map and the path. However, the advantages of allowing the

robot to actively control its movements while building a map, that is, active exploration,

are well known and have been reported in the literature [Sim05, Sta04]. Exploration

methods aim at controlling a robot in unknown scenarios in such a way that the whole

environment is mapped while minimizing some cost function, such as the total traveled
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(a) (b)

(c) (d)

Uncertainty in 

the robot pose

Start

Figure 10.2: (a)–(b) The uncertainty in the robot pose while exploring an unknown envi-
ronment increases as long as it does not revisit a known area, as schematically illustrated
with uncertainty ellipses. If the robot explores a new corridor before closing the loop the
resulting map will be much more inaccurate (d) than if it first closes the loop to reduce its
uncertainty (c). Therefore, exploration methods should be favorable to perform loop closing.

distance [Bur00, Yam98] or the uncertainty in localization [Sta05b]. Regarding the

latter goal, to illustrate the potential impact of movement selection in the accuracy of

the resulting map, please consider the example in Figure 10.2(a) where a robot explores

an environment with a loop (this example was inspired by a similar experiment reported

in [Sta04]).

In Figure 10.2(b) the robot has traveled almost all the way round. The uncertainty

in the localization along the path increases as long as the robot does not revisit a

known area, where the registration between recent and past observations would reset

the accumulated errors [Lu97a]. This is schematically illustrated in Figure 10.2(b) with
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larger uncertainty ellipses for the robot pose as it moves further away from the origin.

Next, the corridor at the right can be explored, but we should consider the convenience

of previously closing the loop or not. In the first case, see Figure 10.2(c), revisiting

the known area drastically reduces the localization uncertainty, thus the final map will

be more precise than if the loop is not closed, which is the situation illustrated in

Figure 10.2(d). Notice that higher uncertainty in the localization makes more prob-

lematic the detection of future loop closures. Therefore, the mapping process will be

easier if the robot revisits known places as soon as possible to reduce its localization

uncertainty.

Apart from the uncertainty in the robot path, uncertainty also exists in the maps

due to the lack of knowledge about unexplored areas, the noisy nature of sensors and the

misalignment of observations taken from poses poorly localized. Thus, any integrated

approach considering SLAM and active exploration must take into account both uncer-

tainty sources when deciding movement actions: on the one hand, it is desirable to take

the robot towards unknown places in order to incorporate new information into the

map, but on the other hand this will usually decrease accuracy in the localization (until

revisit). Approaches in the literature quantify only one of these opposed factors, both

of them at a time, or propose some kind of combined measurements [Bou02, Sta05a].

The main concern in this chapter is that measuring the uncertainty of an RBPF is

a fundamental part of the techniques for mapping environments with multiple nested

loops [Sta05b,Sta04].

Therefore, in this chapter we introduce a new uncertainty measure that simultane-

ously considers the robot path and the map content. The key idea behind this method

is that of evaluating the consistency between individual maps from all the hypotheses

(particles) in an RBPF: since these maps are generated from each path hypothesis we

are also implicitly evaluating the consistency between the estimated paths. Recall that
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RBPFs address the full SLAM problem (recall Chapter 7) where each sample keep the

whole estimated path so it is able to reconstruct the associated metric map.

With the purpose of evaluating the consistency between hypotheses we introduce

the concept of the expected map (EM), a weighted average of maps computed from the

contribution of all the particles in the RBPF. As can be observed with the example

in Figure 10.1(b), inconsistencies between maps appear in an EM as blurred areas.

Instead of measuring the uncertainty in this map directly through its entropy (the

natural measure of uncertainty), it will be defined defined here the information (I)

and the mean information (MI) of a grid map. Both metrics are based on the entropy

but avoid some of its shortcomings when applied to grid maps. In particular, the

presented measures are independent of the grid map extent, while the MI is practically

independent of the map resolution for typical grid cell sizes too. Although both MI

and I can be applied to grid maps in general and not only to RBPF-based SLAM, they

will be analyzed here in the context of obtaining a measure of the uncertainty in the

EM of a given RBPF.

In summary, two different uncertainty measures are introduced in this chapter:

• The mean information of the EM (called here EMMI) provides an alternative

to the entropy of the robot path in applications such as loop closure detec-

tion [Sta04]. As will be discussed later on, the entropy of the path may not

become well-defined in the context of an RBPF due to the sparsity of the parti-

cle representation. This does not affect EMMI.

• The information of the EM (EMI) performs more appropriately than other mea-

sures (including EMMI) for the case of exploration using occupancy grid maps,

since actions aimed at closing loops are given more importance against the
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exploration of new areas when the current pose uncertainty is high. Bene-

fits of closing loops while exploring have been reported by other authors else-

where [Sta05b,Sta04].

It must be remarked that the presented methods are not a different way of com-

puting the joint entropy of an RBPF (defined below in §10.5.1), which has a unique,

well-defined mathematical definition. Instead, we propose an alternative way of mea-

suring the uncertainty in a RBPF by means of the entropy of a new variable (the

expected map) in order to avoid the undesirable property of the joint entropy of miss-

ing the opportunity to close loops in grid map-based exploration.

The organization of the rest of this chapter is now sketched. Firstly, we present a

review of previously-proposed uncertainty measures. Then, the EM is defined in the

general framework of SLAM and in the concrete case of an RBPF. The new information

metrics for grid maps is then presented in §10.4, and next it is compared to other

uncertainty measures. Finally, §emi:sect:Results contains some experimental results

for active exploration and loop-closure detection using the proposed measures.

10.2 Existing uncertainty measures in SLAM

Probabilistic approaches dominate the research in robot localization, map building and

active exploration. Classically, the most widely employed probabilistic representation

for robot poses has been the multivariate Gaussian distribution, where both a mean

pose vector and a covariance matrix are maintained [Dis01]. This approach can be used

in the contexts of position tracking (where the initial pose distribution is known), global

localization (there is no knowledge about the robot starting location) and landmarks-

based SLAM (both the pose of the robot and a set of landmarks are to be estimated).
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This latter perspective has been successfully addressed by Kalman or Extended Kalman

Filtering (KF [Kal60] and EKF [Jul97], respectively).

Uncertainty in these filters is related to their covariance matrices, thus the entropy

of such matrices becomes a natural uncertainty measurement [Bou02,Vla99]. However,

(i) the intractable growth in complexity of these filters of O(N2) for N landmarks, (ii)

their restrictive assumption of uni-modal Gaussian distributions and (iii) their inability

to deal with raw data (features must be firstly extracted), have led to the proposal of

more efficient approaches in the last years.

In this sense, particle filters have gained a huge popularity in the mainstream robotic

research since the usage of a limited number of particles assure a bounded computation

complexity. In the contexts of SLAM and active exploration, RBPFs represent a very

efficient solution, allowing us to simultaneously estimating both the robot poses (path)

and the map [Dou00a,Sta05a].

There are some proposed measurements for the uncertainty of the robot pose only

(ignoring the map), such as the volume covered by particles [Sta04] or the entropy of

the Gaussian distribution which approximates the particles [Sta05a]. A particularly

original proposal can be found in [Fox03], where the Kullback-Leibler distance (KLD)

is used to measure (and bound) the error caused by the approximation of the pose

distribution by a discrete set of particles.

Regarding the uncertainty in maps, entropy has also been employed as a mea-

sure for different map representations: point-clouds, landmarks, and occupancy grids

[Bou02, Sae05]. However, in RBPF-mapping we have multiple map hypotheses simul-

taneously. Thus, the entropy of maps needs a proper mechanism to explicitly consider

the consistency between hypotheses, a role played by the EM in the approach pre-

sented in this chapter and not found, to the best of our knowledge, in any previous

work. Although entropy is a founded measure of the information in maps, its direct
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use on these data has some important drawbacks, as exposed in the next section.

The methods mentioned above consider the uncertainty in either the robot pose or

the map separately. Others have proposed combined estimators which simultaneously

take into account both sources of uncertainty: it seems reasonable to think that taking

into account just one uncertainty source is inappropriate for active exploration if the

goal is obtaining both a good localization and a consistent map. In the work reported

in [Bou02], both entropies are computed separately and then weighted together, with

weights obtained experimentally. A more elegant method is reported in [Sta05a], which

computes the joint entropy of the two variables. In spite of this latter method being

mathematically founded, a number of problems discussed later on limits its utility

in practice. Interestingly, drawbacks to the usage of joint entropy as the basis for

an exploration policy are also discussed in [Sim05], where an alternative uncertainty

measure is presented for EKF-based exploration.

In the context of multi-robot exploration, Ko et al. proposed in [Ko03] two different

heuristic functions for the cases of exploring a new area and meeting another robot (an

event equivalent to a loop closure), while in [Bur00] other non-entropy based utility

functions are proposed to prevent different robots to explore the same areas.

From the methods discussed above, the joint entropy is used throughout this chapter

as a reference for comparisons, since it is one of the most significant in the context of

RBPF-based grid mapping.
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10.3 The expected-map (EM) of an RBPF

This section firstly sets out the employed mathematical variables and notation. Next,

we introduce the concept of the expected map (EM) for an RBPF and discuss its

properties.

10.3.1 Preliminary definitions

Assume a robot moving in a planar scenario whose location at time t can be described

by a 2-d pose xt. The real pose at each instant of time is unknown, but can be estimated

through sequential Bayesian filtering. Within an RBPF [Dou00a], we estimate the

probability density of the robot path xt = {x1, ..., xt} through a particle filter that

implements recursive Bayesian filtering, as explained in Chapter 7. For convenience of

the reader, the final expression for the estimation of the robot path is repeated here:

p(xt|zt, ut) ∝ p(zt|xt,m[i])

∫

· · ·
∫ ∞

−∞
p(xt|xt−1, ut)p(x

t−1|zt−1, ut−1)dxt−1 (10.3.1)

where the zt are sensor observations, and the ut are robot actions (typically incre-

mental displacements measured by odometry [Del99] or incremental range scan match-

ing [Hah03,Sta05b]).

One of the most popular representations for maps in the robotics community are

occupancy grids, widely employed during the last twenty years [Elf89,Gri07b,Mor88,

Mor85, Sta04, Thr03]. An occupancy grid map m is a discrete random field where

we store the occupancy probability for each cell, which we will denote as p(mxy) for

a cell with indexes 〈x, y〉. Under no prior information available about obstacles, the

occupancy probability for all cells can be initially set to 0.5: each cell can be either

occupied or free with the same probability. A grid map is updated by integrating sensor
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Figure 10.3: The probabilistic inverse model of a sensor estimates the occupancy of map
cells given that some reading zk (distance to obstacle) has been obtained. In the figure this
density is plotted for a laser range finder (and for a measurement of zk = 0.5m) as a function
of the distance from the sensor to cells.

measurements through the so called inverse sensor model [Thr05],

p(mxy|xt, zt) (10.3.2)

that is, the likelihood of the cellmxy being occupied, conditioned on a given observation

zt taken from a pose xt. Fusion of the current observation with the previous contents

of the map can be done on a Bayesian basis by using the following iterative expression:

p(mxy|xt, zt) =
(

1 +
1− p (mxy| xt−1, zt−1)

p (mxy| xt−1, zt−1)
· 1− p (mxy| xt, zt)

p (mxy| xt, zt)

)−1

(10.3.3)

which can be easily derived from the log-odds representation of the update process

[Mor88] if we assume an initial occupancy likelihood of 0.5 for all cells. Essentially,

Eq. (10.3.3) increases the certainty in the occupancy/freeness of a given cell if sub-

sequent observations confirm the current belief. The only density required to iterate

Eq. (10.3.3) is the inverse sensor model in Eq. (10.3.2). For the common case of a laser

range scanner we can consider a function like the one depicted in Figure 10.3.

At this point we have defined stochastic representations for both the robot path

and the map (in Eq. (10.3.1) and Eq. (10.3.3), respectively), thus we could compute
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their entropy values separately to measure their uncertainty. We propose instead to

build a new map, the EM, aimed both at revealing inconsistencies between the map

hypotheses in an RBPF and at measuring the overall uncertainty of the filter.

10.3.2 Definition of the expected map

The expected map (EM) is defined as the mathematical expectation of the probabil-

ity distribution of the map taken over all the possible paths, given by the posterior

p(xt|zt, ut), that is, the result of marginalizing out the robot path from the SLAM

posterior:

p(EM |zt, ut) .= Ext
[
p(m|xt, zt, ut)

]
(10.3.4)

In the context of SLAMwe know the posterior of the robot path, given by Eq. (10.3.1).

Thus, the definition of the EM above can be rewritten as:

p(EM |zt, ut) =
∫

· · ·
∫ ∞

−∞
p(m|xt, zt, ut)p(xt|zt, ut)dxt (10.3.5)

In the concrete case of RBPF-based SLAM and occupancy grid maps, the EM is

also a grid map where the occupancy of each cell EMxy can be obtained from the

contributions of all the map hypotheses in the RBPF, each one associated to a path

hypothesis, transforming the above integral into a sum:

p(EMxy|zt, ut) ≈
M∑

i=1

ω
[i]
k p(mxy|x[i],t, zt, ut) (10.3.6)

where M is the number of particles in the filter, and the ω
[i]
k are their associated im-

portance weights. The intuition behind Eq. (10.3.4)–(10.3.6) is that by contrasting the
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Figure 10.4: (a)–(b) Map hypotheses according to a pair of particles i and j, respectively.
(c) Their combination into an expected map (EM) reveals contradictory values for some cells
(like the one highlighted in the figure) by means of a value around 0.5 that reflects a high
occupancy uncertainty.

occupancy values of cells mxy at the same location (the same 〈x, y〉 indexes), but from

maps associated to different particles, we can test the coherence between hypotheses,

which can not be measured directly by other methods like the joint entropy (as shown

in section 10.5.2). The resulting map can be visualized as an image where sharp ar-

eas indicate information that is certain, whereas blurred regions involve uncertainty,

i.e. there are contradictory hypotheses about their content. This is illustrated in Fig-

ure 10.4(c), where we obtain an EM with uncertain occupancy values (close to 0.5) for

cells with contradictory content in the individual maps. Another example for real data

has been shown in Figure 10.1(b).

In the next section we define information metrics capable of measuring the informa-

tion into an EM. As expected, those measures assign a higher amount of information

to “sharp” than to “blurred” maps. If we think of the EM in an active exploration
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framework, it is clear that desirable actions are those ones leading to a gain of infor-

mation in the EM, caused either by the exploration of new areas or by the closure of

a long loop.

10.4 Information measures for grid maps

In the following we define two metrics which measure the information in a given oc-

cupancy grid map that we will apply, in particular, to EMs. Information theory es-

tablishes that the information associated to a random variable is related to its en-

tropy [Cov91]. Since each grid cell is a discrete random variable with two possible

outcomes, i.e. a Bernoulli distribution, its entropy is given by:

H(mxy) = −p(mxy) log p(mxy)− p̄(mxy) log p̄(mxy) (10.4.1)

with p̄(mxy) = 1 − p(mxy). Notice that the maximum attainable entropy is given for

p(mxy) = 0.5, that is, for unobserved cells. Assuming statistical independence between

cells, we can compute the entropy of the whole map m as:

H(m) =
∑

∀x,y
H(mxy) (10.4.2)

These equations for computing the entropy of a grid map have been widely used as

a measure of the information in maps [Bou02,Sta05a]. However, in practice it exhibits

the following drawbacks:

• Its absolute numerical value depends on the grid extent (the rectangular limits of

the map) instead of the actual observed area. Notice that Eq. (10.4.2) implies that
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all the unobserved cells in a map contribute to the entropy with their maximum

value of uncertainty.

• It also depends on the grid resolution, since that parameter settles (along with the

map extent) the total number of cells in the map. This means that the entropy of

any map with unobserved areas (all maps in practice) increases without bounds

when resolution increases. We must remark that corrective scale factors have

been proposed elsewhere to alleviate this problem [Sta06].

In order to overcome these drawbacks we define here the information (I) of a map

m as the following entropy-based measure:

I(m) =
∑

∀x,y
I(mxy) (bits) (10.4.3)

I(mxy) = 1−H(mxy)

where for convenience the entropy H(·) is computed using base-2 logarithms. As a

result we obtain a natural measure of information in units of bits. Noticeably, the

maximum information value (1 bit) for I(mxy) is given to a certainly occupied/free

cell, while the minimum value (0 bits) is associated to any unobserved cell. It is

evident that therefore the dependency of the entropy on the grid extent is avoided

using this definition of information: the limits of the map become irrelevant since all the

unobserved cells now contribute with a null information. Thus I(m) is a more practical

and normalized quantifier of the uncertainty in a map than the direct application of

the entropy.

In addition, the certainty of the content of a whole map m can be measured by the

mean information (MI), or Ī(m), defined as
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Figure 10.5: Examples illustrating the main properties of the MI (Ī).(a)–(b) Two observa-
tions and the MI value of the maps built from them separately. (c) When both are aligned
and fused in the same grid, the information value increases. (d) Inconsistencies due to poor
robot localization decrease the quality of the fused map, which is confirmed by a lower MI
value. In (e)–(g) the same map is shown for different cell resolutions, along with their MI
values. The MI values obtained for this environment are plotted in (h) for a wide range of
resolutions, from 128cm to 0.25cm. Observe the small change in the MI value when varying
the resolution of a map from 1cm to 10cm, which coincides with commonly used resolutions.
Thus, in practice, the MI can be regarded as resolution-independent for maps with cell size
smaller than 10cm.
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Ī (m) =

{

I(m)/Nobs , if Nobs > 0

0 , otherwise
(bits/cell) (10.4.4)

where Nobs represents the number of observed cells in the map, i.e. all those cells with

occupancy likelihood different from 0.5. This scale factor is aimed at bounding the

value of MI to the range [0, 1], whereas the straightforward computation of entropy

gives values that can increase without bound.

Consider the following example, which illustrates a key feature of the MI. Two ob-

servations are captured from different poses within the same environment, which sepa-

rately give rise to the maps shown in Figure 10.5(a)–(b). Alternatively, Figure 10.5(c)

shows an occupancy grid where both observations are fused by means of Eq. (10.3.3)

using the correct alignment. Here, each observation confirms the other one, thus oc-

cupancy values of cells are closer to 0 and 1 than in the previous maps made from

a single observation. Consequently, the MI of this map is greater than before since

we have more certain information. This behavior follows from the properties of the

information of a map as defined in Eq. (10.4.3), whose maximum value is obtained for

occupancy values of 0 and 1. To illustrate an opposed situation, please notice how

both observations are misaligned in Figure 10.5(d), which is given a lower MI value.

To sum up, we enumerate next the properties of our information metrics I and MI

that set them apart from the direct application of entropy to grid maps:

• An empty map (containing only unobserved cells) has a null information and a

null mean information.

• Both measures are independent of the grid map rectangular limits, since unob-

served cells do not contribute to the information in the map.

• The MI is mostly independent of the grid resolution for practical cell sizes. This is
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Figure 10.6: (a) A synthetic environment used to test the MI response against sensor noise
and localization errors. Observations have been simulated from the circled positions, a map
has been generated from them and then its MI computed. (b) The results for orientation
errors only and different levels of sensor noise. (c)–(e) The response of the MI against errors
in positioning (with the correct orientation). It can be noticed the higher selectivity for less
noisy measurements. Anyway, the maximum value is obtained in all cases for the correct
position and orientation, thus the results show the ability of the MI to reflect the consistency
between different observations.

shown in the maps of Figure 10.5(e)–(g), whose MI increases as we consider higher

resolutions. However, the MI asymptotically tends towards a maximum value,

as can be appreciated in Figure 10.5(h). This presents a remarkable difference

with the performance of the entropy, which in that case tends to infinite. The

asymptotic behavior of MI depends on the inverse sensor model, the specific

environment being mapped, and other factors. In appendix D we show how a

closed form expression can be derived for a given synthetic environment.

• The better the alignment between observations in the map, the higher the values

obtained for the MI, as can be observed in Figure 10.5(c)–(d). The intuitive idea

behind this property is that well-aligned observations make the occupancy of cells
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to tend toward either 0 or 1, which correspond to maximum information values.

This property is the key for the distinctive behavior of the EMMI uncertainty

estimator when closing a loop, as shown later on.

We discuss next the experiment summarized in Figure 10.6, which is aimed at

showing how we obtain high MI values for maps built from well aligned observations

(the last property from the list above). Simulation has been chosen here for knowing

the real robot pose and having the possibility of changing sensor parameters freely.

We have computed several sets of simulated observations (laser range scans) from the

surroundings of the circled positions marked in Figure 10.6(a), according to some given

errors in positioning (x, y) and orientation (θ). The observations are also corrupted

with an additive Gaussian noise of standard deviation σ. Next we compute the MI of

the grid map built from these observations following Eq. (10.3.3). The average results

are plotted separately in Figure 10.6(b)–(e) for errors in orientation and position, and

for different levels of sensor noise. As expected, the highest MI value is obtained for

the correctly aligned observations. We can also remark how more precise observations

(with lower error σ) lead to more selective MI values.

10.5 Comparison to other uncertainty measurements

In the following we compare the proposed uncertainty measures, namely the infor-

mation and mean information of the EM (EMI and EMMI, respectively) to other

entropy-based methods, such as the entropy of the robot path [Bur97,Roy99,Vla99],

the effective sample size (Neff ) [Liu96], and the path-map joint entropy [Sta05a]. We

provide here a theoretical discussion about their complexities and their expected behav-

iors in typical mapping situations, while experimental results supporting our proposal
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are shown in the next section.

10.5.1 Expected behaviors for the uncertainty measures

Before comparing the behavior of the different measures, it is convenient to consider

the expression of the joint entropy applied to RBPF [Sta05a], the method most related

to ours, to better understand its properties:

H(xt,m|zt, ut) = H(xt|zt, ut) +
∫ ∞

∞
p(xt|zt, ut)H(m|xt, zt, ut)dxt (10.5.1)

≈ H(xt|zt, ut) +
M∑

i=1

ω
[i]
k H(m|x[i],t, zt, ut)

It is clear that this measure is a composition of the entropy of the robot path

and the average entropy of individual maps p(m|x[i],t, zt, ut) weighted by ω
[i]
k for each

particle i. Three fundamental drawbacks can be pointed out from Eq. (10.5.1):

• The term that considers the entropy of the maps (the integral in Eq. (10.5.1))

dominates the overall value, hiding therefore the contribution of the path un-

certainty (the first term in that expression). The reason is that the former is

typically many orders of magnitude higher than the entropy of the path. In our

experiments, we have found a typical ratio between both terms in the order of

105.

• Only the content of individual maps determines the result, independently of

their mutual consistency: this method is unable to detect inconsistencies between

particles. In other words, the joint entropy is largely determined by the number

of observed cells in maps, being mostly independent of whether individual maps

contradict each other.
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• It is not clear how to compute the entropy of the robot path (the first term in

Eq. (10.5.1)) in an RBPF. We will consider here a good approximation of this

value based on fitting Gaussians to the robot pose at each time step and averaging

their entropy along the whole path, as proposed in [Roy99,Sta05a]. However, we

will also show below that this value can become undefined after closing a loop.

We now examine the theoretical behavior of the four uncertainty measures (EMI,

EMMI, Neff and joint entropy) for two distinctive situations that can occur while

performing mapping or exploration with RBPFs. The purpose of this comparison is to

show how the EMI and EMMI estimators represent a more reliable measure than the

others for selecting robot actions and detecting loop-closures, respectively.

Exploration of new areas

In this case, particles tend to spread in space while their weights remain practically

constant. As a result, the Neff of the RBPF remains practically constant, while the

entropy of the path raises due to the higher uncertainty in localization. Note that this

entropy is one of the components of the joint entropy, but in the case of exploring

new areas the increase in the grid map information by far compensates the increase of

uncertainty in the robot path, thus the overall value of the joint entropy raises while

exploring. Regarding our uncertainty measures, the information in the EM (the EMI)

increases too, but the number of observed cells grows as well. However, the increase in

the robot pose uncertainty continuously introduces small incoherences between indi-

vidual maps, which is reflected by decreasing EMMI values. Therefore, EMMI is worse

suited than EMI for detecting the increase in information that occurs when exploring

new terrain.
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Start

Current robot pose

Figure 10.7: An example of how the uncertainty in the robot path decreases when it goes
back traversing already known areas only. However, closing a loop implies a much more
drastic reduction of the uncertainty than going back through a known path. As discussed in
the text, our uncertainty measures clearly reflects the difference between both situations.

Loop closure

In SLAM, returning to an already known place through an unknown path is a special

case of revisit called loop closure – the other option for revisit (through an already

explored path) is illustrated in Figure 10.7. If the closed loop is long enough, typically

only a few particles will be close to the actual path. This will result in: (i) only a few

particles with non-negligible weights, (ii) particles will be resampled, and (iii) the pose

uncertainty will be largely reduced [Aru02,Gri07b]. It is clear here that both Neff and

the robot path entropy fall drastically. Since the path entropy is also a term of the

joint entropy (and the other term for the map contents remains practically constant in

this situation), we can conclude that the joint entropy also falls when closing a loop.

In practice both path and map entropies above break down due to the particle

approximation of the SLAM posterior. The reason is that typically only one hypothesis

survives to the resampling (print (ii) above) after closing a long loop (for example, refer

to [Sta04]). Thus, the covariance of the Gaussians fitted to the surviving robot path

estimate collapses to zero. Since the entropy of a d dimensional Gaussian x ∼ N (µ,Σ)

is given by:
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H(x) =
1

2
log((2πe)d|Σ|) (10.5.2)

this would imply a minus infinity entropy since |Σ| tends to zero – for instance, a

standard deviation of 1mm in x and y has an associated entropy of −10.98.

We believe that one solution to this numerical problem is to impose a lower limit to

the covariance of the robot pose, although in that case, the heuristically-chosen value

strongly determines the behavior of the joint entropy when applied to exploration.

We must highlight the small range of values for the path entropy in comparison to

the second term of the joint entropy (the uncertainty in maps), which makes that, in

practice, the content of maps determines the overall measurement of the uncertainty,

disregarding the uncertainty in the path.

Consider the following numerical example, which illustrates the problem of using the

joint entropy for choosing actions in exploration. A robot faces two potential actions,

which are evaluated trough the joint entropy. The first action closes a long loop and

reduces the robot pose uncertainty in x and y from 1m to 1mm (considering these values

as the standard deviations), whereas we predict that the second action will allow us

to explore a new area of 1m2 (100 grid cells for a 0.10m cell size). Straightforward

calculations 1 give us an expected reduction of the joint entropy of 13.82 and 69.3 for

the first and the second action, respectively. Obviously, closing the long loop is a much

more desirable action for the robot in that case than exploring a small area of new

terrain [Sim05, Sta04], thus the joint-entropy would not be a good choice for active

exploration.

1 First case: pose uncertainty is reduced. We have to evaluate Eq. (10.5.2) for 2-d Gaussians
with σ = 1 and σ = 0.001, then subtract the so-obtained entropies to obtain the information gain
∆H1 = −(2.84 − (−10.98)) = −13.82 nats. Second case: grid cells are observed. The maximum
entropy reduction per grid cell is 0.693 nats, thus for 100 cells we have ∆H2 = −69.3 nats. These
quantities were computed using natural logarithms instead of base-2 ones, but this fact is irrelevant
for the present argument. Note that nats are the units of information for natural logarithms.
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In contrast, the EMI of the RBPF after closing a loop always increases due to the

elimination of incoherent hypotheses (which in turn generate more “blurred” EMs),

the same reason that also makes the EMMI to raise. The particle depletion problem

does not affect our measures since the path hypotheses are taken into account through

the EM, which is always well defined.

10.5.2 Consistency detection between map hypotheses

We discuss now a key difference between how the EMMI and the joint path-map entropy

detect inconsistencies between the individual maps from each particle in an RBPF. In

the joint entropy, the entropy of the map contents H(m) contributes to the total value

averaged by the weights of the associated particles. In contrast, the EMMI considers

the entropy of the cells in the EM, which, in turn, are the weighted average of the maps

from each particle. Consequently, the EMMI computes the entropy of the average of

maps, whereas the joint entropy performs these operations in the opposite order.

To graphically see the important implications of this difference, Figure 10.8(a)–

(b) illustrate how the joint entropy fails to capture inconsistencies. Here, the graphs

show the entropy terms involved in each method for two equally probable particles,

each holding a hypothesis for the state of just one single cell of a grid map (these

simplifications have been taken just to enable the visualization of the results in 3-d).

The key observation is that inconsistencies such as one hypothesis stating that the

cell is free (a value near 0) and the other stating it is occupied (a value near 1) are

detected by EMMI as uncertainty, that is, a high entropy value (see Figure 10.8(b)).

In contrast, similar situations are assigned a low entropy value (high certainty) by the

joint entropy, as can be observed in Figure 10.8(a).
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Figure 10.8: Entropy terms involved in the paths-map joint entropy (a) and in the EMMI
(b) are plotted for the case of only two particles, as an example of how both approaches deal
with different hypotheses. It is clear that the first one considers as certain (low entropy)
contradictory values, like p1 = 0 (free cell) and p2 = 1 (occupied cell), whereas EMMI only
gives low entropy values when both likelihoods are alike (consistent).

10.5.3 Computational and storage complexity discussion

Regarding the computational time complexity of all these uncertainty measures, the

most efficient ones are the effective sample size Neff , with O(M), and the entropy

of the robot path, which involves O(ML) operations, being M and L the number of

particles and the length of the path, respectively. On the other hand, the joint entropy

has a complexity O(M(N + L)), where N is the number of cells in the grid. Clearly,

N will be the dominant quantity in practice, thus this complexity will tend toward

O(MN). Since each observation will modify only a limited area of the grid maps, we

can reduce even more the computation complexity of the joint entropy to O(M).

Unfortunately, the construction of the EM (required for the evaluation of the EMI

and EMMI measures) depends on the weights of the particle filter, hence it cannot be

simplified and the complexity of building the EM is always O(MN). This is the cost

to pay for detecting the consistency between different map hypotheses.

Concerning the storage demands, the methods presented in this chapter require the
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computation of one additional map, the EM, apart from the M maps associated to the

particles in the RBPF, whereas the joint entropy does not require this supplementary

storage. However, this cost is not significant since it implies keeping only M + 1 maps

instead of M , for M being the number of particles.

10.6 Experimental evaluation and discussion

In this section we provide an experimental validation of the presented uncertainty

measures through comparisons with other reported alternatives. Firstly, we perform

a statistical analysis of the EMMI measure in order to check its ability to detect loop

closures through the changes in the EM of the RBPF. Next we show how EMI can be

applied to active exploration and compare its performance to that of the joint path-map

entropy.

10.6.1 Characterization of loop closing detection with EMMI

Due to the stochastic nature of particle filters, it is necessary to carry out a number of

realizations of each RBPF simulation in order to obtain statistically significant results.

This is the reason why in the following experiment we have repeated the mapping

process 20 times (each realization takes 20 minutes in a 3.2GHz Pentium 4), leading to

a convenient comparison of the different uncertainty measures by means of their mean

values and variances. The experiment consists of an optimized RBPF [Gri07a] which

consumes data gathered by our robotic wheelchair SENA [Gon06a, Gon06b] in the

streets surrounding a building in our campus (see Figure 10.9). Sensory data consist

of odometry readings and scans gathered by a SICK laser range finder.

In this experiment the robot completes two laps around the building, a total traveled



174 Experimental evaluation and discussion

distance of 550m, at an average speed of 1.5m/sec. The most critical point is when

it closes the loop for the first time. Figures 10.9(a)–(d) represent the evolution of the

EM at some instants of time during one realization of the map-building process. The

“blurred” aspect of the EM is more perceptible as the robot gets farther along the

loop, until it definitively closes it. This closing approximately starts at time step 150,

where the uncertainty due to the particles dispersion starts to decrease. After that,

the path estimation and the map remain accurate while the robot travels again over

the same path. This illustrates the fact that the uncertainty continuously increases

while the robot explores unknown areas, and that it rapidly decreases when the loop

is closed. To measure these changes we have computed both the EMMI and the joint

entropy (theoretically compared in section 10.5). Additionally, the effective sample

size Neff and the 3σ(99.7%) confidence area occupied by the particles in the space

have also been computed for illustration purposes, although they are not founded

uncertainty estimators. Statistical results are plotted in Figure 10.9(e)–(h), where

mean values from the 20 experiments are shown in solid lines, and ±2σ confidence

intervals appear dashed. Note that these intervals are for fitted Gaussian distributions,

hence they can exceed the valid range of the variables, e.g. the upper confidence limit

in Figure 10.9(g) goes above 20 which is the maximum value, or the lower confidence

limit in Figure 10.9(h) which gets negative.

The evolution of the uncertainty estimators can be interpreted as follows. In the case

of the EMMI, it decreases (less certainty) while the robot travels along the loop for the

first time. After the loop closure, this estimator restores its high value (more certainty).

This behavior can be observed in Figure 10.9(e) in the first gradual decrease and the

posterior rise beyond time step 150. Notice how the EMMI remains practically constant

during the rest of the experiment. On the other hand, the joint entropy has shown

to be the estimator with the smallest variance, i.e. its values do not vary significantly
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Figure 10.9: The EM for some steps of the mapping process can be seen in (a)–(d). The
computed uncertainty estimators are the EMMI (e), the joint entropy (f), the effective sample
size (g), and the area occupied by the particles (h). The EMMI shows its ability to better
reflect the actual uncertainty of the RBPF than the others. These plots are the results of
20 realizations of the same mapping process. The mean values for all the estimators are
plotted as solid lines together with their 95.4% confidence intervals (±2σ using approximate
Gaussian fits) in dashed.
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between different runs. This is due to the dominance of the maps entropy in the

estimator, which only depends on the number of observed cells, being (practically)

independent of inconsistencies between hypotheses. Consequently, from the results

given by this measure, shown in Figure 10.9(f), we can only know that from step 150

to the end of the experiment, a small number of cells has been updated in the maps.

Notice that if we would use this estimator in active exploration to decide robot actions,

we could hardly distinguish between closing a loop or any other action that does not

involve exploration of a new area, e.g. going back along the traversed path, remaining

still,... This contrasts with the competent performance of the EMMI in this respect.

Regarding the results for the effective sample size (Neff ), it can occasionally reflect a

loop closure by means of restoring its maximum value due to an associated particles

resample. However, the exact moment at which a resample occurs depends on many

implementation parameters. Moreover, a resample can occur many times after a loop

closure, or even while exploring new areas, as previously discussed. All these facts are

reflected in the large variance observed in Figure 10.9(g). Moreover, its mean value is

not correlated at all with the actual mapping uncertainty.

The last computed estimator is the area occupied by particles in the space [Sta05b],

which we compute as the area of the 3D (2D plus heading) ellipsoid resulting from

approximating particles with a Gaussian distribution. Apart from this estimator not

being mathematically grounded, it does not take into account the map contents either.

This implies that, as an example, it can not distinguish between dispersed particles or

a few separate modes where particles concentrate. Furthermore, this estimator shows

a high variance (see Figure 10.9(h)) while the robot traverses the loop for the second

time, whereas the actual uncertainty keeps reduced since the first loop closure.

In these experiments, the time required to compute the EMMI of the RBPF in

a 3.2GHz Pentium 4 is about 127ms for a straightforward implementation in C++
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and 49ms for an optimized assembly version that exploits the highly parallel structure

underlying the EM computation (averaging maps from all the particles is the most

time consuming task in EMMI) by the Streaming SIMD Extension 2 (SSE2) instruc-

tion set [Inc99]. Our implementation of the joint entropy takes 210ms for the same

particle filter, although possibly more efficient algorithms could be implemented for its

computation.

10.6.2 EMI-based active exploration

To test the performance of EMI for selecting actions in active robot exploration, we

have chosen the information gain-guided exploration framework proposed by Stachniss

et al. in [Sta05a]. In short, the approach can be described as follows. At each time

step we generate a set of potential targets around the robot, each one being a potential

action. These points are generated using the most likely map from the RBPF and

taking into account the feasibility of the path given the size of the robot and the

potential existence of obstacles along that path.

In our implementation we employ a simple path planner that assumes a circular

robot and extracts collision-free paths according to a given occupancy grid map. Once

we have established those potential paths (actions), we predict the observations along

each one of them by means of ray tracing over the grid map. The observations for

each path are integrated into a copy of the RBPF, and the change in the uncertainty

of the RBPF determines the information gain of each potential action. The robot will

take the action with the highest utility value, which is computed by subtracting to the

information gain a cost proportional to the length of the path. The navigation towards

successive targets is performed by an obstacle avoidance method [Bla06c] that runs on

the robot in real-time and concurrently to the update of the RBPF for mapping.
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Figure 10.10: Three snapshots of certain moments during an exploration, when the robot
has to decide between a set of potential movement actions, marked in the left-hand images.
The utility assigned to each one of those actions is plotted both for our EMI measure and the
joint entropy in the right-hand graphs, whereas some of the expected maps (EMs) predicted
while evaluating the actions are shown in the middle. As discussed in the text, the third
decision clearly reflects that actions selected by the EMI are more advantageous.
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In our implementation, the gain in information is computed as the increment of

the EMI associated to the RBPF, although the decrease of the joint-entropy has been

also computed for comparison purposes. Finally, we must remark that for the sake of

efficiency, all the computations are performed just for the most likely particle. This

approach is acceptable as long as the robot does not transverse too long loops. In those

cases, more particles should be considered and the utility values averaged using the

particle weights.

In this real experiment, the robot starts in one of the corridors of an environment

containing a large loop, as shown in Figure 10.10. For each decision, the robot predicts

the EM after the execution of all the potential actions and chooses the action with

the highest utility value, as defined above. Some of the so predicted EMs are shown

in the middle graphs in Figure 10.10. It can be seen how it is typically predicted

that unobserved areas contain free space, which means a future increase in the map

information and therefore provides the motivation for exploring them. As the robot

gets farther from the starting point, as in the second row in Figure 10.10, the predicted

EMs contains areas more and more “blurred”, due to the increasing uncertainty in

the robot pose. It is noticeably that the utility values obtained from the EMI and

the joint entropy for the first and second decisions in Figure 10.10 are very similar to

each other. This means that, for actions involving the exploration of new areas, both

measures effectively detect which are the most advantageous actions: those leading to

the exploration of large unknown regions.

It is interesting to remark here that, as long as the predicted future observations

of the robot are random variables, so are the predicted RBPF weights and the corre-

sponding utility values. This helps to explain some apparently strange results in the

experiment, such as the assignment of quite different utility values to targets close to

each other (e.g. see targets #6 and #7 for the decision #12, or targets #7 and #8
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for decision #18). Although we have verified that in spite of not being a problem for

exploring relatively small scenarios, it could be solved by predicting future observations

a number of times and averaging the resulting utility values.

Consider now the third decision, the bottom row in Figure 10.10. There is a large

uncertainty in the robot path after traversing the whole loop, and some of the actions

include definitively closing the loop (see target #7, for example), whereas others imply

entering new areas to continue the exploration (such as target #12). Interestingly, in

this case we obtain quite different values from the EMI and the joint entropy, as can be

clearly observed in the bottom-right graphs in Figure 10.10. While the EMI assigns the

highest utility to one action that definitively closes the loop (notice the “sharp” EM

which is predicted for action #7), the joint entropy assigns the highest values to those

paths leading to unknown areas. This is due to the dominance in that measure of the

uncertainty in maps, as discussed throughout this chapter, which hides the potential

reduction of uncertainty in the robot path derived from the loop closure. Therefore,

we can conclude that EMI performs similarly to the joint entropy for exploration, with

the additional advantage that it detects much more clearly the possibilities for closing

loops, which reduces the overall uncertainty of the SLAM posterior in such a way that

the rest of the exploration will be easier than if loops are not closed.

10.6.3 Discussion

In this chapter we have motivated the need for measuring the uncertainty of an RBPF

solution to SLAM, which is required for tasks like detecting loop closure or active

exploration. We have highlighted the drawbacks of previously employed measures such

as the joint path-map entropy. As an alternative, it is proposed to construct the

expected map, a new map that condenses all the uncertainty in the RBPF, both for
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the map and the robot path. The information of this map is measured by the EMI of

the RBPF, which has some advantages in comparison to other measures for choosing

actions in active exploration. Moreover, we have also defined the EMMI, which can

be applied to the problem of detecting when to stop of actively following an already

traversed loop. A priori, it is unknown how much time the robot has to follow a

known loop for the incorrect particles to be discarded. To detect when to stop the loop

closing behavior, existing approaches either use the area covered by the particles or the

effective sample size [Sta04]. None of these methods consider the map contents. We

have presented experimental results that demonstrate that EMMI fits better to this

purpose than the other methods.
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Part III

Large-scale SLAM
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CHAPTER 11

OVERVIEW

In this chapter we will discuss the existing works in the fields of metric, topological,

and hybrid mapping, highlighting their relation to the new approach presented in this

thesis.

Pure metric approaches aim at reconstructing a representation of the environment

where the relevant information is the metrical arrangement and characteristics of the

map elements. Popular metric representations are landmark maps [Aya89,Dis01,Tar02,

Smi90], occupancy grids [Elf89, Gri07a,Mor85], and raw range scans [Gut99, Lu97a]

(please refer to [Thr02] for a more detailed classification). Some advantages of metric

maps are their direct relation with robotic sensors and their value for some tasks such

as motion planning or obstacle avoidance. There exist non-probabilistic approaches

for building metric maps [Gon94,Gut99, Lu97a], although most works rely on proba-

bilistic representations of the robot pose and the map and Bayesian filtering is used to
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estimate the corresponding probability distributions [Dis01,Smi90]. The hardest prob-

lem in those methods is data association (that is, establishing correspondences among

observations and the map) [Nei01], a problem that aggravates when the robot closes a

loop since the uncertainty in the robot pose and the map increases as the robot explores

new areas, i.e. the hardness of finding the correct data association increases with the

scale of the maps, and in turn, establishing wrong correspondences severely compro-

mises the consistency of the estimated maps. In fact, during the last years the research

on the consistency of EKF-like solutions for SLAM has gained interest, since the ap-

proximations introduced by linearizing and assuming Gaussian distributions are known

to impose a maximum length for a loop to be correctly closed [Bai06b, Cas04]. The

idea of partitioning the environment into a sequence of sub-maps has been proposed

as an improvement [Tar02,Paz07], and in fact it became one of the basic motivations

of our proposal, named Hybrid Metric Topological (HMT) SLAM.

As already discussed in this thesis, a popular approach to the above mentioned

problems of metric mapping is to employ RBPFs. Recall from Chapter 7 that, if

we denote the map as m, the robot path as x1:t (or xt for compactness), and the

robot actions and observations as ut and zt, respectively, we can observe the following

factorization of the SLAM posterior:

p(xt,m|ut, zt) = p(xt|ut, zt)p(m|xt, ut, zt) (11.0.1)

which is exploited in a RBPF and holds for any form of the probability densities. This

factorization shows that, if we estimate the robot path through a separate particle filter,

the map m can be estimated from the individual contributions of the observations zt

since they are conditionally independent given xt. This is supported by the structure of

the variables involved in SLAM, as was shown in Figure 7.1, which has been exploited
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successfully to build large maps both with occupancy grids [Gri07a] and landmarks

(FastSLAM [Mon02a]). However, the number of samples required in these particle

filters for closing a loop should be increased with the length of the loop (refer to §8.3),

which may eventually turn into a storage capacity limitation since each particle carries

a hypothesis of the whole map. Another limitation of RBPF for large-scale global

mapping is the loss of particle diversity when closing nested loops. Strategies exist

for alleviating these problems [Sta04, Sta05b], but in them the underlying hurdles are

just postponed. Another drawback of global mapping with RBPF is that the loss of

diversity after closing a long loop typically leads to the total loss of the robot path

uncertainty. An enlightening discussion about the problems of standard particle filters

for large-scale mapping was recently presented in [MC07].

In contrast to these pure metric approaches, building a topological map is an at-

tractive alternative due to, among other properties, the reduced storage requirements

and the good integration with symbolic planning of complex tasks in the AI liter-

ature [Cho01b, Dud91, Sav04]. However, pure topological maps are not suitable to

solve SLAM. Although Bayesian estimation has been reported recently for these maps

in [Ran06], there it is assumed a discrete set of “distinctive” places within the envi-

ronment which must be correctly detected whenever the robot passes close to them:

the only relevant sensory information is that of being close to a distinctive place or

not. We believe that a variety of sensors (like laser scanners, or cameras) can provide

the robot a more accurate pose estimation through local metric sub-maps than that

obtained by a purely topological approach, where most of the sensory data is simply

ignored.

So far, it seems an appealing approach that of considering hybrid maps1, where

1These maps are sometimes referenced as hierarchical maps in the SLAM literature. We use here
the alternative term “hybrid” to avoid confusion with pure topological graph representations that
involve abstraction processes, which are also usually called “hierarchical” [FM02,Gal04].



188

topological nodes can contain local metric information [Bos04, Est05, Kou04, Kui04,

Mod04, Tom03, Thr96]. In particular, the Atlas framework [Bos04] and the work on

hierarchical SLAM by Estrada et al. [Est05] contain interesting similarities with HMT-

SLAM: both reference uncertainty to local coordinate frames and represent maps as

topological graphs with local metric sub-maps. However, in these previous works loop

closure has been considered only under the metric point-of-view, i.e. by finding the

global metric coordinates transformation compatible with the loop closure. We will

show that considering the whole HMT path of the robot leads to important advantages.

In the rest of chapters within this part devoted to large-scale SLAM, we will in-

troduce our hybrid approach to SLAM (in Chapter 12) and other solutions that find

a direct application within the framework of HMT-SLAM. In particular, Chapter 13

deals with the partitioning of large metric maps into sub-maps, whereas Chapter 14

addresses the problem of detecting whether a pair of metric sub-maps can be registered

to each other.



CHAPTER 12

HYBRID METRIC

TOPOLOGICAL SLAM

“We can only see a short distance ahead, but we can see plenty there that
needs to be done.”

Computing machinery and intelligence. Mind (1950), vol. 59, pp. 433-460.

Alan Turing

12.1 Introduction

The common formulation of the SLAM problem consists of building some kind of

world representation from the sequence of data gathered by the robot, assuming no

prior information about the environment and simultaneously localizing the robot using

that representation. Different kinds of representations, or maps, have been proposed

in the robotics and the artificial intelligence literature, ranging from low-level metric

189
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maps, such as landmark maps [Dis01, Smi90] and occupancy grids [Elf89], to topo-

logical graphs which contain high-level qualitative information [Cor03,Kui90,Gal05],

even multi-hierarchies of successively higher-level abstractions [FM02]. While extant

techniques, including those presented in previous chapters, allow building maps of rel-

atively large areas, SLAM remains a largely unsolved problem in relation to high-level

representations and long-term operation within large-scale environments.

After an intense research during the last decade, it is clear that the most successful

methods for SLAM are those based on probabilistic Bayesian estimation, which can

manage well noisy measurements and uncertainty in the robot location, in the map,

and, for those based on particle filters, also in data association [Dis01,DW06,Mon02a,

Thr02, Thr05]. Therefore, our proposal is grounded on the robustness and accuracy

of techniques for metric localization and mapping within small-sized scenarios. In the

SLAM literature it has also been shown that large-scale environments can be divided

into areas of convenient sizes, where these techniques can be applied efficiently to

produce consistent local sub-maps [Bos04,Est05].

In this and subsequent chapters we will deal with the extension of existing SLAM

methods to large-scale scenarios. We will propose that the abovementioned division

of space must depend on the nature of sensors, in such a way that each area contains

portions of the environment that are very likely to be sensed by the robot simulta-

neously, whereas parts of different areas will be rarely or never observed at the same

time. We will employ for this purpose the method presented in Chapter 13, based

on this criterion of simultaneous visibility, or overlap. Notice that this kind of “area”

does not correspond to symbolic or semantic divisions as could be interpreted by a

human [MM07], such as a “corridor” or a “room”, but is based solely on the robot’s

sensory apparatus.

Using this definition of area, we introduce the concept of the hybrid metric-topological
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(HMT) path, which comprises the sequence of areas the robot has traversed (topologi-

cal part) and its pose within each of them (metric part). Therefore, our approach links

classical metric SLAM with topological (symbolic) representations typical of artificial

intelligence (AI) works.

By considering the posterior belief distribution of the whole HMT path, we can

obtain the probability distribution over all the potential topological structures of the

environment, an issue not addressed before simultaneously to the estimation of the

metric poses between, and within, the areas. The resulting probabilistic map, called

HMT map, represents the topology of the environment with graphs whose nodes (areas)

are annotated with metric sub-maps and whose arcs (connections between areas) are

annotated with the coordinate transformations between the corresponding areas. By

conditioning the belief distribution of the map to the knowledge of the HMT path,

we can represent these relative coordinate transformations in closed form, avoiding

by design some problems that appear in global mapping with particle filters [MC07,

Sta05b]. The need to avoid absolute coordinates when dealing with large maps has been

repeatedly claimed in the literature, due to the difficulty of appropriately representing

the uncertainty of poses far away from a global coordinate origin [Bos04,Est05,Fre06,

Tar02].

The presented approach, called HMT-SLAM, supports metric sub-maps of either

landmarks or occupancy grid-maps. In the context of occupancy grid mapping, it

naturally provides a correction of the robot path after closing large loops without

rebuilding any global metric map, which has been pointed out sometimes as a weakness

of grid-based, large-scale mapping.

Our work is related to some existing methods for hybrid mapping, specially to

Hierarchical SLAM [Est05] and to the Atlas framework [Bos04]. The fundamental

contributions of this new proposal in the context of these and other previous works



192 Introduction

are:

• The introduction of probability distributions over both the metric and the topo-

logical part of the robot path. Previous works have considered either the met-

ric [Gri07a,Mur99,Mon02a] or topological [Ran06] paths separately. Apart from

the mathematical consistency of a unified Bayesian approach, this formulation

supports multiple topological hypotheses, and can be factored in such a way that

allows the uncertainty of large maps to be maintained accurately.

• A statistically grounded principle for the separation of the map into sub-maps.

In [Est05], new sub-maps are started if the previous ones reach a given number

of landmarks, while in [Bos04] this is performed whenever a measure of the lo-

calization performance degrades. We propose instead to generate sub-maps that

minimize a given measure1 of covisibility or overlapping between groups of ob-

servations, which allows us to set a grounded statistical model for HMT-SLAM

as a Bayesian inference problem. Also, this provides the robot with topological

structures that do not depend on external engineered knowledge, but on its own

sensory system.

• In contrast to previous works (such as [Bos04]), in HMT-SLAM all the hybrid

map hypotheses are treated equally, associating different metric sub-maps to a

given area if there exist multiple hypotheses about the topological path followed

by the robot. This implies that the metric pose of the robot may be distributed

around multiple modes even for particles with the same topological position. Our

approach does not impose limits to the variety of the inferred distributions, whose

complexity will uniquely be determined by the ambiguity of the environment and

the uncertainty introduced by closing long loops.

1Ideally, the cross-covariances in the case of landmark maps.
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Finally, we should also highlight that the meaning of the topological part of an HMT

map strongly differs from that considered in many other works. In the literature we can

find works that consider distinctive places as nodes [Cho01b,Kui90,Kui04], while others

cut the map into disjoint areas [Est05,Thr96]. Instead, our approach is closer to those

where topological nodes are the result of abstracting robot observations gathered at a

given area [Bla06b,Ziv05]. Therefore, the size of the areas is automatically determined

by the nature of sensors, more concretely, by the overlap between observations [Bla06b].

As an example, exploring a single room with a narrow field-of-view camera may result

in many areas, whereas a wide-angle laser scanner might probably lead to only one.

This topic will be discussed in more detail in Chapter 13.

This chapter is structured as follows. Firstly, we provide in §12.2 the probabilistic

foundations for our approach, while some of its key elements are discussed in depth

in §12.3. A practical system that implements these ideas is presented in §12.4, and

experimental results with real robots in large-scale scenarios, as well as comparisons to

other approaches, are discussed in §12.5.
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Table 12.1: Summary of the notation employed in this chapter

Symbol Meaning

m The HMT map (an annotated graph).
aM The local metric map for the area a.
b
a∆ The coordinate origin of area b relative to that of area a.
st The robot HMT pose at time step t.

ut, ot The robot actions and hybrid observations at time step t.
st, ut, ot The sequences of robot poses, actions, and observations for time

steps 1 to t.
ist′ ,

i ut′ ,
i ot′ A convenient way of referencing the robot poses, actions, and obser-

vations grouped into the area i such as the first elements are given
for t′ = 0.

ist,i ut,i ot The sequences of all the corresponding variables up to time step t.
ψt, zt The area-dependant and metric observations, respectively.
γt, xt The topological and metric parts of st at time step t, respectively.
γt The topological path of the robot up to time step t.
Υt The set of all known areas at time step t.

s
[k]
t The k’th particle at time step t for the robot HMT pose.

ω
[k]
t Importance weight of the k’th particle at time step t.

12.2 Probabilistic foundations of HMT-SLAM

The present proposal for HMT-SLAM is grounded on the sparsity of the relations

existing among robot observations in a large environment: by our definition of area,

observations within a given area will be highly related to one another, while observa-

tions belonging to different areas will not. This fact has already been employed in a

number of works to ease the construction of landmark maps [Fre05,Liu03].

We start by defining an HMT map m of the environment as an annotated graph2

that comprises the 2-tuple:

2By “annotated graph” we mean a graph whose nodes and arcs can hold some non-topological infor-
mation. This is an informal version of the term “typed attributed graph” in the graph transformation
literature [Ehr04].
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m = 〈{iM}i∈Υt , {ba∆}a,b∈Υt〉 (12.2.1)

Here the iM are metric sub-maps for each area i ∈ Υt, where Υt stands for the set

of known areas at time step t. On the space of these hybrid maps, we will define beliefs

as probability distributions. The local maps and the coordinate transformations b
a∆

between the adjacent areas a and b are the annotations of the nodes and the arcs in

the graph, respectively. Although this is the only information relevant for the following

discussion, it is worth mentioning that the graph could also maintain data about the

kind each area is, the navigability between areas, or any other high-level knowledge

useful in graph-based planning or symbolic reasoning [Gal04].

We will consider conditional probability distributions over m given the information

gathered by the robot up to some time step, where each particle may contain in turn

different belief distributions for both the metrical sub-maps and the coordinate trans-

formations, and even a different number of nodes and arcs. Accordingly, the robot is

provided with a hybrid discrete-continuous description of its position within the map.

Let st = 〈γt, xt〉 denote the robot HMT pose at time step t, where the discrete variable

γt indexes the current area (node in the graph) while the continuous variable xt repre-

sents the metric pose relative to the local coordinate frame of that area, as represented

schematically in Figure 12.1.

We can now state the problem of HMT-SLAM as the estimation of the joint pos-

terior of the robot HMT path st and the map m given the sequences of robot actions

ut and observations ot up to time step t, that is:

p(st,m|ut, ot) (12.2.2)
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Figure 12.1: Each metric sub-map iM has its own local coordinate frame. The robot HMT
pose is thus a discrete-continuous variable which states both the current area (the node in
the topological part of the map) and the metric pose within the corresponding local frame.

As usual, we denote sequences of variables over time with superscripts, i.e. ut =

{u1, ..., ut}. We also define ot as containing the hybrid pair 〈ψt, zt〉 with the purpose

of conveniently setting metric observations zt (such as range scans or landmarks ex-

tracted from images) apart from topologically dependant observations ψt (such as the

recognition of a particular kind of area). This division renders especially useful when

facing the problem of global localization.

In this thesis, HMT-SLAM is addressed under the point-of-view of Bayesian se-

quential estimation, using the graphical model proposed in Figure 12.2. An alternative

approach is to estimate the whole HMT robot path at each time step, an idea that

needs to be developed in future works.

For clarity, the first time step at each segment of the path that form one area has

been denoted as 0, and we add the current area as a left superscript to the name of

variables, e.g. replacing st by
γtst′ where the primed t′ reflects that this is a different

time index than the ”global“ t.

We can observe the following interesting probabilistic properties in the structure of

HMT-SLAM under the proposed sequential estimation model.
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Figure 12.2: The graphical model for HMT-SLAM. Here segments of the robot path are
conditionally independent given the starting pose at each segment. The relative pose between
areas is represented by b

a∆, while the term iM stands for the metric sub-map of area i.

Proposition 1. Given the distribution of the robot HMT path st, and due to the

conditional independence between clusters of observations that belong to different

local sub-maps, the joint posterior of all the sub-maps i ∈ Υt can be factored as:

p({iM}i∈Υt |st, ut, ot) =
∏

i∈Υt

p(iM|ist,i ot) (12.2.3)

This property holds in general, regardless of the choice of the metric map repre-

sentation.

This conditional independence between the sub-maps given the robot path can be

clearly seen in Figure 12.2, where the robot path d -separates (see §2.10) all the possible

pairs of sub-maps.

Proposition 2. The metric sub-maps iM and the coordinate transformations ba∆ are

conditionally independent given the robot HMT path.



198 Probabilistic foundations of HMT-SLAM

This second property can be verified in Figure 12.2 by noticing that the robot path

also d -separates the set of metric sub-maps and the set of arc transformations b
a∆.

Proposition 3. The posterior distribution of the robot HMT path st can be factored

into the product of the posterior of its segments through the different areas i:

p(st|ut, ot) =
∏

i∈Υt

p(ist
′ |iut′ ,i ot′) (12.2.4)

The reason of this third property is that consecutive robot poses grouped into differ-

ent areas, like ast′ and
bs0 in Figure 12.2, become independent variables in our model.

This may seem surprising at first glance, since these poses will often represent close,

consecutive positions along the robot metric path, and they are actually related by a

robot action (e.g. odometry) and observations of roughly the same place. Thus, this

assumption of independence between pure metric poses might seem to certainly lead to

a significant loss of information. The key point here is that we assume their indepen-

dence as hybrid robot poses (metric plus topological), where the metric coordinates are

referenced to different local frames: the information from the last robot action (aut′ in

Figure 12.2) is not lost, but incorporated into the corresponding b
a∆ variable.

Nevertheless, it must be noticed that the cross-covariance between robot poses at

different areas is definitively lost in HMT-SLAM. In practice, partitioning the map will

rarely generate strictly independent observations between local maps, which renders

our approach as an approximate solution to SLAM. The loss of information, however,

can be minimized as much as desired by using grounded methods in the process of

deciding when to start a new area [Bla06b, Ziv05]. As a limit situation, if we desire

no loss of information at all, HMT-SLAM degenerates into the common global metric

SLAM.
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For simplicity, we also assume here that the methods for defining an area give us

roughly the same results independently of the concrete robot path to reach that area.

This is required for identifying two different areas as the same physical placement,

a requirement for closing loops at the topological level. Although this may lead to

sub-optimal partitions, our partitioning method will always generate the best ones in

terms of the maximum independence between observations. Our experimental results

show that, under the common assumption in SLAM of a quasistatic world, the present

approach to HMT-SLAM is appropriate for practical situations.

Based on the above probabilistic properties of HMT-SLAM, we propose the follow-

ing solution to the problem of estimating the posterior of Eq. (12.2.2). We start by

using the Rao-Blackwellization approach, described in Chapter 7, to first factor the

joint posterior into one component for the robot HMT path st and another one for the

map m:

p(st,m|ut, ot) = p(st|ut, ot)p(m|st, ut, ot) (12.2.5)

In this way we reduce the dimensionality of the joint path-map space to that of

the robot HMT path only (st), which can then be estimated using a particle filter.

Then, for each particle, it is computed the analytical conditioned distribution of the

map (m) associated to the corresponding path hypothesis. Writing down the analytical

part of Eq. (12.2.5), and given the conditional independence between the elements of

m (proposition 2 above), we have:

p(m|st, ut, ot) = p({iM}i∈Υt , {ba∆}a,b∈Υt |st, ut, ot)

= p({iM}i∈Υt |st, ot)p({ba∆}a,b∈Υt |st, ut, ot) (12.2.6)
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As shown in proposition 1, the first distribution in this product can be factored

and each sub-map computed using existing closed-form equations for landmark maps

[Mon02a] and occupancy grids [Mor88, Thr03]. The second element in Eq. (12.2.6)

is the joint posterior of the variables b
a∆. As typically done in the large-scale SLAM

literature, we use Gaussians to model these relative poses, that is:

b
a∆ ∼ N (ba∆̄,

b
aΣ) (12.2.7)

We can now perform a Bayesian fusion in closed-form for each arc b
a∆ in the HMT

map simply by 3 :

p(ba∆|st, ut, ot) ∝
L∏

j=1

N (ba∆̄
′
j,
b
aΣ

′
j) (12.2.8)

where L is the number of times the robot has moved between the areas a and b. The

parameters of the j’th Gaussian in Eq. (12.2.8) can be obtained from the metric path

of the robot (when the robot explores new areas), or from map alignment procedures

(when considering the hypothesis of a topological loop closure). This means that each

time the robot moves between a given pair of areas, the estimation of their relative

pose is refined and the uncertainty is thus reduced. Note as well that each variable b
a∆

can be estimated independently as a consequence of proposition 3, which is consistent

with the construction of a map of relative poses. Therefore,

p({ba∆}|st, ut, ot) =
∏

a,b

p(ba∆|st, ut, ot) (12.2.9)

3This simple equation can be derived by considering the estimation of each arc value b
a∆ as a

Kalman filter (KF) where each loop closure in HMT-SLAM becomes an observation for this ”auxiliary
KF”. Operating on the usual KF equations one arrives at Eq. (12.2.8).
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Now we address the non-analytical estimation of the robot path, the first term in

Eq. (12.2.5). We estimate this posterior sequentially by Bayesian filtering:

p(st|ut, ot) ∝ p(ot|st, ut, ot−1)p(st|ut, ot−1) (12.2.10)

Like in [Ran06], a particle filter is employed as a convenient representation of the

topological part of the robot path (γt). Therefore, if we assume a set of P weighted

particles distributed approximately according to the posterior for time step t− 1:

{st−1,[k]}k=1..P ∼ p(st−1|ut−1, ot−1) (12.2.11)

we can sequentially generate the particles for the next time step t by drawing sam-

ples from a given proposal distribution q(st|st−1, ot, ut) and updating the importance

weights ω
[k]
t accordingly. We consider here the optimal proposal for each particle to

be p(st|st−1,[k], ot, ut), which has been demonstrated to minimize the variance of the

weights as discussed in chapters 4 and 8. Having an exact expression for this proposal

means that the generated particles will be distributed according to the true posterior.

As shown in the derivation in Eq. (12.2.12) below, we can put the optimal proposal for

our particle filter in a form that allows us to sample a new particle s
[k]
t in two steps:

firstly, to draw the topological position γ
[k]
t using a topological transition model (dis-

cussed in a later section), and then, to draw the metric pose x
[k]
t from the conditional

distribution of the obtained topological position.
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s
[k]
t =

〈

γ
[k]
t , x

[k]
t

〉

∼ q
(
st|st−1,[k], ut, ot

)

= p
(
st|st−1,[k], ut, ot

) Bayes∝ p
(
st|st−1,[k], ut, ot−1

)
p
(
ot|st, st−1,[k], ut, ot−1

)

= p
(
γt, xt|st−1,[k], ut, ot−1

)

Independence between zt and ψt
︷ ︸︸ ︷

p
(
zt|st, st−1,[k], ut, ot−1

)
p
(
ψt|γt, st−1,[k], ut, ot−1

)

=

Definition of conditional probability
︷ ︸︸ ︷

P
(
γt|st−1,[k], ut, ot−1

)
p
(
xt|γt, st−1,[k], ut, ot−1

)
·

p
(
zt|st, st−1,[k], ut, ot−1

)
p
(
ψt|γt, st−1,[k], ut, ot−1

)

−→
1st step: γ

[k]
t ∼ P

(
γt|st−1,[k], ut, ot−1

)
p
(
ψt|γt, st−1,[k], ut, ot−1

)

2nd step: x
[k]
t ∼ p

(

xt|γ[k]t , st−1,[k], ut, ot−1
)

p
(

zt|xt, γ[k]t , st−1,[k], ut, ot−1
)(12.2.12)

This procedure is supported by our knowledge of the conditioned density of the

metric pose given the topological position. The metric sample can be obtained from

exact equations for landmark maps [Mon03b] or from approximations for occupancy

grids [Gri07a]. This process is repeated for each time step, performing resampling

[Rub88] whenever the effective sample size [Liu96] of the RBPF falls below a given

threshold, e.g. the 50%. Drawing hypotheses for the topological position γt is arguably

the most complex step in HMT-SLAM. Later on we discuss an implementation aiming

at real-time execution which has given good results.

Observe that each hypothesis of the topological path γt implies a different topolog-

ical structure of the environment (and thus, a different hypothesis for m) by means of

rearranging the sequence of areas traversed by the robot [Ran06]. Since each particle

may maintain a different HMT hypothesis, we have a probability distribution over the

possible topologies of the map, as illustrated with a few examples in Figure 12.3.
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Figure 12.3: Our approach takes the sequence of areas traversed by the robot (on the
top), and estimates the topological structure of the environment by considering some of
the potential rearrangements of the sequence. The bottom graphs show some examples
of partitions (rearrangements), the associated topological paths γt, and the resulting map
topologies.

12.3 Relevant elements in HMT-SLAM

After discussing the theoretical foundations of HMT-SLAM, in this section we deal

with some practical issues such as the topological transition model or how to obtain a

global map from an HMT map.

12.3.1 The transition model of the topological position

A fundamental part of HMT-SLAM is the estimation of the topological path of the

robot. In this thesis this problem has been addressed sequentially via particle filter-

ing and considering the optimal proposal distribution [Dou00b] for generating new hy-

potheses. As shown in Eq. (12.2.12), this leads to drawing samples γ
[k]
t from the product

of two terms: the transition model of the topological position P
(
γt|st−1,[k], ut, ot−1

)
, de-

noted in the following as P
(
γt|d[k]

)
for clarity, and the appearance observation model
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Figure 12.4: An auxiliary graph of robot observations can be used to detect when the robot
enters into a new area through graph bisection techniques.

p
(
ψt|γt, st−1,[k], ut, ot−1

)
. Some possible implementations of the latter have been re-

ported by other authors [Cum07], although that part has not been integrated in the

present work yet.

Due to its discrete nature, the topological transition model assigns a probability to

a reduced number of potential events:

• To stay at the same topological area (simply γ
[k]
t = γ

[k]
t−1).

• To enter into an unexplored area, γ
[k]
t /∈ Υt−1.

• To close a topological loop, that is, γ
[k]
t ∈ Υt−1 with γ

[k]
t 6= γ

[k]
t−1.

The topological position of the robot γt is therefore a piecewise constant sequence

over time t. For example, consider the robot path shown in Figure 12.4, where the

robot topological pose is a or b in the two separate parts of the path.

Therefore, it is essential to recognize the transitions of the robot from one area

to the another, what can be achieved by existing methods for partitioning a sequence

of robot observations that minimize some measure of similarity or overlapping be-

tween them (the exact measure to minimize may depend on the actual sensors and
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map representations [Bla06b,Ziv05]). In short, this method builds an auxiliary graph

whose nodes are the robot poses where observations were taken, and whose undirected

weighted arcs keep the measure of similarity between the observations, as represented

in Figure 12.4. Then, the minimum normalized cut of that graph can be computed by

means of spectral bisection [Shi00]. Lower cut values mean weaker relation between

the observations in the two subgraphs. A more detailed exposition of this process will

be given in Chapter 13. Thus, the robot has moved to a different area if the resulting

cut is below a certain limit that settles the maximum allowed dependence between

adjacent sub-maps. If such a partitioning happens, the immediate past of the robot

path is updated to the new topological position. Note that this process needs to be

done only once for groups of particles that share the same topological path.

Going back to the topological transition model, we can now specify that when the

above partitioning method does not find a sufficiently independent partition of the

auxiliary graph (that is, the robot has not entered a new area), we have P
(
γt|d[k]

)
= 1

for γt = γ
[k]
t−1, and P

(
γt|d[k]

)
= 0 otherwise. In contrast, when a new area is entered,

the transition model considers the possibility of the robot having closed a loop by

means of P
(
γ|d[k]

)
∝ F (γ), and the possibility of having entered into an unexplored

area by F (γ′) = η, where η is a constant (all the probabilities are scaled such as they

sum up to unity). The function F (γ) provides a measure of how likely it is to have

arrived at the previously known area γ through a loop closure. This measure should

incorporate the metric information of the arcs along the topological path between

the two nodes (refer to Figure 12.5), although it could also rely on some high-level

topological reasoning [Dud91, Rem04]. An interesting choice for this function is the

likelihood of the last observations in relation to the metric sub-map of the candidate

area γ.

Notice that we will need the exact robot pose after closing the loop to compute
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Figure 12.5: Is the robot after the loop defined by the solid arcs at area a or at f? The
topological transition model assigns a probability to each of these possibilities by accounting
for the robot observations and the prior metric information (and uncertainty) contained in
the arcs of the HMT map.

this measure, which might seem problematic since the aim of this computation was just

determining potential loop closures! One of the possible ways to overcome this is to

follow the grid matching method described in Chapter 14, suitable to the case of metric

maps given as grid maps. Only some of the areas γ will be determined as potential loop

closures by the grid matching procedure, and in those cases an estimate of the robot

pose after the loop closure will be obtained which can then be employed to evaluate

the above-mentioned observation likelihoods needed to compute F (γ). It should be

remarked that the grid-matching must not be evaluated against all the existing areas

in the HMT map, but only to those with a reasonable probability of overlapping the

current topological area. This can be easily determined by taking into account the

extension of grid maps and their relative positions b
a∆, whose pdf computation is de-

scribed in §12.3.3. Notice that as the number of areas in an HMT map increases, so

does the time complexity of determining potential topological loop closures. This is a
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complex issue which requires further research. One of the enhancements that needs to

be explored is the usage of additional hierarchy levels of areas [Gal04]: for instance, a

second level of abstraction might collect all the areas within a ”building“ in such a way

that when a robot searches for loop closure candidates it should automatically discard

all those out of the current ”building“.

To sum up, the procedure described in this section assures that loop-closure can-

didates are within the scope of the metric uncertainty of the HMT map and they also

provide a good prediction of the last observations.

12.3.2 Probability distribution over topologies

Although it is not needed by HMT-SLAM, it is sometimes desirable to compute the

discrete probability mass function (PMF) of the topological path γt, for example for

visualizing the topological structure hypotheses considered by the filter at a certain

instant of time. This operation can be achieved by marginalization, which for our

particle filter simply becomes:

P (γt = γ̃t|ut, ot) =
∑

k∈Ω
ω
[k]
t ,Ω = {k : γt,[k] = γ̃t} (12.3.1)

for each desired value of γ̃t. Some examples of these distributions will be shown later

on in Figure 12.9.

12.3.3 Recovering global metric maps from HMT maps

During the normal operation of the robot using HMT-SLAM it will usually be enough

to reference the robot coordinates to the coordinate frame of the current area. However,

we could desire sometimes to compute absolute coordinates relative to some arbitrary
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Figure 12.6: (a) An example of an HMT map after closing a loop. (b) A tree representation
for finding the shortest path from node 1 to any other node. (c)–(d) The global map and the
uncertainty for each area obtained by using the shortest-path method for computing global
coordinates. (e)–(f) The same map obtained by using a globally consistent method. The
ellipses represent 95% confidence intervals magnified by factor 5 for clarity.

reference, for example for constructing a global map for debugging or simple visualiza-

tion. We describe next two possible methods for computing the absolute coordinates

of all the areas of a map taking one of them as reference.

The first approach, proposed by Bosse et al. in [Bos03] and adopted in an early

version of our approach [Bla07b], consists of applying the Dijkstra algorithm for finding

the shortest topological path from the reference area to the rest. In this way, the

topological part of an HMT map is transformed into a tree that encodes all these

“optimal” paths, as shown with an example in Figure 12.6(a)–(b). If we denote the

reference area as a, and the area we are interested in as b, we will find the corresponding
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coordinate transformation b
a∆ in the HMT map only if a and b are adjacent areas.

Otherwise, this pose can be computed by sequentially composing pose changes along

the shortest topological path {a, 1, 2, 3, ..., n, b}, that is:

b
a∆ = 1

a∆⊕ 2
1∆⊕ ...⊕ b

n∆ (12.3.2)

where ⊕ is the metric pose composition operator [Smi88]. Given the conditional in-

dependence between all the relative poses along the topological path, a Monte Carlo

simulation can be employed to generate samples of ba∆ from independent samples of all

the elements in Eq. (12.3.2). The problem with this approach is that the existence of

loops leads to inconsistent global coordinates, since the global coordinates of two adja-

cent areas may be computed using completely separate topological paths. To illustrate

this issue, please refer to Figure 12.6(c)–(d), which represent the global coordinates and

the associated uncertainties for each area of a real HMT map. The information in the

arc between nodes 10 and 11 has not been considered by the shortest-path approach,

hence we find an inconsistency in the resulting map between these two areas.

To solve this, we propose the alternative approach of applying methods for globally

consistent pose estimation that has been reported in the past for networks of laser

scans [Lu97a]. In this kind of methods, we iteratively compute the approximate optimal

poses of all the nodes by minimizing the linearized version of a cost function which

includes all the constraints between adjacent areas. This algorithm typically converges

in a few iterations, and the so obtained global maps are free of inconsistencies, as can

be observed for our example in Figure 12.6(e)–(f). This is the method employed for

the rest of global maps shown in the figures.
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12.3.4 Long-Term Operation

It is worth to highlight a crucial property of HMT-SLAM that makes it specially

suitable for the long-term operation of a mobile robot. The statement of HMT-SLAM

as the estimation of the density in Eq. (12.2.2) includes the robot HMT path st, whose

dimensionality always increases over time. In this sense, it may seem that our approach

suffers from the same problem that global mapping with RBPFs, i.e. performing

estimation into a state-space of unbounded dimensionality. However, hypotheses for

the whole topological path γt can be forgotten until the point where the differences

between the particles begin. That is, if at a given instant of time all the particles agree

about the current topological structure, there is no need to maintain in memory several

map topologies with their corresponding metric local maps. Unlike the case of purely

metric SLAM, this does not mean a loss of the estimated uncertainty along the robot

path, since in HMT-SLAM this spatial uncertainty is maintained in a parameterized

form by the conditional distributions for b
a∆ (refer to Eq. (12.2.8)).

12.4 Implementation framework

In §§12.2–12.3 we have introduced the theoretic formalization of HMT-SLAM. In the

following we present a practical framework which implements those ideas. A relevant

issue here is that a mobile robot may demand accurate metric localization in hard real-

time (e.g. for navigation or manipulation purposes), while maintaining the consistency

of the topological map (i.e. solving loop closures) can be performed in the “background”

since reasonable delays are acceptable.

An overview of the proposed framework is presented in Figure 12.7, where we can

observe its layered structure. Metric local SLAM is performed at the low level, while
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Figure 12.7: Overview of the implementation proposed as a practical solution to HMT-
SLAM. Here local metric SLAM is solved efficiently in real-time, while the topological struc-
ture of the map is estimated concurrently in a delayed fashion. In this way we prioritize the
update of the metric position of the robot within the current area. Please refer to the text
for further details.

topological representations are managed at the upper levels. Symbolic reasoning or

task planning would fit in additional layers above these. The inputs to the system are

actions ut (typically produced by a planning level), and observations ot (acquired by

the robot), which are kept in a time-stamp-ordered queue until they can be processed.

Within the system, there are a number of processes running concurrently which interact

by means of read and write operations on the data held in the three levels represented in

Figure 12.7: the local metric map of the current area, the sequence of traversed areas,

and the space of topological path hypotheses. It must be remarked the parallel nature

of the system, that is, the processes do not need to run in a predefined, sequential

order. Next we describe these processes and their relations with the theory presented

previously.
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Metric SLAM: It handles the robot localization and mapping within the metric sub-

map for the current area by processing actions and observations. Conceptually, this

process is involved in estimating the metric part of Eq. (12.2.12). For occupancy grids,

RBPFs have a complexity linear with the number of particles. Therefore, for a static

number of particles we have a constant computation time independently of the size of

the local area, which is a requisite if we desire a hard real-time estimation. In practice,

we would need a variable number of particles depending on the number of topological

path hypotheses considered at each instant of time, which may increase after closing

long loops. If we want this metric SLAM to have a bounded time complexity even in

those cases we could impose a maximum number of particles in the filter, at the cost of

disregarding the most unlikely topological hypotheses in the TSBI process (described

below).

Area Abstraction Mechanism (AAM): Grounded methods are applied here to detect

clusters of (approximately) independent observations in the sequence of observations

gathered by the robot [Bla06b], as briefly described in §12.3.1 and addressed in depth

in Chapter 13.

Topological Space Bayesian Inference (TSBI): The topological transition model

described in §12.3.1 is applied here whenever the AAM detects that the robot has

moved into a new area. In our current implementation, the local metric-maps for the

particles are not updated until TSBI gives us the hypotheses for the new topological

position of the robot. Once the topological transition model has been evaluated, all

the particles are updated to account for the changes, which includes changing the

coordinate references, removing part of the current metric sub-map in the case of

entering into a new area, and in the case of a loop closure, loading the contents of

the known area into the sub-map. Regarding the computational complexity of the

TSBI, a straight-forward implementation exhibits quadratic complexity in the number
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of known areas |Υt|. This complexity is imposed by the Dijkstra algorithm used in the

computation of the a priori metric information (see 12.3.1).

Topological Loop Closure Acceptance (TLCA): As discussed above, it is unpractical

to keep the whole history of the hybrid path for long-term operation. The TLCA

process is in charge of accepting part of the topological structure as definitively correct.

To avoid the risk of losing the valid (unknown) hypothesis in this process, it only

operates when the system contains highly dominant (or unique) hypotheses for the

robot topological path γt.

Real Time Localization (RTL): This process guarantees an estimation of the robot

position in a timely fashion, if that is really needed. Notice that this stage is optional

and it not specificaly linked to our HMT-SLAM proposal: this stage might be perfectly

applicable to any other SLAM method as well. Here, if the input queue of actions and

observations is empty, the best estimation of the HMT pose st has been already updated

by our HMT-SLAM algorithm. On the contrary, when there are pending actions in the

queue, the RTL computes the next prior distribution, e.g. p(st+1|st, ut+1), as a more

updated estimation of the actual robot pose. We can easily compute this prior for

the robot metric pose in real-time, for example, by accumulating odometry readings.

The obtained pose estimations will not be the optimal ones, but as long as the metric

SLAM process updates its estimation in a timely fashion, the estimate from RTL will

be simultaneously accurate, and fast to obtain.
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12.5 Experimental evaluation and discussion

12.5.1 Experimental results

We have tested our implementation of HMT-SLAM with two different datasets, both

comprised of odometry readings and laser range scans taken in large planar scenarios

containing several loops. The first dataset [Bla07a] was gathered by the thesis author

at one of the campuses of the University of Málaga, and contains almost 5000 laser

scans collected along a 2km path. The second dataset was recorded at the Edmonton

Convention Centre (Canada) by Nicholas Roy, and is freely available online [How03].

For illustrating the experiments, the resulting HMT maps for both datasets are

shown in Figure 12.8(a)–(b) as global maps (recall §12.3.3), taking the first area in

each map as the reference. Videos describing these experiments can also be found

online4. We overlap on the maps the most likely topological structure inferred by

our approach to visualize the topological nodes and arcs. In contrast to global metric

mapping with RBPF, our approach is able to maintain the uncertainty in all the relative

poses between the areas, as can be seen with the (globally consistent) uncertainties

represented in Figure 12.8(d). Recall that in RBPF-based global mapping without an

adaptive number of samples, resampling steps eventually lead to a total loss of the

represented uncertainty.

To compare the efficiency of other methods to our HMT-SLAM implementation, we

have fed the same datasets into an efficient RBPF-based technique for (global) metric

mapping [Gri07a]. The performances in computation time and memory requirements

are summarized in Table 12.2. These values have been obtained for a 2.0GHz Pentium

M (1Gb RAM) and for occupancy grid maps with a cell size of 12cm. It is noticeable

4Please, refer to the videos http://www.youtube.com/watch?v=i8lQdK6oRn0 and
http://www.youtube.com/watch?v=PRHu5Py9GHo .

http://www.youtube.com/watch?v=i8lQdK6oRn0
http://www.youtube.com/watch?v=PRHu5Py9GHo
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Figure 12.8: (a)–(b) The HMT maps generated from the Málaga and Edmonton datasets,
respectively, shown as global maps relative to the first topological area (labeled as ’1’). (c) The
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the memory requirements over time between our approach and metric mapping with RBPF,
both for the Málaga map.
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Table 12.2: Comparison of Total Memory and Computation Time Requirements Between
a Global Metric RBPF and HMT-SLAM

Method Málaga dataset Edmonton dataset

Global RBPF 197Mb, 103min 84Mb, 39min

HMT-SLAM 36Mb, 26min 28Mb, 8min

that HMT-SLAM outperforms global RBPF for both datasets. The improvement in

the memory requirements follows from the fact that in our implementation of HMT-

SLAM, each particle carries, apart from the topological path hypothesis, a metric map

for the current area only, while the sub-maps of previous areas are kept in a compact

form [Gri07b]. In the global RBPF, each particle carries a hypothesis of the whole

metric map. Therefore, the storage efficiency of an HMT map in contrast to a global

RBPF becomes more and more relevant for increasingly larger environments. This

conclusion is supported by the evolution of the memory requirements over time for the

Málaga dataset, plotted in Figure 12.8(e). Regarding the lower computation time of

our approach, it is a direct consequence of the reduced number of particles (we use

15 of them). However, with only a few particles in our approach we can achieve a

representation of uncertainty better than the one attainable by a global RBPF with

a practical number of particles (e.g. around 100). This turns into more precise loop

closures and a more reliable representation of uncertainty.

To get an approximate idea of the time consumed by each of the processes within our

implementation (described in §12.4) we have measured their average time per action-

observation pair in the datasets. As can be seen in Figure 12.8(c), the SLAM and AAM

processes take roughly the same time in both datasets, while there are large differences

for TSBI and TLCA. This reflects the fact that these latter two become more time

consuming for a higher number of topological areas and potential loop closures, hence
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they take much more time in the Málaga dataset than in the Edmonton dataset. Note

that the RTL process has not been included in these experiments since they have been

performed off-line. Nevertheless, it involves a negligible complexity in comparison to

the rest.

It is interesting that for both datasets our method quickly converges to the correct

topology after each loop closure. To visualize this, consider the first closure of a long

loop in the Málaga dataset, where the robot leaves the area labeled as ’14’ and reenters

the area ’1’ (refer to Figure 12.8(a)). Then, two hypotheses for the robot topological

location are generated: a new, unexplored area (’15’), and an existing area that closes

the loop (’1’). The intuitive idea of the expected behavior of our filter at this point

is that the actual topological hypothesis will fit better to the robot observations, thus

it will be assigned higher likelihood values within the particle filter that estimates the

robot hybrid path st. Eventually, the correct hypothesis will become much more likely

than the rest, which will be ultimately removed by resampling. This process is clearly

observable in Figure 12.9, where we represent the effective sample size (ESS) [Liu96] of

the filter and the marginal PMF of the topology over time. In these graphs we can see

how before time t1 there is a unique hypothesis for the topological position (area ’14’),

and next two possibilities are considered: an unexplored area ’15’ and a loop closure

’1’. Since the loop closure hypothesis provides a much better explanation of the robot

observations, its probability quickly increases, and after a resampling it becomes the

unique hypothesis in the filter, definitively closing the loop.

12.5.2 Comparison to other large-scale approaches

It is also desirable to contrast how other hybrid methods perform in similar loop-

closure situations. The Hierarchical SLAM approach reported in [Est05] computes the
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loop closure by least-square error minimization, thus it considers just one (metric)

hypothesis for the closure. Although this may be enough in many situations, in highly

repetitive scenarios it would be more advantageous to maintain multiple hypotheses

until the closure becomes unambiguous. This is the case of the Atlas framework [Bos04],

which considers the so-called juvenile hypotheses for closing loops. In that work, a

juvenile hypothesis is promoted to mature when it performs much better than the rest,

and until that point it is not allowed to modify its local map, that is, the treatment

of hypotheses is purely heuristic. This heuristic approach is in contrast to our unified

and mathematically grounded framework, where there are no distinctions between

all the existing topological hypotheses, and all of them are allowed to modify their
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corresponding local sub-maps (this, in turn, is required to perform sustainable accurate

localization). Furthermore, since the Atlas framework is based on a hybrid robot

pose (instead of hybrid robot path) it allows only one hypothesis for the robot metric

pose within each sub-map, while under HMT-SLAM one can devise highly ambiguous

environments where closing a long loop leads to a variety of hybrid path hypotheses,

including the possibility of the robot being at the same area but with a multi-modal

metric pose, and consequently with different local sub-maps.

12.5.3 Discussion

This chapter has presented a new approach for solving the problem of large-scale SLAM

which consists of the unified estimation of a hybrid metrical and topological path of

the robot throughout the environment. It has been demonstrated that this idea is

supported by a probabilistic structure in the SLAM problem under plausible approxi-

mations. It has been addressed the probabilistic basis of a solution to HMT-SLAM in

the form of sequential Bayesian filtering in the joint path-map space, which supports

our approach as a promising step towards the natural integration of existing metric

SLAM methods into high-level world representations, always within a Bayesian frame-

work that manages spatial uncertainty more accurately and efficiently than previous

metric and hybrid approaches. Additionally, an implementation of our ideas has been

described in the form of a real-time/any-time system capable of providing an estima-

tion of the robot pose and the map at each instant of time, giving more relevance to

the computation of the metric robot pose, which may be required for navigation or

manipulation purposes. Our work has been validated by experiments where relatively

large HMT maps have been successfully built.

The introduction of HMT-SLAM gives rise to a number of interesting topics that
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require future research, like the integration with other map types (i.e. landmarks), the

simultaneous estimation of the HMT path of a team of robots, the consideration of

alternative probabilistic estimation methods, or the use of appearance and high-level

knowledge for localization and loop-closure. An especially interesting issue is that of

solving the robot awakening problem, or global localization, within a large-scale and

partially known environment (a problem that can be hardly dealt with existing metric

or topological methods). This issue would be faced by any mobile robot operating

in a realistic lifelong application. Under the perspective of our work, the problem

is naturally cast as a special case of topological loop-closure. This means that, as a

byproduct, HMT-SLAM will allow a robot to incorporate into an existing map new

information gathered while performing global localization, and thus unifying SLAM

and global localization. This latter point clearly deserves further research.



CHAPTER 13

CLUSTERING OBSERVATIONS

INTO LOCAL MAPS

13.1 Introduction

As already mentioned in previous chapters, world models for SLAM can be classified

broadly into metric ones, which use geometrical information [Gut99, Lu97a,Mon02a],

and topological ones, which model the world as a graph whose nodes usually represent

distinctive places [Bee05,Sog01]. As discussed in depth in Chapter 12, hybrid models

that combine both types of information are a promising alternative when dealing with

large and complex real robot environments. Typically, hybrid approaches attach local

geometrical maps (suitable for metric robot localization) to the nodes of a graph-based

world representation (suitable for task planning or reasoning) [Bos03,Est05,Thr96].

221
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A crucial point then is to decide how to cluster the whole sequence of robot ob-

servations into local maps (sub-maps). From the different proposals reported in the

literature, the following ones are of special significance (having been briefly discussed

in Chapter 11): the Atlas framework [Bos03], where a new local map is started when

localization performs poorly in the previous one; and, more recently, the hierarchical

SLAM presented in [Est05], where sensed features are integrated into the current lo-

cal map until a given number of them is reached. However, none of these provide a

mathematically grounded solution for the problem or one that does not depend on

strong human-provided heuristics that should be manually adjusted for each specific

environment. Other interesting works pursue efficiency by exploiting the sparse nature

of covariance matrices in the context of EKF-based SLAM [Pas02,Thr04,Wal07]. All

these are based on the properties of covariance matrices within maps of landmarks,

hence they are not applicable to other types of observations (e.g. raw laser range

scans).

The approach discussed in this chapter consists of partitioning a graph-based repre-

sentation of robot observations, usually called an appearance-based representation when

using image sensors [Por06,Ryb03]. Here, the sequence of observations gathered by the

robot (and the corresponding poses from which the robot takes each observation) are

set as the nodes of an auxiliary weighted graph. By dividing this graph into disjoint

clusters of highly connected nodes we can automatically determine a partition of the

observed environment into “areas”, which is required by hybrid approaches to map-

ping like HMT-SLAM. The semantics of these areas will be in general related neither

to human concepts, such as rooms or a corridor, nor to operational needs. Rather, the

distribution of the obtained sub-maps will be determined by the simultaneous visibility

of landmarks from different robot poses: sensors with a wider field of view (FOV) or

a larger sensing range will produce larger sub-maps since more overlap will be found
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First observation

Second observation
: Sensed Space Overlap (SSO)

Figure 13.1: The sensed-space overlap (SSO) is a measurement of to what extent a pair of
observations catch the same part of the environment.

between observations. This property that emerges naturally from the physical robot

configuration is consistent with the ways of the biological world, where sensory capa-

bilities definitively determine the spatial structure of world models.

An important contribution of the work presented in this chapter is the discussion

of a new interpretation of the above process in probabilistic terms, hence providing a

mathematical basis that justifies its usage in the context of HMT-SLAM: the resulting

partitions will minimize a given measure of the relation between adjacent sub maps (as

will be explained in §13.4) with the aim of obtaining sub-maps as closer to conditional

independence as possible.

Given the mentioned auxiliary graph of robot observations, there are two critical

issues regarding its partitioning: the computation of the arc weights, and the criterion

for performing the partitioning itself. As introduced elsewhere [Bla06b], we propose
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to set the weights according to the Sensed Space Overlap (SSO), a pairwise measure-

ment between observations that reflects to what extent a pair of observations capture

the same entities (points, landmarks, etc.) from the environment, as illustrated in

Figure 13.1. Regarding the criterion for partitioning the graph, we follow previous

works [Bla06b, Bla08d, Ziv05, Ziv06] that employ the minimum normalized-cut (min-

Ncut), originally introduced in [Shi00]. The min-Ncut has the desirable property of

generating balanced clusters of highly interconnected nodes, i.e. in our case clusters of

observations that are very likely to represent the same part of the environment, under

our definition for graph weights. Furthermore, it can be computed efficiently by means

of an approximate solution based on spectral decomposition, which will be reviewed

later on.

The remainder of this chapter is organized as follows. In §13.2 we review the spectral

approach to graph partitioning for generic graphs. Next, we will derive expressions for

computing the arc weights of the auxiliary graph for different kinds of sensors. In

§13.4 we present the motivations and the formal support for partitioning a sequence

of observations within a SLAM framework, and §13.5 explains how our method can

be integrated into the HMT-SLAM framework. Finally, experimental results from real

data validate the presented method.

13.2 Background on Spectral Graph Partitioning

In the following we review the definitions involved in the normalized cut, the basis

for the bisection of a graph using the spectral approach, and how to extend it for

generating any number of clusters.
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13.2.1 Normalized Cut of a Graph

Let G = 〈V,E,Ω〉 be an undirected, weighted graph, where V is the set of vertices or

nodes and E is the set of weighted edges or arcs, using non-negative weight values; the

symmetric |V | × |V | square matrix Ω is the weight matrix, where the element ωij is

the weight of the arc between nodes i and j. According to the definition introduced

by Shi and Malik in [Shi00], the normalized cut (Ncut) is a measure associated to the

partitioning of V into two disjoint subsets A and Ā, such as A∪ Ā = V and A∩ Ā = ∅,

defined as:

Ncut(A, Ā) =
cut(A, Ā)

assoc(A, V )
+

cut(A, Ā)

assoc(Ā, V )
(13.2.1)

which in turn uses the standard definition of the cut between two disjoint sets of nodes

A and Ā:

cut(A, Ā)
.
=

∑

u∈A,v∈Ā
ωuv , A ∩ Ā = ∅ (13.2.2)

and of the association of two non-disjoint sets of nodes:

assoc(A, V )
.
=

∑

u∈A,v∈V
ωuv , A ⊂ V (13.2.3)

The association of a given subgraph (A) with the whole graph (V ) measures the

intergroup “cohesion”, that is, the connection “strength” between the nodes in A and

those in the whole set V (including A again). Note that the definitions above fulfill:

assoc(A, V ) = cut(A, Ā) + assoc(A,A) (13.2.4)
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Figure 13.2: An example that illustrates the concepts of cut and association for a pair of
sets of nodes. It can be seen how the cut involves only the arcs between two disjoint sets
(A and Ā in this case), whereas the association takes into account all the arcs between the
non-disjoint sets (A with itself in this example). Observe how the association of a set with
the whole graph, i.e. assoc(A, V ), can be decomposed into the sum of its cut with the rest
and the association with itself.

as Figure 13.2 illustrates with an example.

Partitioning graphs under the criterion of minimizing the cut value tends to generate

groups of no practical utility for some applications, since they have the least connected

nodes of the graph. It is of much more interest to get subgraphs with a balance

between both, the intergroup and the intra-group cohesion, which is better achieved

by minimizing the normalized cut (Ncut) defined in Eq. (13.2.1). Thus, the minimum

normalized cut (min-Ncut) of a graph V is given by:

A = arg min
A

Ncut(A, Ā) (13.2.5)

The range of possible values for the Ncut that result from this expression can be

derived from Eq. (13.2.4). It can be deduced that, for the maximum value of the cut

(which happens when the nodes in A are connected only to Ā), the values of assoc(A,A)
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and assoc(Ā, Ā) are zero, therefore:

assoc(A,V)|min = assoc(Ā,V)
∣
∣
min = cut(A, Ā) (13.2.6)

Since the minimum value attainable from a cut is zero, corresponding to the case of

no connections between A and Ā, the minimum Ncut value is also zero. On the other

hand, the maximum Ncut value is determined by the maximum values of each of the

terms in the sum of Eq. (13.2.1). From Eq. (13.2.4) we see that the maximum value of

each of these terms is:

max

(
cut(A, Ā)

assoc(A, V )

)

= max

(
cut(A, Ā)

cut(A, Ā) + assoc(A,A)

)

=
cut(A, Ā)

cut(A, Ā)
= 1 (13.2.7)

Thus, the Ncut provides a numerically well defined measure of the quality of a

partition that falls within the range [0, 2].

As discussed in the work by Shi and Malik [Shi00], finding the exact min-Ncut

bisection is computationally intractable (an NP-complete problem), hence we follow

their proposal for an approximate solution based on spectral decomposition, which

leads to near-optimal cuts. Their method is summarized next for completeness, though

it could be skipped by the reader since it is not necessary for getting into subsequent

sections.

13.2.2 Spectral Bisection

Let x be the bisection indicator vector with dimension N = |V |, where each element xi

equals 1 or −1 depending of the node i falling into the group A or Ā, respectively. Let

d be the vector with the sum of the weights of the incident arcs for each node, that is
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Figure 13.3: Four real examples of graph spectral bisections. The plots show the compo-
nents of the eigenvectors (vertical axis) which are used to choose the bisection. The length of
these vectors is given by the number of nodes in the graph (the horizontal axes represent node
indices). The average of the eigenvectors (horizontal lines) is used as the bisection threshold.

di =
∑

j

ωij. We can build a diagonal matrix D with d as its diagonal. It can be shown

that the min-Ncut problem can then be rewritten as:

argmin
x

Ncut(x) = argmin
y

yt(D − Ω)y

ytDy
(13.2.8)

where y = (1 + x)− b(1− x), being 1 an N × 1 vector of all ones, and

b =

∑

xi>0

di
∑

xi<0

di
(13.2.9)

Ideally, the elements of vector y should take just two discrete values, since xi can

be either 1 or -1. However, if this condition is relaxed and y is allowed to be real-

valued (this is the approximation of the approach), then Eq. 13.2.8 can be minimized

by solving the generalized eigensystem:
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(D − Ω)y = λDy (13.2.10)

where L(V ) = D − Ω is a well-known term, namely the Laplacian matrix of the

graph [Gol96]. The above equation can be rewritten as a standard eigensystem using

z = Dy:

D− 1
2 (D − Ω)D− 1

2 z = λz (13.2.11)

It can be shown that z0 = D
1
21, the eigenvector corresponding to the smallest eigen-

value in Eq. (13.2.11) (“the smallest eigenvector” from now on), is zero. Translating

back this result to the original system in Eq. (13.2.10), we have that y0 = 1 is the

smallest eigenvector of Eq. (13.2.11). Since the fraction in Eq. (13.2.8) is a Rayleigh

quotient [Moh91], and its eigenvectors are orthogonal 1, then both Eq. (13.2.10) and

Eq. (13.2.11) are minimized for the next smallest eigenvector. Thus, we have arrived

to the fact that solving the min-Ncut expressed in Eq. (13.2.8) can be approximated

by finding the second smallest eigenvector y1 of Eq. (13.2.10).

The only approximation assumed in the above derivation is that the components

of the eigenvector y1 will not take just two discrete values, but any real number.

Obviously, this complicates the bisection criterion since we will need a threshold; still,

in many situations there will be a clear distinction between the two clusters of nodes A

and Ā, as can be observed in the real examples shown in Figure 13.3. Three different

criteria seem plausible for assigning each node a group:

1. Look at the sign of each component of the eigenvector,

1Since the Laplacian matrix D−Ω is positive semidefinite, D−

1

2 (D−Ω)D−

1

2 is symmetric positive
semidefinite, thus its eigenvectors are orthogonal.
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(a)

(c)

(b)

(d)

Common 

observations One of the common 

observations

Figure 13.4: A graphical representation of the variables involved in computing the SSO
for a pair of observations. (a)–(b) The robot pose and corresponding observations zt and zt′

at two time steps t and t′. (c) Some of the sensed elements (landmarks or points) may be
common to both observations. (d) A representation of the probabilistic distributions taken
into account when determining whether two elements from different observations correspond
to the same map element or not. Refer to section 13.3.1 for further explanation.

2. take the mean value of the eigenvector as a threshold for the partition, and

3. sweep over the different threshold values looking for the minimum Ncut.

The second one is the criterion we have used in our implementation due to its

compromise between efficiency and good results.

13.2.3 Partitioning graphs into k groups

The method presented above provides a solution to the graph bisection problem. How-

ever, this method must be generalized in our case for dividing a graph into a variable
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number of subgraphs. An easy and effective way of achieving that is to recursively

apply bisection to any of the generated subgraphs as long as two clearly differentiated

groups can be obtained.

The resulting min-Ncut value for a given bisection is a well-grounded measure of

the goodness of the cut, with values in the range [0, 2] that measures the inter-group

cohesion of the resulting subgraphs, inversely scaled by the intra-group cohesion. Val-

ues close to zero indicate almost no connection between the groups (a good partition),

while values near 2 indicate that the groups are more strongly connected to each other

than with themselves (the partition should not be done). Therefore, an intermediate

value must be established as a threshold 0 < τ < 2 to decide whether the bisection

should be accepted or not. This value is typically chosen heuristically [Shi00,Vek00],

and in practice a constant value in the range [0.2, 1] will give good results. The complete

procedure for k-ways partitioning is summarized in Algorithm 3.

Algorithm 3 recursive partition G → {P}

1: {A,B} ← spectral bisection(G)
2: Ncut ← compute ncut(G, {A,B}) // N-cut of the candidate bisection
3: if Ncut < τ then
4: // Accept the cut: do recursive call
5: P ← {spectral bisection(A), spectral bisection(B)}
6: else
7: // Do not accept the cut: G cannot be divided anymore
8: P ← G
9: end if
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13.3 The overlap-measuring function SSO

In this section we address the problem of assigning weights to our graph of observations.

To this purpose, we introduce the Sensed Space Overlap (SSO), a pairwise similarity

measure for observations that reflects how much space in common a pair of observations

sense.

Let the map variable m be comprised of the set of variables that correspond to

each individual map element, such that m = {m1, ...,mi}. Similarly, the observation

zt taken at a certain time step t will be considered as composed of the observations of

individual map elements, that is, zt = {z1t , ..., zkt }. The nature of these “map elements”

is not relevant for the generic definition of the SSO2. Furthermore, we will denote the

set of map elements sensed in a given observation zt as M(zt). Put mathematically:

M(zt) =
{
mi : zkt observes mi, ∀ k

}
(13.3.1)

At this point, we can define the SSO function in general for any pair of observations

za and zb as the ratio of commonly observed map elements relative to the overall number

of observed elements. Using the notation defined above, the generic expression for the

SSO is:

SSO(za, zb)
.
=
|M(za) ∩M(zb)|
|M(za) ∪M(zb)|

(13.3.2)

where | · | stands for the cardinal (size) of a set. The SSO can be particularized for each

kind of sensor. Next we derive expressions for two kinds of sensory data: landmarks

and range scans. A similar definition that could be employed for monocular images

has been proposed in [Ziv05].

2They would be cells for an occupancy grid map, individual features in a landmark-based map,
etc.
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13.3.1 SSO for landmark observations

We are interested in computing the similarity SSO(zt, zt′) between the observations

zt and zt′ taken at time steps t and t′ from the robot poses xt and xt′ , respectively.

In the case of landmarks, each observation z comprises a set of individual features

{zi : i = 1..k}, one for each sensed map element. An individual feature zi represents

the observed spatial position of the i’th landmark relative to the robot pose x at

the corresponding time step. All the involved variables are represented graphically

in Figure 13.4(a)–(b) for clarity. The only problematic step in computing the SSO

here is determining the number of matches from common elements between the pair of

observations zt and zt′ , as those shown in the example in Figure 13.4(c). Concretely, to

decide if a pair of individual features zit and z
j
t′ correspond to the same map element,

we have to check whether the following equality holds:

xt ⊕ zit = xt′ ⊕ zjt′ (13.3.3)

being ⊕ the pose composition operator [Smi88].

Within a probabilistic SLAM framework there is uncertainty in measures and poses,

thus we do not know the exact value of the variables, but only their associated proba-

bility distributions. Therefore, we can only decide for correspondences within a given

certainty bound. This can be visualized with the uncertainty ellipses shown in Fig-

ure 13.4(d), where it can be seen how the position of the same landmark is represented

by different (although overlapping) Gaussians for each of the observations.

If we rewrite Eq. (13.3.3) as 3,

3 Using the matrix form of Eq. (13.3.3) in homogeneous coordinates, Xtz
i
t = Xt′z

j
t′ , we obtain

X−1

t Xt′z
j
t′ − zit = 0, which is stated in Eq. (13.3.4) using pose composition operators.
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ǫ = (xt′ ⊖ xt)⊕ zjt′ − zit = 0 (13.3.4)

with ⊖ being the inverse pose composition operator (see appendix A), we can then

state the probability density of actually having a correspondence through p(ǫ = 0).

If we assume that the probability distributions of both the robot pose and the land-

marks can be appropriately approximated by Gaussians (which is acceptable in an

HMT-SLAM framework since coordinates into local maps are always relative to a near

reference [Bla08d,Bos03,Tar02]), then p(ǫ) can also be approximated by a Gaussian by

first-order uncertainty propagation (we omit the straightforward calculations). As a

result, p(ǫ) would be centered near the origin if there is a correspondence, or far away

otherwise. A robust criterion for deciding the correspondence is therefore to compute

the Mahalanobis distance from the origin to the mean of the Gaussian, and to accept

the correspondence if the distance is below, for example, a value of 3 (which represents

a 99.7% confidence interval) – a procedure that is, in fact, a chi-square test (see §2.3.3).

Notice that we are assuming that all the landmarks are indistinguishable and the

matching must be determined solely from spatial information, but there are some

situations where landmarks have some sort of descriptor, which can then be integrated

into the calculation of the Mahalanobis distance. In concrete, for the experiments

shown at the end of this work, we have used SIFT [Low99] visual descriptors in addition

to the spatial distance, as described in more detail in [Mor07].

13.3.2 SSO for range scans observations

In principle, we could apply the same process as in section 13.3.1 to compute the SSO

of a pair of observations comprising raw range scans. However, there are subtle dif-

ferences in the nature of the sensory data which make desirable the introduction of a
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slight modification: due to the discrete set of scanning directions it is very unlikely

that exactly the same point (not landmark) is sensed while scanning the environment

from different poses. We present a solution for accounting for this fact when consid-

ering uncertainties. That is the only difference with the process described above for

landmarks.

If we denote as Ci
t the covariance of the 2-d point xt ⊕ zit (please, refer to Fig-

ure 13.4(d)), we can model the uncertainty due to the discrete sampling of the envi-

ronment by summing an additional term σf to the diagonal of the covariance:

Ci
t = J

(

Σp 0

0 Σs

)

Jt +

(

σ2
f 0

0 σ2
f

)

(13.3.5)

where Σp and Σs are the covariances of the robot pose and sensor measurement, and

J is the 2 × 5 Jacobian matrix of the pose composition operator. Since the spatial

uncertainty due to the discrete sampling of surfaces is proportional to the sensed range

(r) at each scanning direction, the value σf can be set to rβ, being β a constant of the

order of the discrete angular steps between the scan ranges.

13.3.3 An Example

It is illustrative at this point to consider an example to show how our overall method

works for partitioning the graph of observations shown in Figure 13.5 (simulated raw

range scans in this case). Here, the graph is firstly divided into the groups {G1} and

{G2, G3} in the first execution of the partitioning algorithm. Going on recursively, the

latter group is partitioned again due to its low Ncut value. The so resulting groups

{G2} and {G3} are no longer bisected since the corresponding minimum Ncut values

are above the threshold (set to 1 in this example), i.e. it is better not to separate

the observations between each group. Notice that the final observation groups do
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(a)

Ncut=0.31 Ncut=0.73
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(b)

Figure 13.5: An illustrative example of the graph partitioning method applied to a 2-d laser
map. (a) The global map obtained from 14 observations – arrows indicate the poses where
observations were taken from. Notice that the map presents some orientation errors. (b) The
auxiliary graph of observations. Each node contains the sensed space data (scan), and an
estimate for its pose. The darker the arc, the higher the SSO between the observations. The
observation graph is recursively partitioned into three groups: firstly, it is divided into two
groups {G1} and {G2, G3}, then, the latter is partitioned again because it has a minimum
Ncut below the threshold. The local maps obtained from these groups are shown in (d), (c)
and (e), respectively. In (f), the weight matrix of the associated graph in (b) is shown as an
image with dotted squares for the three partitions.



13. Clustering observations into local maps 237

roughly correspond to each of the natural “rooms” that can be observed in the figure,

although, as commented in the introduction, our partitioning method does not aim for

“human-like” semantics, but for a “subjective” perception of the world by the robot.

13.4 Theoretical support for HMT-SLAM

In this section we derive a justification for the usage of the SSO as a metric within

a min-Ncut partitioning in the context of the hybrid SLAM framework presented in

Chapter 12.

Following the standard notation in the SLAM literature, the ultimate goal of any

probabilistic localization and mapping method is to compute the joint posterior density

of both the robot path x1:t and the map m given the sequence of observations z1:t up

to time step t:

p(x1:t,m|z1:t) (13.4.1)

where the robot actions have been dropped for clarity. Stated as a sequential Bayesian

estimation problem, the statistical structure of the variables is the one illustrated in

Figure 13.6(a) as a dynamic Bayesian network. A critical issue in this model is that

any observation zt obtained by the robot depends on the whole map, represented by

m. Although this condition is rigorously true, in practice the observations capture only

a limited part of the map. Addressing the SLAM problem through our HMT-SLAM

approach is indeed based on this observation.

In HMT-SLAM, the map m is divided into a set of metric sub-maps which can be

estimated from (ideally) conditional independent sequences of observations. Here we

discuss why the min-Ncut using the SSO for arc weights is a good choice for generating
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Figure 13.6: (a) The common structure of the SLAM problem as a dynamic Bayesian
network. (b) The same model if we split up the map and the observations into its separate
variables for the individual map elements. Under this perspective, the SSO can be defined
as the ratio of common map elements sensed by a pair of observations. As discussed in the
text, this quantity is related to the “degree of independence” between the involved variables.

these sub-maps. The following reasonings are also applicable to other hybrid (or “hier-

archical”) approaches to SLAM [Bos03,Est05], since the approximations introduced by

any approach that divides the map into sub-maps are more negligible as the observa-

tions between the different clusters become closer to conditional independence (given

the robot path).

As illustrated in Figure 13.6(b), the SSO captures the fact that there may be some

map elements mi sensed by just one of the two observations, and other map elements

sensed by both of them. It is straightforward to verify from Eq. (13.3.2) that the SSO

function gives values in the range [0, 1], suitable to be used as weights in the arcs of

the auxiliary observation graph: observations sensing exactly the same map elements

are assigned a value of 1 and observations coming from totally different parts of the

environment have a SSO value of 0.

Consider now the particular case of a null cut value between two clusters of obser-

vations A and Ā using the SSO as the arc weights, which in turn implies a null Ncut
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value (see Eq. (13.2.1)), that is:

cut(A, Ā) =
∑

a∈A,b∈Ā
SSO(za, zb) = 0 (13.4.2)

Since the SSO is non-negative, it follows that:

SSO(za, zb) = 0 ∀(a, b) ∈ A× Ā (13.4.3)

which, given Eq. (13.3.2), implies that:

M(za) ∩M(zb) = ∅ (13.4.4)

This relation can also be proved in the opposite direction: two sets of observations

that do not contain any common map element have a null cut (and Ncut) value. In

other words, using the min-cut or the min-Ncut criteria for partitioning is equivalent

to finding sets of observations with the least map elements in common. Our choice

for the min-Ncut (rather than the min-cut) criterion is due to its desirable property of

producing more balanced groups (refer to [Shi00]), as discussed above.

To sum up, for the case of a null Ncut value we can rigorously factor the SLAM

problem into statistically-independent estimations. In practice, it is virtually impos-

sible to obtain such strict independence between difference areas of a large map. In

the scope of HMT-SLAM, we propose to settle a threshold value τ for the maximum

admissible Ncut value in order to partitioning the map into suitable areas, whose value

coincides with that employed in the recursive algorithm in Algorithm 3. Note that this

threshold value does not depend on the kind of sensors employed since Ncut values will

represent relative SSO values.
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13.5 Sequential clustering within HMT-SLAM

In the previous sections we have stated the problem of partitioning a sequence of obser-

vations as an off-line process, assuming a static and complete sequence of observations

and associated robot poses. In the following we describe the issues raised when our

method is applied to online SLAM.

Firstly, we must remark that there may exist several ways of integrating the par-

titioning technique into our HMT-SLAM framework. In concrete, we propose here

to take the sequence of the last robot observations and partition it to check whether

the robot has entered into a new area or not at each time step. More generally, the

recursive partitioning algorithm would reveal the different topological areas in which

the robot observations nearby its current position can be grouped into.

Within this context, a new node containing the last observation and the current

probabilistic estimate of the robot pose is attached to the auxiliary observation graph

for each time step of the SLAM algorithm. The only difference to an off-line (batch)

version of our method lies in the computation of the weight matrix Ω, which is to

be built sequentially as new nodes are added to the graph. Let Ωt denote the weight

matrix for the sequence of observations gathered up to time step t. For each new

observation zt this matrix can be updated just by expanding the previous one (Ωt−1)

with a new row and a new column:

Ωt =










Ωt−1 ω1:t−1,t

ωT1:t−1,t 0










(13.5.1)

Since the weight of the reflexive arc that connects each node with itself is not em-

ployed in the calculations of the min-Ncut, the diagonal elements in the Ω matrix can be
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set arbitrarily to zero. Each update of the weight matrix involves the evaluation of the

SSO for t−1 pairs of observations, corresponding to the column ω1:t−1,t in Eq. (13.5.1).

Thus, updating the Ω matrix at each time step has a computational complexity that

increases linearly with t. After updating the matrix, a bisection eigenvector must be

computed (recall section 13.2.2), which can also be achieved in O(t) by applying the

Lanczos algorithm [Gol96]. To sum up, the overall complexity remains linear with the

number of previous observations. This growth in complexity over time is not a problem

as long as eventually the robot moves to a different area and a new matrix is created.

Thus, in practice there is an upper bound to the size of this matrix, although it will

depend on the specific structure of the environment and on the robot path.

13.6 Experimental evaluation

We firstly provide some statistical results aimed to compare our method to other previ-

ous proposals, and next we show some typical partitions obtained for an indoor scenario

for several combinations of sensors4.

13.6.1 Statistical experiments

As discussed in section 13.4, separating the map into clusters will incur in approxima-

tion errors for most practical situations. In order to compare the loss caused by our

method to other alternatives, we will define a measure of how much information is lost

by performing any arbitrary partitioning of a map. The context for this comparison is

EKF-based SLAM [Dis01] rather than the RBPF-based approach employed in the next

section. The reason for using an EKF with a map of landmarks here is that the cross

4The datasets and C++ source code for these experiments are available at
http://www.mrpt.org/papers/.

http://www.mrpt.org/papers/
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Figure 13.7: The information matrix of an EKF solution to SLAM represents the shared
information between landmarks in the map. Partitioning a map implies assuming conditional
independence between different sub-maps: the matrix elements out of the diagonal block
matrices are forced to zero. We employ this matrix to measure the information loss due to
different partitioning methods.

covariances between map elements are explicitly kept in the filter covariance matrix,

whereas in grid-mapping with a RBPF they are not available. The covariance matrix

is important for our purposes since its inverse, the information matrix, represents the

amount of shared information between the different landmarks in the map. Under a

hybrid approach to SLAM, where the aim is to partition the map into statistically in-

dependent clusters, the information is maintained in block diagonal sub-matrices only,

while the off-diagonal elements are discarded (i.e. assumed to be zero); this is illus-

trated with an example matrix in Figure 13.7. Actually, approaches to SLAM based

on a Sparse Extended Information Filter (SEIF) explicitly set to zero some entries of

the matrix (which were not zero previously), therefore assuming a certain loss of infor-

mation [Thr04,Wal07]. We must remark that the method presented here does not rely
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Figure 13.8: Results for the statistical analyses of the information loss due to map cluster-
ing. (a) The final state of an EKF after one of the simulations. Observations are grouped (in
grey) according to the three clusters produced by our method in this particular run. Recall
that our method clusters observations, not landmarks, hence that some landmarks belong to
more than one group. (b) The average and 68% confidence interval for the information loss e,
calculated for both our method (the left-hand value) and for fixed size sub-maps comprised
of k observations each. (c) The information loss and the 68% confidence interval for different
thresholds τ in our method.

on the information matrix as those based on a SEIF, hence its applicability to other

kinds of mapping frameworks such as grid mapping with RBPFs.

We propose to measure the effects of forcing conditional independence (i.e. parti-

tioning the map) through the information loss ratio e, defined as:

e =

∑

(i,j):C(i)∩C(j)=∅

|H(i, j)|
∑

a,b

|H(a, b)| (13.6.1)

Here H(i, j) stands for the information matrix entries for landmarks i and j, and

C(i) represents the set of clusters which the landmark i belongs to. Put in words, the

loss ratio e is proportional to the sum of all the information matrix elements out of the

block diagonal matrices for each cluster in the partition (please refer to Figure 13.7).

We have carried out simulations by running 150 times a simple EKF [Bla08b] for
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a planar path consisting of a straight trajectory of 50 meters through an environment

with 60 point features uniformly distributed, placed at random positions for each run.

The final state of the filter after one of the runs is shown in Figure 13.8(a), including

the three clusters in which our method divides the observations in this case. Loops in

the robot path have been intentionally avoided to keep the experiment simple and to

obtain generic results independently of the implementation framework.

The first result from the simulations is the comparison of the average information

loss (e) for the different methods for partitioning the sequence of observations, summa-

rized in Figure 13.8(b). The left-hand value corresponds to our proposal, in this case

using a fixed value of 0.2 for the recursive bisection threshold τ . It can be seen that

the largest part of the confidence interval for e is below 1%, which is in contrast to the

other alternative method, which consists of starting a new map after a fixed number k

of observations, with k varying from 2 to 45. Although the loss of information is not

drastic (less than 3% for most values of k), it is clear that our method not only implies

a more reduced approximation error, but it is also more predictable as revealed by

the lower variance of e. We must note that starting a new sub-map every fixed num-

ber of features was proposed in [Est05], but other heuristics, such as starting a new

sub-map when localization performs poorly [Bos03], can be also ultimately expected

to start new maps at a regular rate if landmarks are distributed uniformly through the

environment.

A second statistical result is the characterization of our approach with respect

to its parameter – the threshold τ . As expected, lower values of τ lead to lower

approximation errors e, as represented in Figure 13.8(c). Though this may seems

to suggest to always use a threshold close to zero, in practice a compromise should

be found between admissible errors and the size of the sub-maps, which grows as τ
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decreases. It is noteworthy that the expected error for τ = 0 should be zero since sub-

maps will be created only when no observation senses two landmarks from different

clusters. Instead, our simulations give an average information loss of e = 0.022%

(negligible, but not null). The reason of this result is that we integrate odometry in the

simulations, which is known to create correlations between landmarks even when they

have been not observed simultaneously (refer to [Wal07] for a enlightening discussion

on this topic).

13.6.2 Partitioning a real indoor map with several sensors

To demonstrate the partitioning obtained by our method in a real setting we have

applied it to a sequence of observations gathered by one of our mobile robots, which

is equipped with a front SICK laser scanner, a rear HOKUYO laser scanner, and a

stereo camera pointing forward. SIFT image features are extracted from the stereo

images at each time step to generate the set of 3D features (more details can be found

in [Mor07]) that we will consider landmark-like observations. To reveal the differences

in the obtained partitions for each kind of sensor and their possible combinations, we

have performed the partitioning four times: using the front laser scanner only, both

laser scanners (providing a field of view of almost 360◦ – except for small lateral dead

angles), visual landmarks only, and the three sensors simultaneously. When several

sensors are combined into the same observation simultaneously, the corresponding SSO

is computed by averaging the individual SSO functions, as can be easily derived from

the definition in Eq. (13.3.2). The effects are discussed below.

The results are summarized in Figure 13.9, where each row represents one set of

sensors, and the left column shows the resulting groups of observations on an occu-

pancy grid map of the environment (visual landmarks are not shown for clarity). The
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Figure 13.9: Results from partitioning a map gathered by a real mobile robot. The left
column shows the resulting clusters of observations obtained by the proposed method, while
the middle and right columns contain the weight matrices Ω before and after rearranging the
elements according to the partitioning, respectively. It can be seen how after the rearrange-
ment most of the high values in Ω are within the diagonal blocks. The rows of graphs present
the results for a different set of sensors: one 180◦ laser scanner, two laser scanners (bottom
row), a stereo camera, and the three sensors simultaneously.
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middle column shows the final SSO (arc weight) matrix for the time-ordered sequence

of observations through the environment. Since the robot revisits the same places sev-

eral times, it is remarkable that many off-diagonal elements contain high SSO values,

i.e. they correspond to close areas. In the right column in the figure we can observe the

rearranged matrices, built up by making the observations within the same cluster to

have consecutive indexes: after clustering, the output matrix should be block diagonal

ideally. In the figure we can see how the rearranged matrices for the experiments are

clearly not block diagonal, but most of the non-zero elements are approximately con-

tained within the block diagonal matrices. The elements outside these diagonal blocks

are the information that would be lost in the hybrid SLAM approach.

It is interesting to note the differences in the partitions obtained from the different

sensors. Firstly, for the case of just one 180◦ FOV laser scanner (the top row in the

figure) there exists overlap between different detected areas. For example, the groups

#1 and #2, or the groups #4 and #5. However, actually each overlapping group

contains observations with opposite robot headings, that is, since the FOV is 180◦ there

is almost no overlap between the observations taken by the robot going in one direction

and in the opposite. This does not occur in the second case, when two laser scanners are

considered simultaneously covering almost 360◦ around the robot. For these sensors,

we obtain the clustering closest to the “human” concept of rooms, with almost no

overlap between the resulting areas. This is in contrast to the results from a stereo

camera (third row in Figure 13.9), with a narrow FOV of roughly 65◦. We preprocess

the images from the camera to obtain a set of 3D landmarks, which we consider as

the camera observations themselves (please refer to our previous work [Mor07] for a

description of the process). More different areas are detected in this case (10 areas),

whereas they were just 4 for the case of two laser scanners. The reason is that the

narrow FOV leads to many groups of a few observations each, specially if the robot
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rotates.

In the case of using all the three sensors (two laser scanners and the stereo camera)

we obtain the clusters shown in the bottom row of the figure. Here the weight matrix

Ω is the average of those from the individual sensors (notice how this matrix, in the

central column of the figure, is a mixture from the matrices at the second and the third

row). We obtain 6 areas, which is an intermediary value between that obtained from

the two laser scanners and the camera independently. Therefore, mixing sensors with

largely different FOVs (360◦ vs. 65◦) could be seen as having one single sensor with

an intermediate FOV, a natural consequence of computing SSO by averaging over the

different sensors.

Finally, we can observe in the rearranged weight matrices (at the right in Fig-

ure 13.9) how most of the SSO high values are within the diagonal blocks corresponding

to the clusters computed by our method. However, a few values are left out of these

blocks. Within a hybrid SLAM method this would mean that the information out of

the block-diagonal approximation of this matrix would be lost.

13.6.3 Discussion

Spectral techniques have been employed for efficient graph partitioning in the genera-

tion of sub-maps for hybrid SLAM frameworks. Through the introduction of the SSO

function, we have provided a general formulation for partitioning sequences of observa-

tions from different sensory data, illustrated with both range scans and landmarks. An

important contribution of this work is the discussion of a probabilistically grounded

interpretation of the usage of min-Ncut and the SSO function to probabilistic hybrid

SLAM. We have provided a statistical analysis of our method compared to other al-

ternatives, as well as analyzed how the use of sensors with different FOVs affects the
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resulting clusterings obtained from a real data set. It has been thus verified how our

approach produces robot “subjective” local maps.
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CHAPTER 14

GRID MAP MATCHING FOR

TOPOLOGICAL LOOP CLOSURE

14.1 Introduction

As discussed in Chapter 12, an important operation within HMT-SLAM is detecting

whether two local maps correspond to the same physical place and, in that case, to

compute the relative transformation between those maps, that is, detecting topological

loop closures. Solving loop closures in a hierarchical framework, which is the purpose

of the method presented in this chapter, implies coping with a number of hurdles such

as noise in the robotic sensor, ambiguity (different parts of the environment can be

indistinguishable) and dynamic scenarios (the map of an area may change over time).

A method for matching grid maps is presented here as part of a more complex

251
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method for the case of “hybrid” 1 representations of local maps where both occupancy

grids and point maps are maintained. As described in [Nie04], this approach has a

number of advantages since these kinds of maps complement each other and their

maintenance only requires updating both maps simultaneously with the same sensory

data. Nevertheless, it must be remarked that the presented method could be applied

to grid maps only.

Correspondingly to this hybrid representation that uses both point and grid maps,

the overall approach for aligning a pair of local metric maps consists of two differen-

tiated steps: (i) the grid maps are firstly matched without any a priori information,

then (ii) the point maps help to refine the matching. Our discussion will preeminently

focus on the first step, the grid-to-grid matching, since the registration of point maps

is a well understood topic with efficient solutions such as ICP [Bes92] or 3D-NDT [?].

Furthermore, this second step only has to refine an estimation already close to the real

solution, while the grid-to-grid matching has no such advantage and thus poses a far

more challenging problem.

In this chapter we propose to estimate the transformation between a pair of grid

maps by registering the corresponding map images, the grayscale images resulting

from interpreting grid cells as pixels and occupancy probabilities as gray levels. Since

in robotic applications we can select the grid cell size, we focus on matching maps

with identical cell sizes only. In this case, a pair of maps can be only related by

a 3-d transformation, or pose, fully determined by a 2-d translation plus a rotation,

disregarding scale changes.

In general, image registration techniques can be classified into those based on in-

tensity and those based on the extraction of interest points – refer to [Zit03] for an

1We use here the original term “hybrid” as introduced in [Nie04], but this is not related at all to
the term “hybrid” used to designate our hierarchical approach to large-scale slam (HMT-SLAM).
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extensive review. Although the former approach has been already applied to grid

map matching [Gut99], there is no previous work on grid-matching based on feature

extraction, which is known to be more efficient computationally and therefore more

appropriate for being integrated into real-time mapping frameworks.

Our approach represents an important contribution due to its robustness for finding

the transformation between map images in the form of a Sum of Gaussians (SOG).

This probabilistic representation allows coping with multiple hypotheses and therefore

to consistently integrate the method into robotic mapping frameworks, most of them

based on probabilistic Bayesian inference [Thr05]. This probabilistic approach is in

contrast to previous works on robust image registration based on vote-counting in

the space of transformation parameters [She99]. Within mobile robotics, Duckett and

Nehmzow [Duc01] reported a method very similar to ours, which also obtains a SOG

for potential matches between grid maps. However, their work assumes an accurate

knowledge of the absolute orientation of the robot (i.e. it should be equipped with a

compass), hence our proposal has a broader applicability to practical situations.

The work presented in this chapter is also related to research in multi-robot map-

ping, since the map merge problem there can be seen as a special instance of the

detection of loop closures in single robot mapping. In that field, a method with a

similar purpose to ours has been reported in [Bir06], but it does not consider the pos-

sibility of multiple hypotheses in the map merging, and a rough comparison of typical

execution times has revealed that our method is about 100 times faster.

In the next section it is provided an overview of the method. A benchmark of fea-

ture point detectors and descriptors is provided in §§14.3–14.5. The robust matching

method, discussed in §14.6, requires a Gaussian model for the optimal rigid transfor-

mation for subsets of correspondences, which is derived in §14.7. Finally, experiments

are presented with maps from four publicly available datasets.
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14.2 Overview of the method

The overall method is summarized in Figure 14.1. Firstly, map images are preprocessed

to soften out the irregularities commonly found in grid maps, which can be seen as

high-frequency noise. Interest points (features) are then detected in the filtered images

and descriptors computed to model their surroundings. Obviously, the choice of a

particular interest point detector and descriptor will determine the performance of our

whole method. After comprehensive experiments, which are reported in §§14.3–14.5.2,

it has been determined that either the Harris [Har88] or the Kanade-Lucas-Tomasi

[Luc81,Shi94] detectors, in combination with a descriptor consisting of a circular patch

centered at the feature, provide the best performance in terms of both maximizing the

distinctiveness and reducing the computational cost.

Once features have been extracted from map images, a set of all the candidate

correspondences C between features in both images is determined by means of a mea-

sure of similarity between their descriptors that will be introduced in §14.4.2. Due to

ambiguity in maps, it is common for a given feature to have several candidate corre-

spondences. From all those candidates, a modified RANSAC algorithm obtains subsets

of internally consistent hypotheses Ci ⊂ C by imposing uniqueness (each feature must

correspond up to just one in the other map) and the rigid transformation constraint

(the relative position of features with respect to each other must be the same in both

maps). The uncertainty of all the variables is accounted for during the whole process,

thus all the decisions are taken upon stochastic tests. Unlike the standard RANSAC

algorithm [Fis81], we propose to keep not only the solution with the largest number of

supporting inliers but a dynamic number of them. Each of these detected hypotheses

leads to a particular rigid transformation, which is modeled as a Gaussian distribution

over the space of translations and rotations.
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Figure 14.1: An overview of the proposed method for map matching, which aligns a pair
of maps each comprising of a grid map and a point map. It firstly registers the grid maps to
obtain a set of potential transformations q, which are then refined employing the point maps
and ICP-based alignment. The result is a probability density distribution for the actual q in
the form of a mixture of Gaussians.
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The general form for the probability distribution of the rigid transformation q

between two maps, represented as a Sum of Gaussians (SOG), can be written down as:

p(q) =
∑

i

N (q;q⋆i ,Qi)ωi (14.2.1)

where each ωi weights a Gaussian kernel centered at q⋆i with covariance matrix Qi and

such that
∑

i

ωi = 1. The distribution p(q) can also be expanded using the law of total

probability over all the potential sets of correspondences Ci as follows:

p(q) =
∑

∀Ci
p(q|Ci)P (Ci) (14.2.2)

Comparing Eq. (14.2.1) to Eq. (14.2.2) it is clear that we can choose P (Ci) as the

SOG weights ωi, and then model the density of q (given a set of correspondences Ci)

as a Gaussian distribution, that is:

p(q|Ci) = N (q;q⋆i ,Qi) (14.2.3)

The parameters of this distribution (its mean and covariance) will be derived in

§14.7.1. A requirement for this probabilistic treatment is assigning a given uncertainty

to the 2-d location of each detected feature. Following widely-accepted assumptions in

the computer vision literature [Dav07, Sae06, Se01, Tam06], we take into account the

following properties of the detected points:

• Since in most feature detectors each point is detected independently, Gaussian

errors in the coordinates of different features are uncorrelated.

• As a consequence of this independent detection, all features may be assigned the

same covariance.
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• It is plausible for most interest point detectors to assume an isotropic distribution

for the localization errors.

That is, the error in all features is modeled by the same Gaussian distribution and

they are uncorrelated. This will be used in §14.7.1 to greatly simplify the derivation

of the uncertainty in the optimal transformation.

The next sections address the issue of choosing an optimal combination of detector

and descriptor, and then in §14.6 it will be recovered the problem of obtaining the

subsets of correspondences Ci ∈ C and the weights ωi = P (Ci).

14.3 Extraction of features

In this section we review some well-known image feature detectors and motivate the

need for pre-processing the map images in order to improve the detection process.

14.3.1 Interest-point detectors

In a typical indoor occupancy grid map we can easily identify natural features produced

by scene elements, like corners, columns or, in general, any sharp edge. They also

appear in some outdoor maps originated by vertical poles, building corners, vehicle

edges, etc. These natural landmarks are suitable for matching maps of the same areas

since they naturally occur in the environment and they are typically static.

All those interest points can be detected by interpreting the grid map as a grayscale

image, the map image, and applying existing key-point detectors. The most desirable

property of any detector is its repeatability, that is, its ability to detect a given feature

when it appears in different images.

We are interested in the performance of the following four methods:
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• The Harris detector [Har88], which searches for points where the structure tensor

has two large eigenvalues, revealing the existence of corners.

• The Kanade-Lucas-Tomasi (KLT) method ( [Luc81, Shi94]) also relies on the

structure tensor. It detects salient points where one of the eigenvalues exceeds a

given threshold.

• The detection phase of the SIFT algorithm [Low99], which identifies scale-space

extrema in pyramids of difference-of-Gaussians. This method aims at detecting

blobs instead of corners [Mik02].

• The detector of SURF, based on an approximation to the Hessian matrix [Bay06].

There exists an issue in map images which affects the process of feature detection

and needs to be handled appropriately. Grid mapping from laser range scans typically

generates some artifacts in the maps which can be interpreted as high-frequency noise

in the image (e.g. those arising from a single ray of the scans). To prevent the detection

of spurious interest points in the middle of free-space, we propose to pre-process the

images by applying first a Gaussian filter and then a median filter to attenuate most of

the irregularities. Next we explain how we have tuned each filter for optimal detection

performance.

14.3.2 Characterization

The dataset employed in this work consists of 10 pairs of grid maps created from

real robot data. We must remark that the maps represent real loop-closure situations

with partial overlap and small differences in the grids caused by noise and different

viewpoints of the robot. Since hundreds of key points are detected in each of these
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Figure 14.2: A measure of the repeatability for each detector and for different sizes of the
Gaussian (Wg) and median (Wm) filters used to smooth the map images. Brighter colors
indicate a higher number of common features detected in both maps.

grids, our overall characterization can be considered significant from a statistical point

of view.

In order to evaluate the repeatability of each interest point detector we have applied

it to both maps in each pair, and then counted the number of common detected features,

i.e. the same feature must be detected in both grid maps. The correct pairings were

obtained then from ground truth transformations between the pairs of maps, computed

manually. To avoid a bias in our results due to the number of detected points, we have

limited the number of interest points to a fixed value proportional to the extension of
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each grid map (a typical value of 0.015 features per square meter is appropriate for all

the maps employed in our comparison).

The results are summarized in Figure 14.2 for each detector and for different values

ofWg andWm, the sizes of the Gaussian and the median filter, respectively. The values

Wg = 0 and Wm = 1 correspond to a null filter in each case, thus the cases of applying

just one of the filters (or none of them) have been also accounted for.

Observe how blob detectors (SIFT and SURF) perform well for large filter sizes

(that lead to more “softened” images), whereas corner detectors (Harris and KLT)

have good repeatability for slightly filtered images or even for maps not filtered at all

(refer to KLT results in Figure 14.2). Figure 14.3 shows an example of the different

filters required by each detector to perform optimally. The best filter configuration

for each detector has been employed in the benchmark presented in §14.5, and the

corresponding overall number of matches can be seen in Figure 14.6(a).
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Figure 14.3: One of the maps from the dataset, filtered with a Gaussian and median filter
of sizes Wg and Wm, respectively. Detected interest points are marked with small squares for
the Harris and SIFT detectors. Notice how each method detects a different kind of features
(corners or blobs), hence the different filtering requirements.
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14.4 Descriptors

14.4.1 Review

Once the key-points are detected they are assigned distinctive descriptors in order to

establish correspondences. We have studied the performance of the following five image

descriptors 2 :

• SIFT: This method is based on histograms of image gradients [Low99], obtaining

a 128-length descriptor vector.

• SURF: Based on the responses of Haar-wavelets as described in [Bay06].

• Intensity-domain spin images (Spin): A 2D histogram of intensities indexed

by distances [Laz03], with the maximum radius from the interest point deter-

mined by the parameter Rmax. The usage of distances (disregarding angles),

makes this descriptor rotation invariant.

• Linear or logarithmic circular patches: These two descriptors have many

similarities, hence we discuss them here together. Both map a circular region

of radius Rmax centered at the interest point into a 2D matrix (the descriptor)

of polar coordinates. Let this matrix be denoted by f(u, v), where the indices u

and v stand for different values of the distance and the angle from the feature,

respectively. The idea is to extract a circular patch of the neighborhood of the

feature in a representation which is not invariant to rotations, but where these

rotations become just shifts in the angle dimension (v), as illustrated with the

examples in Figure 14.4(b)–(c). The only difference between the linear polar

2OpenCV implementations have been used for all the feature detectors and descriptors mentioned
in this chapter, except for: (i) the SIFT method for which we rely on the implementation [Hes09] and
(ii) the lin-polar descriptor, coded by the authors and submitted for publication in OpenCV 2.0.
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Figure 14.4: Example of matching features with different orientation. (a) An arbitrary
reference feature fa1 is highlighted in map a, and two potential pairings f b1 (the real corre-
spondence) and f b2 are marked in map b. (b)–(c) The similarity between the feature descrip-
tors is displayed as the distance function d(fi, fj ,∆φ) for the cases of using the lin-polar and
log-polar descriptors, respectively. Notice the pronounced minimum of the distance for the
case of the real correspondence fa1 ↔ f b1 close to the 180◦ relative rotation.

descriptor (lin-polar for short) and its logarithmic version (log-polar) is the usage

of a linear or logarithmic scale in the distances.

Next we address the problem of measuring the similarity between descriptors, a

requisite to evaluate their distinctiveness.

14.4.2 A similarity function between descriptors

Given a pair of descriptors fai and f bj for two keypoints i and j from maps a and b,

respectively, we are interested in measuring their similarity. For the SIFT, SURF and

Spin descriptors the most natural measure is the Euclidean distance between the de-

scriptor vectors. However, the cases of lin-polar and log-polar deserve more discussion

since they are not directly invariant to orientation.

As illustrated in Figure 14.4, the descriptors of two matching features only differ

by a shift in the angular dimension. Therefore, we propose to measure the distance
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between two descriptors fi and fj by their Euclidean distance, given a rotation ∆φ,

that is:

d (fi, fj,∆φ) =

(
∑

u

∑

v

|fi(u, v)− fj(u, v +∆φ)|2
) 1

2

(14.4.1)

where the angular polar coordinate v is taken modulo the corresponding size of the

matrix.

By computing the distance in Eq. (14.4.1) to a pair of descriptors fai and f bj we obtain

a distance vector for each possible shift in orientation ∆φ. As shown in Figure 14.4,

these distance vectors have pronounced minimums for the true orientation when two

features do really match, thus we propose to measure the inter-feature distance in the

cases of lin-polar and log-polar as:

d (fi, fj) = min
∆φ

d (fi, fj,∆φ) (14.4.2)

For all the descriptors in our comparison we have normalized distances to the range

[0, 1] in order to keep homogeneity in the results presented in the next section.

14.5 Benchmark of detectors and descriptors

14.5.1 Set up of the benchmark

After defining a similarity measure for pairs of descriptors in §14.4.2, we are interested

in obtaining a set of candidate correspondences between the features of two maps a and

b, given their descriptors fai and f bj . The goodness of all the potential correspondences

must be evaluated such as only the most promising pairings (those passing a given
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Figure 14.5: A schematic illustration of the distance between descriptors dij and the index
δij , which measures those distances relative to the closest one for each given feature i. Note
that, by definition, the best pairing is always assigned a value δij = 0. A pairing will be
accepted only if it is below both thresholds Td (absolute) and Tδ (relative to the minimum
distance).

test) are considered as candidates. It is acceptable for each feature to have multiple

potential correspondences in the other map, since a subsequent robust matching step

(such as RANSAC [Fis81]) can easily manage that ambiguity.

The arguably simplest test for selecting matchings is thresholding, which in our

case means to accept a potential match between fai and f bj only if the distance dij

between their descriptors is below a fixed value Td. However, this simple scheme

has some drawbacks in the context of grid matching, because distance values between

actually corresponding pairs may vary in a relatively large range. Thus, any permissive

threshold Td which covers most of the good correspondences would suffer from a high

rate of false positives.

Following an idea similar to Lowe’s proposal in [Low99] we introduce a second

condition for establishing candidate pairings: the associated distance dij must be not
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Figure 14.6: The benchmark of feature detectors for grid map matching. (a) A measure of
the repeatability for each detector. (b) For each combination of detector and descriptor, the
resulting overall probability of classification error Perr for its best thresholds, i.e. that marked
with a cross in (c)–(f), along with its average computation time for one map. (c)–(f) Four
examples of the expected Perr for different values of thresholds Td and Tδ. The point with
the minimum Perr is marked with a cross in each figure. We have also shown the marginal
conditional distributions for the distance d and the distance-difference δ for valid (v) and
wrong (w) associations are shown on the right hand of each subfigure.
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only below the threshold Td, but also sufficiently close to the best matching of fai in map

b, that is, the minimum of dij for all values of j (see Figure 14.5). This restriction is

characterized by a second threshold Tδ which states the maximum acceptable distance

δ between a potential pairing and the best one, that is, δij = dij−minj dij. Notice that

for the extreme case Tδ = 0 each feature will be associated to only one in the other

map: the one with the closest descriptor. Both measures dij and δij are illustrated

with an example in Figure 14.5 for clarity.

A benchmark has been carried out to obtain the optimal values for the thresholds

Td and Tδ from a training set of 10 pairs of submaps with known ground-truth and

for several combinations of detectors and descriptors. Optimal thresholds have been

determined by minimizing the probability Perr of misclassifying a correspondence as a

valid or an invalid candidate, given by:

Perr(Td, Tδ) = P (w)Perr(Td, Tδ|w) + P (v)Perr(Td, Tδ|v)

= P (w)P (dij < Td, δij < Tδ|w)

+ P (v) [1− P (dij < Td, δij < Tδ|v)] (14.5.1)

which can be evaluated given knowledge of the joint densities p(d, δ|v) and p(d, δ|w),

where v and w stand for valid and wrong pairings, respectively. The expression above

can be easily derived by noticing that a misclassification will occurs when: (i) a distance

dij passes both thresholds and it was a wrong association (first term in the sum), or

(ii) a valid pairing does not pass the thresholds (second term). For our analysis we

assume no a priori information about the probability of being in a valid or invalid

pairing, thus we have P (v) = P (w) = 1/2. The joint conditional densities p(dij, δij|v)

and p(dij, δij|w) have been estimated from histograms generated by evaluating all the

potential pairings in the 10 pairs of submaps, which amounts to 220 valid and 240,000
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invalid correspondences.

The results of the benchmark are summarized in Figure 14.6(e) which shows the

minimum classification error Perr attainable by each combination of feature detector

and descriptor, along the associated average computation time (for one whole submap).

These times include detection, descriptor extraction and distance computations, but

they do not include the preprocessing filters discussed in §14.3.2. This preprocessing

would add an average of 10 to 200ms, with larger computational burdens associated

to SIFT and SURF since they require larger filter kernels than the Harris or KLT

methods.

Please, notice that for those descriptors parameterized by a maximum radius Rmax

(see §14.4.1) we present the results only for the value that minimizes the classification

error. However, this is a non-critical parameter since any value in the range 1 − 3

meters gives similar results.

14.5.2 Results of the benchmark

The first important conclusion we can extract from our comparison is that no descriptor

can tell valid pairings from wrong ones with a classification error below ∼ 20%, which

is clearly a consequence of the ambiguity of features in map images where many ones

look quite similar locally. Still, discarding ∼ 80% of the wrong pairings provides an

invaluable improvement to the subsequent robust matching algorithm, since it will have

to deal with a reduced fraction of outliers.

It is interesting to note that the SIFT and SURF descriptors have a much poorer

performance when computed for interest points localized by the Harris or the KLT

detectors (third to sixth values in the bar graph) than when computed as proposed in

their original methods (the first two values in the graph). As commented in §14.3.1
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and illustrated in Figure 14.6(f), this has important consequences for the practical

applicability of those descriptors to grid matching, since the original SIFT and SURF

detectors have poorer repeatability than the Harris and KLT methods. Subsequently,

we discard the usage of these two descriptors as the optimal solution since they lead

to quite similar error ratios (Perr) than the other descriptors while severely reducing

the number of matched points and implying a higher computational burden, as can be

seen in Figure 14.6(e).

In Figure 14.6(a)–(d) it is represented the computed Perr(Td, Tδ) for some selected

methods along the marginal distributions obtained in our benchmark. Observe how

the marginal p(δij|v) presents a clear peak at the origin (δij = 0) for all the methods,

which indicates that the closest feature is often the actual correspondence 3. However,

this is not always the case, hence the optimal Tδ values are not exactly zero.

Notice that the worst obtained value for Perr (0.5, represented in white in the

graphs) is obtained for a wide range of threshold values, while more reduced error

ratios only appear for a certain band of the parameters (represented by darker areas).

The thickness of these bands is related to the distinctiveness of the descriptors, as can

be observed in the densities of descriptor distances for valid and wrong pairings (the

histograms at the right hand of each Perr graph). For instance, compare the histograms

p(d|v) and p(d|w) for the SURF and the Spin descriptors in Figure 14.6(a)-(c), where

it is clear that in SURF the histograms concentrate in relatively different areas (easing

the decision of where to place the threshold) whereas this is definitively not the case

for the Spin descriptor.

As a final conclusion from our benchmark, the lin-polar and log-polar descriptors,

both with virtually identical performance, emerge as the best choices for grid matching

3Recall that, by definition, δij = 0 means that feature fj has the minimum distance to feature fi.
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in combination with either Harris or KLT detector, due to their reduced misclassifica-

tion probability and faster computation time.

14.6 Construction of the map transformation SOG

14.6.1 The modified RANSAC algorithm

Subsets of self-consistent correspondences Ci ∈ C can be extracted with RANSAC, a

consensus-based method able of telling inliers from outliers [Fis81]. However, in our

problem it is not enough to keep the hypothesis with most supporting inliers since

ambiguity in grid matching can lead to multiple, mutually incompatible but internally

consistent subsets Ci. We propose instead to maintain each of those hypotheses as

a Gaussian mode in the SOG (refer to Eq. (14.2.2)), hence the need to modify the

RANSAC algorithm to allow the existence of multiple hypotheses.

Next we describe the complete process, which has been stated in Algorithm 4

for clarity. Firstly, two “seed” correspondences (the minimum number required to

unequivocally determine the distribution of the associated map transformation p(q|Ci))

are randomly chosen from C to initialize the subset Ci = {ck1 , ck2}. The uniqueness

constraint is tested first, that is, in a valid pairing one given feature cannot appear

in both correspondences ck1 and ck2 simultaneously. Then, the feasibility of this pair

is tested by a chi-square test which detects inconsistencies between the inter-feature

spatial distances da and db measured in the two maps a and b (refer to the example in

Figure 14.7(a)). As shown in the Appendix E, if

(d2a − d2b)2
8σ2(d2a + d2b)

< χ2
1,c (14.6.1)
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Algorithm 4 robust transform (C, {pAi }, {pBj })→ SOG

1: SOG⇐ ∅

2: iter ⇐ 1
3: repeat // RANSAC iterations
4: Ĉ ⇐ {ck1 , ck2} ⊂ C�uniqueness(ck1 , ck2)
5: if D2

M(ck1 , ck2) < χ2
c,1 then // Consistency test

6: if ∃k�Ĉ ⊂ SOGk.Ĉ then // Already?
7: // Increment the weight
8: SOGk.ω ⇐ SOGk.ω + 1
9: else

10: // It is a new SOG mode
11: repeat // Incorporate inliers
12: (q⋆i ,Q

⋆
i )⇐ opt transf(Ĉ) // See Eqs.(14.7.3),(14.7.17)

13: (i⋆, j⋆)⇐ argmax(i,j)
∫
pi(ξ)p̃j(ξ)dξ

14: if D2
M(i⋆, j⋆) < χ2

c,2 then

15: Ĉ ⇐ Ĉ ∪ (i⋆, j⋆) // Accept pairing
16: end if
17: until D2

M(i⋆, j⋆) ≥ χ2
c,2

18: if |Ĉ| ≥M then // Minimum inlier support
19: // New Gaussian mode with ω = 1
20: SOG⇐ SOG ∪ (Ĉ, 1, (q⋆i ,Qi))
21: end if
22: end if
23: end if
24: iter ⇐ iter + 1
25: until iter > maxIters

holds, we can accept that the distances are consistent within a confidence of c, where

χ2
n,c stands for the inverse chi-square cumulative distribution with n degrees of freedom.

Next, it must be determined the number of inliers supporting the hypothesis p(q|Ci)

defined by each set of initial pairings Ci. This is achieved by establishing associations

between all the features in map b and those in a transformed by q. Notice that this is a

stochastic data-association problem since all feature locations, and the transformation

itself, have associated uncertainties.

A robust method for stochastic data association is the Joint Compatibility Branch
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and Bound (JCBB) [Nei01], but unfortunately its exponential time complexity makes it

impractical for our problem, where each map will typically contain about one hundred

features.

Our alternative, which has been included in Algorithm 4, consists of sequentially

incorporating matches which optimize the integral of the product of the two Gaussians,

which can be shown to reflect the confidence of a potential pairing. The incorporation

of inliers stops when the next best pairing candidate (i, j) has a squared Mahalanobis

distance D2
M(i, j) above a given threshold χ2

2,c.

The above process is repeated a number of times, updated dynamically as new

inliers are found [Har03]. Regarding the weights of the SOG, each Gaussian mode

is initially assigned a unit weight, which is incremented each time the same subset

of correspondences is found in subsequent iterations (this implies that, in the end,

weights must be normalized). An enhancement of this approach is to test whether

the two first correspondences Ci are already part of another Cj, and in that case, to

increment the weight ωj. This heuristic is justified by the observation that the same

set of self-consistent pairings will be likely obtained if any pair of them is selected as

the two first “seed” correspondences.

Notice as well the existence of a minimum number of required inliers (pairings)M in

order to accept a hypothesis. In our experiments, this threshold has been heuristically

set to a ∼ 15% of the average number of features found in each map. This restriction

prevents the detection of spurious hypotheses with very few supporting inliers caused

by pure chance when two maps do not really match.
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14.6.2 Refinement and merge of Gaussian modes

As depicted in Figure 14.1, we propose to simplify the SOG generated by the RANSAC

stage before using the point maps to refine it further on. This means that, whenever

possible, two or more Gaussians are replaced by just one with the appropriate mean

and covariance such that it closely covers the same volume than the original pair. One

of the reasons to simplify the SOG is to reduce as much as possible the cost of the

following refinement step, in which ICP [Bes92] is applied to the point maps in order to

improve the estimate of the mean map transformation q⋆. The resulting SOG is then

tested again for further potential simplifications as illustrated in Figure 14.1, obtaining

the final, possibly multi-modal, density distribution for the map transformation.

We follow the method proposed in [Run07] to measure the Kullback-Leibler diver-

gence (KLD) (see §2.6) between the original and tentative densities, and only those

simplifications with a KLD value below a threshold are admitted.

14.7 The optimal solution to 2-d matching and its

uncertainty

Given a set of point correspondences from two different frames of reference a and b, it

is well-known that a closed-form solution exists for finding the 2-d rigid transformation

between them that is optimal in the sense of least mean square error (LMSE) [Lu97b,

Mar06]. In mobile robotics, this solution is best known for its role within the Iterative

Closest Point (ICP) algorithm [Bes92], widely employed for aligning pairs of laser range

scans [Lu97a,Lu97b].

This section reviews that optimal solution and derives an estimation of its uncer-

tainty. Taking the uncertainty into account is essential, since the position of the points
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involved in the correspondences are always prone to error (e.g. sensor noise). The

resulting expression is proven to be accurate and realistic by means of a comparison

to Monte Carlo simulations.

The derivation will focus on the specific case of two 2-d maps a and b, where the

following assumptions are made about the feature points paired in the set of corre-

spondences: (i) Error in feature points can be modeled as an isotropic 2-d Gaussian,

with characteristic variance σ2
p, and (ii) all the errors are independent, i.e. there is

a null covariance between different features. These assumptions will allow important

simplifications in our derivation, as will be seen in the next section.

14.7.1 Uncertainty of the optimal transformation

Given a certain set of feature correspondences Ci, we model the probability density of

a rigid transformation q = [x y φ]⊤ between the two frames of reference as a Gaussian

distribution, that is:

p(q|Ci) = N (q;q⋆i ,Qi) (14.7.1)

where q⋆i andQi represent the corresponding mean and covariance matrix, respectively.

In the following we derive expressions for the parameters of this distribution. Note that

the subscript i is a constant throughout the whole derivation, but it is still convenient

since it reminds us that the derived Gaussian represents the pdf for just one (the i’th)

hypothesis within the SOG.

The mean of the Gaussian will be given by the optimal solution q⋆i , while the

covariance matrix is approximated by first-order linearization.

Let ECi(q) be the squared error in the matching of features from maps a and b, for

a rigid transformation q and a given set of correspondences Ci, defined as:
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ECi(q) =
∑

∀ck∈Ci

∣
∣pbi − (q⊕ paj )

∣
∣
2

(14.7.2)

where ⊕ represents the pose composition operator (see Appendix A) and pmk stands

for the position of the k ’th feature in the frame of reference m. For the 2-d case,

in which we are interested, the optimal transformation q⋆i that minimizes this error

can be obtained by equaling the derivative of Eq. (14.7.2) to zero, which leads to the

closed-form solution [Lu97b]:

q⋆i =







x⋆i

y⋆i

φ⋆i






=







x̄a − x̄b cosφ⋆i + ȳb sinφ
⋆
i

ȳa − x̄b sinφ⋆i − ȳb cosφ⋆i
tan−1

(
∆y

∆x

)







(14.7.3)

where x̄a, ȳa, x̄b, and ȳb are the mean values of the vectors xa, ya, xb, and yb, respec-

tively, which contain the 2-d coordinates of features within the maps. We have also

employed the terms ∆x and ∆y, defined as:

∆x = N

(
∑

k

xakx
b
k +

∑

k

yaky
b
k

)

−N2 (x̄ax̄b + ȳaȳb)

∆y = N

(
∑

k

yakx
b
k −

∑

k

xaky
b
k

)

+N2 (x̄aȳb − ȳax̄b) (14.7.4)

with N = |Ci| standing for the number of pairings in Ci.

Before proceeding with the derivation, it is more convenient to rewrite Eq. (14.7.3)

in an alternative form to avoid the dependency of the first two components (x⋆i , y
⋆
i ) on

the third one (φ⋆i ) . This can be easily done by applying basic trigonometric definitions,

obtaining:
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q⋆i =









x̄a − x̄b ∆x√
∆2

x+∆2
y

+ ȳb
∆y√

∆2
x+∆2

y

ȳa − x̄b ∆y√
∆2

x+∆2
y

− ȳb ∆x√
∆2

x+∆2
y

tan−1
(

∆y

∆x

)









(14.7.5)

The optimal transformation in Eq. (14.7.5) is therefore a function q(·) of six aux-

iliary variables z = [x̄a ȳa x̄b ȳb ∆x ∆y]
⊤, that is, q⋆i = q(z). In order to estimate the

covariance matrix Qi that models its uncertainty, it is firstly needed the multivariate

Gaussian distribution of the vector of auxiliary variables z. This vector is a function of

the 2-d coordinates of all the features xa, ya, xb and yb. Assuming that these coordi-

nates are corrupted with an additive, zero-mean Gaussian noise with known covariance

matrices Xa, Ya, Xb and Yb, we can obtain the covariance of z from:

Σz ≈ Jz










Xa 0 0 0

0 Ya 0 0

0 0 Xb 0

0 0 0 Yb










J⊤
z (14.7.6)

Since z depends on the whole set of feature coordinates, the Jacobian matrix Jz

has a dimensionality of 6 × 4N . In despite of the large size of the matrices involved

in Eq. (14.7.6), important simplifications are possible because of our assumptions of

independence and isotropic distributions (§14.7). Therefore, the covariances Xa, Ya,

Xb and Yb are diagonal matrices with the same variance σ2
p for all the coordinates,

that is:

Xa = Ya = Xb = Yb = σ2
pIN (14.7.7)

Therefore, the covariance in Eq. (14.7.6) becomes:
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Σz = σ2
pJzJ

⊤
z (14.7.8)

The Jacobian matrix Jz can be easily obtained from the derivatives of the six

components of z = [x̄a ȳa x̄b ȳb ∆x ∆y]
⊤ with respect to the sequence of coordinates

xa, ya, xb and yb:

Jz =
















1
N
· · · 1

N
0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 1
N
· · · 1

N
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· · · · · · ∂∆y

∂ykb
· · ·
















6×4N
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Now, the partial derivatives of ∆x and ∆y in the above matrix can be computed

from their expressions in Eq. (14.7.4), leading to:

∂∆x

∂xka
= Nxkb −

∑

k

xkb
∂∆y

∂xka
=

∑

k

ykb −Nykb
∂∆x

∂yka
= Nykb −

∑

k

ykb
∂∆y

∂yka
= Nxkb −

∑

k

xkb

∂∆x

∂xkb
= Nxka −

∑

k

xka
∂∆y

∂xkb
= Nyka −

∑

k

yka

∂∆x

∂ykb
= Nyka −

∑

k

yka
∂∆y

∂ykb
=

∑

k

xka −Nxka

(14.7.10)

In order to derive an expression for the terms of Σz in Eq. (14.7.8), let H(i, j)

denote the elements in the matrix JzJ
⊤
z . Thus, we have:

H(i, j) =
4N∑

k=1

Jz(i, k)Jz(j, k) (14.7.11)

that is, the “dot product” of the i’th and j’th rows of the Jacobian. Since the first four

rows of Jz are orthogonal (see Eq. (14.7.9)), it comes out that the first 4×4 submatrix
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of JzJ
⊤
z is diagonal, with its non-zero elements given by H(i, i) = N

N2 = 1
N
. The rest of

elements are not trivial to compute, thus we will assign them names in order to derive

them next:

Σz =















σx̄a∆x σx̄a∆y

σ2
p

N
I4 σȳa∆x σȳa∆y

σx̄b∆x σx̄b∆y

σȳb∆x σȳb∆y

σx̄a∆x σȳa∆x σx̄b∆x σȳb∆x σ2
∆x

σ∆x∆y

σx̄a∆y σȳa∆y σx̄b∆y σȳb∆y σ∆x∆y σ2
∆y















(14.7.12)

If we start evaluating, for example, the cross-covariance of x̄a and ∆x, it must be

evaluated the “dot product” of the first and fifth rows of Eq. (14.7.9):

σx̄a∆x

σ2
p

=
1

N

∑

k

∂∆x

∂xka
=

1

N

∑

k

(

Nxkb −
∑

k

xkb

)

=
∑

k

(
xkb − x̄b

)
= N · E [xb − x̄b] = 0 (14.7.13)

Observe how the results is exactly zero due to the definition of the average value

x̄b. It can be verified that all off-diagonal entries in Eq. (14.7.12) also amount to zero,

thus Σz is a diagonal matrix: all the auxiliary variables in z are uncorrelated.

Regarding the two diagonal elements σ2
∆x

and σ2
∆y

, it can be proven that both are

equal to βσ2
p, with:

β = N2(N − 1)
(
σ̂2
xa + σ̂2

ya + σ̂2
xb
+ σ̂2

yb

)
(14.7.14)

where the constants σ̂2
xa , σ̂

2
ya , σ̂

2
xb

and σ̂2
yb

represent the unbiased estimates of the

variance for their corresponding vectors. Therefore, it has been obtained an expression

for the covariance of z:
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Σz = σ2
pdiag

(
1

N

1

N

1

N

1

N
β β

)

(14.7.15)

At this point we can proceed with the derivation of the covariance of q⋆i . We

compute now the Jacobian Jq of Eq. (14.7.5) with respect to z, which can easily be

shown to be:

Jq =









1 0 − ∆x√
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y

∆y√
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2
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This Jacobian can finally be employed to propagate the uncertainty from z to our

optimal estimate qi by means of:

Qi = JqΣzJ
⊤
q = σ2

p







C11 C12 C13

C12 C22 C23

C13 C23 C33







(14.7.17)

where, after replacing the values of Eq. (14.7.15)-(14.7.16) and operating, it is obtained:

C11 =
2

N
+ β

(
x̄b∆y + ȳb∆x

∆2
x +∆2

y

)2

C22 =
2

N
+ β

(
x̄b∆x − ȳb∆y

∆2
x +∆2

y

)2

C33 =
β

∆2
x +∆2

y

C12 = β
(x̄b∆y + ȳb∆x) (ȳb∆y − x̄b∆x)

(
∆2
x +∆2

y

)2 (14.7.18)

C13 = β
x̄b∆y + ȳb∆x
(
∆2
x +∆2

y

) 3
2

C23 = β
ȳb∆y − x̄b∆x
(
∆2
x +∆2

y

) 3
2
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Figure 14.7: Four sets of correspondences between two synthetic maps a and b for different
spatial distributions and number of detected features. Here, the position uncertainty for
all the features has been set to σp = 0.10 and ellipses represent 95% confidence intervals.
The inter-feature distances measured in the different maps, da and db, as employed in the
Appendix E, are shown in (a) as an example.

To summarize this section, the optimal transformation qi has been modeled as

a Gaussian distribution with mean q⋆i given by Eq. (14.7.3) and covariance Qi by

Eq. (14.7.17)–(14.7.18).

It is important to highlight that this covariance matrix can be computed in O(N)

operations thanks to all the simplifications exploited along its derivation, whereas the

näıve implementation leads to a complexity of O(N3).



14. Grid map matching for topological loop closure 281

14.7.2 Illustrative examples

To illustrate some results for this covariance estimation, the transformations computed

from four sets of feature correspondences are displayed in Figure 14.7, along with their

2-d uncertainty ellipses for [x⋆i y
⋆
i ]

⊤ and the densities of φ⋆i . These examples illustrate

some interesting properties of the resulting uncertainty.

Firstly, the uncertainty in the orientation φ⋆i strongly depends on the spatial dis-

tribution of the features, since more precise estimations can be made from features

distributed over larger areas. This can be clearly observed by comparing the two cases

shown in Figure 14.7(b)–(c). Secondly, the uncertainty in the 2-d coordinates of q⋆i

decreases with the number of features N only for very low values of N . This can be

explained by the first term in C11 and C22, that is, 2
N
, becoming negligible, whereas

the second term does not decrease for incresingly larger values of N .

14.7.3 Validation

In order to validate our model of the covariance Qi, we have evaluated the Kullback-

Leibler divergence between our model and the covariance obtained from a Monte-Carlo

simulation comprising 6 pairs of correspondences between randomly located features

corrupted with Gaussian noise. The results, in Figure 14.8, validate our derivation

since the experimentally obtained covariance approaches the theoretical model as the

number of Monte-Carlo trials increases.

14.8 Experimental evaluation and discussion
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Figure 14.8: The Kullback-Leibler divergence between our theoretical model for the co-
variance Qi and its value from a Monte-Carlo simulation for an increasing number of trials.
Confidence intervals are shown for the KLD since the values at each point were computed
for 50 different maps generated by randomly positioned features. These results represent an
excellent agreement between the real covariance and the derived theoretical model.

In this section we present experiments aimed at testing the robustness of our approach

against errors and noise, and also its dependability in the context of loop closure de-

tection. For all these results we have employed the Harris corner detector and the

linear-polar descriptor to establish correspondences between grid maps with a resolu-

tion of 10cm.

14.8.1 Performance under errors and noise

Maps built by a mobile robot at different moments may present significant differ-

ences due to both dynamic objects and errors in the robot localization while mapping.

To quantify the accuracy of our method against such differences we have matched a

reference map, built from real data, to a transformed one with known ground-truth

translation and rotation – see the left column in Figure 14.9.
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Figure 14.9: Characterization of our method under the presence of localization errors (σp)
and laser sensor errors (σl). The average error in the map transformation and the average
number of matches between the pair of maps are shown by the thick plot, while the ±1-sigma
confidence intervals are represented by the shaded region.

We have evaluated two sources of errors. Firstly, the estimated robot path in the

environment (which in turn determines the accuracy of the map itself [Gut99]) has

been deliberately corrupted by Gaussian noise with a standard deviation of σp. As

σp increases, so does the degradation of the test map, as illustrated in the top row of

the figure. It can be seen how the corresponding errors in the map transformation as

detected by our method increases with larger σp, which is explained by both the more

erroneous locations of detected features and their more reduced repeatability, shown

in the rightmost column of the figure. Note that repeatability is a desired property of

any feature detector since it assures that the same physical point is detected in two

different maps in spite of potential changes in orientation or minor differences in the

feature surroundings.

Secondly, we also evaluated the effects of noise in the laser scanner ranges, char-

acterized by a standard deviation of σl. As shown in Figure 14.9, our method is less

sensitive to this kind of error (in comparison to the localization error σp). One likely

reason for this behavior is that the preprocessing of map images smooth out part of

the noisy measurements.
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Figure 14.10: (a)–(c) Some examples of map-to-map matchings as detected by the proposed
method. (d) A pair of submaps for which a multi-modal transformation is detected. The two
different hypotheses are represented by the overlay of the submap #20 over submap #18 in
the right hand images.
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We must remark that the error and noise levels probed in this characterization

are much higher than those expected in real-world conditions (the ranges of realistic

values are marked in the graphs). Therefore, the errors of our method under normal

conditions can be expected to be below 10cm, approximately.

14.8.2 Performance in loop-closure detection

The following benchmark characterizes the performance of our method in its natural

application to hierarchical SLAM [Bla07b, Est05], that is, in detecting loop closures

from local, metric submaps. For this aim we have selected four publicly available

datasets. Three of them, the Freiburg campus dataset, the Intel dataset and the MIT

dataset are published in the Radish repository [How03], while an additional dataset was

collected by the author at the Málaga campus (see Figure 14.10 for example submaps

from each dataset).

All these datasets have been processed within our HMT-SLAM framework described

in Chapter 12. In this framework, the original sequence of robot observations is grouped

into segments of consecutive observations (the submaps) according to a natural metric

of similarity (refer to Chapter 13). For convenience, we disabled topological loop closure

detection in this framework to obtain the raw sequence of submaps in each dataset.

Therefore, among them some areas will appear several times corresponding to loop

closures that should be detected by our method.

The so obtained set of 59 submaps is an ideal testbed for the method proposed in

this chapter, since we can now try to match each submap with the rest, including those

in different datasets (from which no valid transformation should result). The detailed

results of executing the 1711 map-to-map matchings are shown in Figure 14.11, where

each entry in the table specifies the outcome from our method and whether the two
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maps actually do correspond or not, that is, it shows the loop closure ground truth

(obtained by human inspection). Notice that there are two possible kinds of errors

in this experiment: false positives (our method detecting a loop closure that does

not really exist) and false negatives (where a real loop closure is overlooked). Due to

the nature of SLAM, the latter is far more important, since missing a loop closure

may degrade the global map, while a false positive may be easily rejected by metric

information in the hierarchical map.

As can be seen in the figure, our method correctly detects as non-matchings vir-

tually all the cases where each submap belongs to a different dataset. Two datasets

deserve additional attention. Firstly, the Intel dataset leads to several false positives,

which is explained by the symmetry of the environment, i.e. all its submaps are very

similar. Secondly, the Málaga dataset also suffers from many false positives, most of

them attributable to the environment, consisting of an array of three exactly identical

buildings.

The overall performance is also summarized in Table 14.1, where for the sake of

a fair validation we do not count the elements in the main diagonal of Figure 14.11

(matching each submap to itself), which were correctly detected by our method. It

is remarkable that only one loop closure out of 41 was not recognized (a ∼ 2.4% fail

rate). We also show in the table the ratio of false positives modified by disregarding

the errors clearly attributable to a real repetitive environment, not to errors in our

detection method.

Regarding the computation time of this benchmark, it took 1740 seconds to compute

the 1711 matchings in a Pentium Core Duo @ 2.2GHz (using a single execution thread),

yielding an average 1.02 seconds per match.
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Figure 14.11: Results of the loop closure benchmark. The submaps corresponding to each
of the two datasets have been separated by thick lines and inter-dataset blocks have been
shaded for clarity.
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Table 14.1: Results for the loop-closure detection benchmark.

Result Disregarding ambiguity

True positives 97.56% (40/41) ·
False positives 3.47% (58/1670) 1.38% (23/1670)

True negatives 96.53% (1612/1670) 98.62% (1647/1670)

False negatives 2.44% (1/41) ·

14.8.3 Discussion

In this chapter we have proposed a new approach to grid matching, based on existing

computer vision techniques (detectors and descriptors) and providing the modifica-

tions required by the ambiguity typically found in our problem by means of a multi-

hypothesis RANSAC stage. The resulting method has been demonstrated to assess

a 97% success ratio in detecting loop closures while also being reliable against sensor

noise and errors in the robot positioning.
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CHAPTER 15

OVERVIEW

15.1 Obstacle representation in robot navigation

Along with localization and mapping, autonomous and safe navigation is undoubtedly

one of the issues which needs to be rigorously solved for mobile robots to leave re-

search labs and become more practical. For achieving this purpose, it is essential to

account for some spatial representation of obstacles where collision-free paths could

be found efficiently. This problem has been extensively studied by the robotics com-

munity and has traditionally led to two different research areas. On the one hand we

have motion planning approaches, where an optimal path is computed for a known

scenario and a target location. The Configuration Space (C-Space) [LP83] has been

successfully employed as representation in this scope: in C-Space the robot can be

represented as a single point in the high-dimensionality space of its degrees of free-

dom. On the other hand, some navigation approaches deal with unknown or dynamic

291
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(a) (b)

Figure 15.1: (a) Holonomic robots can move following straight lines without restrictions,
while (b) realistic non-holonomic robot can only move following sequences of circular arcs.

scenarios, where motion commands must be periodically computed in real-time during

navigation (that is, there is no planning). Under these approaches, called reactive or

obstacle avoidance methods, the navigator procedure can be conveniently seen as a

direct mapping between sensor readings and motor actions [Ark98]. Although reactive

methods are quite efficient and have simple implementations, many of them do not

work properly in practical applications since they often rely on too restrictive assump-

tions, like a point or circular representation of robots or considering movements in

any direction, that is, ignoring kinematic restrictions. C-Space is not an appropriate

space representation for reactive methods due to its complexity, which prohibits real-

time execution. Hence simplifications of C-Space have been proposed specifically for

reactive methods. Finally, combinations of the two above approaches have also been

proposed [Kha97, Lam04, Qui93], which usually start computing an optimal planned

path based on a known static map, and deform it dynamically to avoid collision with

unexpected obstacles. These hybrid approaches successfully solve the navigation prob-

lem in many situations, but purely reactive methods are still required for partially

known or highly dynamic scenarios, where an a priori planned path may need exces-

sive deformation to be successfully constructed by a hybrid method.
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In this thesis, the stress is on pure reactive methods, which aim at reactively driving

a kinematically-constrained, any-shape mobile robot in a planar scenario. This problem

requires finding movements that approach the target location while avoiding obstacles

and fulfilling the robot kinematic restrictions. In particular, the contribution presented

in Chapter 16 is related to the process for detecting free-space around the robot, which

is the basis for a reactive navigator to decide the best instantaneous motor action.

For this task, existing methods consider certain families of simple paths for measuring

obstacle distances (i.e. they sample the free-space). These families of paths, or path

models, must be considered not as planned paths but as artifacts for taking nearby

obstacles into account. All existing reactive methods use path models that are an

extension of the robot short-term action, as illustrated in Figure 15.1: for holonomic

robots that can freely move in any direction, straight lines are used, while for non-

holonomic robots virtually all existing methods employ circular arcs.

Straight and circular paths, used in previous reactive methods, are just two of the

the infinity of path models that could be followed by a robot in a memoryless system,

that is, reactively. It is clear that considering other path models can be more appropri-

ate to sample the free-space than using the classic straight or circular models only. We

shed light into this issue through the example in Figure 15.2, where a robot (reactively)

looks for possible movements. If a single circular path model is used for sampling obsta-

cles as in Figure 15.2(a), it is very likely that the obstacle avoidance method overlooks

many good potential movements – notice that any reactive method must decide accord-

ing solely to the information that path models provide about obstacles. In contrast,

using a diversity of path models, as the example shown in Figure 15.2(b), makes much

easier to find better collision-free movements.

A fundamental point in the process of using path models to sample obstacles is that

not any arbitrary path model is suitable for reactive navigation, since it must assure
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(a) (b)

Figure 15.2: Reactive methods can take obstacles into account through a family of paths,
typically circular arcs (a). However, we claim that other possibilities may be useful for finding
good collision-free movements, as the path family shown in (b).

that the robot kinematic constrains are fulfilled while still being able of following the

paths in a memory-less fashion. Therefore, it is worth discussing the properties of

trajectories that fulfil this condition (see §16.3.1), an important reflection that cannot

be found in the literature.

15.2 Survey of related works

Next, we examine the space representations typically employed in mobile robot motion

planning and collision avoidance, and put them in contrast with the approach explained

in detail in the next chapter.

C-Space has been extensively used in many fields, including robotic manipula-

tors [LP87], maneuver planning [Lat91], and mobile robot motion planning [Mur00]. In

spite of recent advances towards speeding up its computation [Zha06], the complexity

derived from its high dimensionality makes C-Space not applicable to real-time reac-

tive navigation. The problem can be visualized with the example of Figure 15.3(a),
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Figure 15.3: (a) A robot and a path avoiding an obstacle are represented here from a top
view. (b) In C-Space the robot is now represented as a point, and the path becomes a 3D
curve.

where it is shown a path for a robot in a planar scenario with an obstacle. This sit-

uation can be translated into C-Space as an obstacle that implicitly holds the robot

shape (C-Obstacle). Then the navigation problem becomes that of finding a path in

this space for a point robot, as shown in Figure 15.3(a). Unfortunately, building the

whole C-Obstacles and finding paths in this high dimensional space remains being a

computationally too expensive process.

A first simplification for dealing with C-Space more efficiently is to assume a circu-

lar robot. Thus, C-Obstacles are no longer dependent on the robot orientation and the

C-Space reduces to a planar space, the Workspace (WS). This space is employed by

the well known potential field methods (see [Cho05] for a review of these methods), like

the VFF [Bor89], VFH [Bor91], and others [Had98,Bal93]. Other reported methodolo-

gies are based on neural nets [Pal95] and, more recently, the Nearness-Diagram (ND)

approach [Min04], which relies on a divide-and-conquer strategy that defines a set of

different states according to the arrangement of nearby obstacles. All these methods
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deal with circular shaped robots, a too restrictive assumption for many real-life situa-

tions. For example, if a robotic wheelchair were assumed to be circular, it would never

pass through a narrow doorway.

Most of the approaches that both deal with any-shape robots and take into account

their kinematic restrictions propose working with another less limiting simplification

of C-Space: the velocity space [Arr02b, Fei94, Ram01, Sch98, Sim96], or V-Space for

short. For mobile robots of our interest, V-Space represents the space of the potential

linear and angular robot velocities, hence the next movement can be chosen as a point

in V-Space that results in constant curvature paths (i.e. circular paths). Notice that

other methods that decide each robot action based on an evaluation of circular arcs,

such as [Bon01], can be also classified as relying on V-Space since each circular arc

maps into one line in this action space. A common feature in many V-Space methods

is the inclusion of a dynamic window [Fox97], which restricts the range of reachable

velocities to that compatible with the robot maximum acceleration. On the other

hand, an important limitation is that, although many obstacles may be sensed, not all

of them are exploited: only those ones falling into the robot dynamic window for the

next step are considered for choosing the instantaneous motion command. It is clear

that better paths could be found if more comprehensive obstacle information was taken

into account, which is the central idea of the approach presented in the next chapter.

In addition to the utilization of a dynamic window, most V-Space approaches use

only the family of circular paths to sample the free-space, which entails the risk of not

detecting many free-space areas. There are some exceptions [Ram01,Xu02] that make

use of straight paths, but this model is not appropriate for most actual mobile robots.

Only these two path models have been reported in the reactive collision avoidance

literature.
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While a generic path can only be described in the three-dimensional C-Space (2-

d position plus heading), a circular path can be defined through two parameters: the

path curvature and the distance along the arc. Upon this parametrization, a Trajectory

Parameter space (or TP-Space for short) was proposed in [Min06] as an elegant and

mathematically sound alternative to V-Space: if the navigation is carried out in the 2-d

TP-Space, the robot can be treated as a free-flying-point. That work demonstrates that

navigation in a parameterized space allows us to decouple the problems of kinematic

restrictions and obstacle avoidance. However, this approach has never been extended

neither to cope with other path models apart from the circular one, nor to a number

of different transformations, alternatives explored in this thesis.

To further clarify the relationship between the different existing representation

spaces, please refer to Figure 15.4, where TP-Spaces appear as a generalization of

spaces such as WS and V-Space. However, it must be remarked that C-Space is the

most general space representation, but at the price of an elevated computational cost

due to its high dimensionality.
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Other
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Figure 15.4: A summary with the classification of space representations used in obstacle
avoidance methods.
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CHAPTER 16

REACTIVE NAVIGATION

BASED ON PTGS

16.1 Introduction

This chapter addresses the problem of reactive navigation for any-shape, kinematically-

constrained mobile robots in planar scenarios. This requires efficiently finding move-

ments that approach the target location while avoiding obstacles and fulfilling the robot

kinematic restrictions.

Our main contribution here is about the process for detecting free-space around

the robot. As explained in Chapter 15.1, existing reactive methods consider straight

and circular path models for measuring obstacle distances (see Figure 16.1), although

different models have been studied in the field of motion planning, obtaining interesting

results regarding shortest paths [Lau93, Sou96,Ven99]. Our approach allows some of

299
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Sensor 

readings Motor

actuation

Reactive navigation

Mobile robot

Target 

location
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robots
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Other
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Figure 16.1: Reactive navigation methods periodically map sensor readings to motor ac-
tuations in order to avoid obstacles and to reach a target location. For taking obstacles
into account, straight and circular sampling path models have been used for holonomic and
non-holonomic robots, respectively. However, other valid possibilities exist (dashed curves
are examples) which provide the robot with a more comprehensive free-space detection.

those results to be integrated into a reactive navigation system for the first time.

As an example of the decisions made during reactive navigation, consider the robot

in Figure 16.2(a), which must decide its next movement from a family of circular arcs,

each one giving a prediction for the distance-to-obstacles. Since reactive navigation

is a discrete time process, the decision will be taken iteratively in a timely fashion,

though at each time step the family of paths will be considered starting at the current

pose of the robot. The central issue here is that, implicitly, it is assumed that if

the robot chooses one path at some instant of time, at next time step it will have

the possibility of continuing along the same trajectory. Otherwise, the prediction of

distance-to-obstacles would be useless since foreseen trajectories will never be actually

followed. In the case of circular arcs, this property indeed holds, as illustrated in the

example in Figure 16.2(b). The main contribution of the present work is a detailed

formalization of this and other properties that need to hold for a path model being

applicable to obstacle avoidance.
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Figure 16.2: A schematic representation of the process involved in reactive navigation. At
each time step, the robot employs a family of paths to sample the obstacles in the environ-
ment, then chooses the most convenient action according to that information. It must be
highlighted the important implicit assumption in the process: that the robot will be able to
continue trajectories chosen at previous time steps. Since this does not hold in general for all
path models, it is presented in the text a template for path models that are proven to fulfill
this requirement.
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As reported previously elsewhere [Bla06c, Bla08f], the problems of kinematic re-

strictions and obstacle avoidance can be decoupled by using path models to transform

kinematic-compliant paths and real-world obstacles into a lower complexity space, i.e.

a Trajectory Parameter Space (TP-Space). The transformation is defined in such a

way that the robot can be considered as a free-flying-point in the TP-Space since its

shape and kinematic restrictions are already embedded into the transformation process.

We can then entrust the obstacle avoidance task to any standard holonomic method

operating in the transformed space. This idea was firstly introduced by Minguez and

Mintano in [Min02] with the study of the Ego-Kinematic Transformation (EKT), and

has subsequently evolved in a series of works [Min06,Min09].

The main contribution of the work discussed here [Bla08f] is the extension of the

EKT approach [Min06] with the generalization of path models through a novel tool

called Parameterized Trajectory Generator (PTG), which permits us to handle any

number of transformations instead of just the one corresponding to circular arcs.

It is also proposed a navigation system to manage simultaneously multiple paths,

each corresponding to a different PTG. This system faces the dynamic selection of

the best alternative at each instant of time (for instance, in terms of path length and

clearance), which yields a more powerful approach than traditional methods relying on

circular paths only.

To sum up, the proposed solution to reactive navigation presents the following

features:

1. The problems of obstacle avoidance and kinematic restrictions are decoupled like

in [Min06], but now in a generalized way that allows a more effective detection

of free-space.

2. Well-known, efficient reactive methods previously constrained to holonomic point
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Figure 16.3: Instead of considering the robot kinematics into the reactive method itself like
most existing approaches do (outlined in (a)), we propose here to use a number of different
kinematics abstractions layers, as shown in (b). A simple holonomic method is executed for
each one of the transformed scenarios.

(or circular) robots can be applied to any-shape, non-holonomic ones.

3. Using path models other than circular ones enables the robot to find better

collision-free movements. Furthermore, a number of path models can be simul-

taneously used and the one that best suits to each specific situation can be

dynamically chosen.

Following a representation similar to that in [Min09], Figure 16.3 represents both

a classical reactive navigation method and our approach. As stated above, previous

methods that consider the kinematic restrictions of mobile robots deal with them and
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obstacle avoidance as a whole, which is illustrated in Figure 16.3(a). We propose to

abstract the kinematic restrictions from the collision avoidance through a number of

different transformations (PTGs). This idea is shown in Figure 16.3(b), where it can

also be seen the selection step needed to choose the best transformation at each instant

of time.

Regarding the outline of the rest of this chapter, we will first present the definition

of parameters spaces, then employ it in §16.3 to formally define what a PTG is and

its properties. Next, some examples of practical PTGs are presented in §16.4, and we

finish with an in-depth discussion of practical issues related to the implementation of a

PTG-based reactive navigation system and several experiments in both synthetic and

real environments.

16.2 Trajectory parameter spaces (TP-Spaces)

In this section we first discuss the problem of how to measure distance to obstacles for

a non-holonomic, any-shape robot, which is the basis for the definition of a TP-Space.

16.2.1 Distance-to-obstacles

Calculating distance-to-obstacles is an essential step in any reactive navigation algo-

rithm since it provides the robot with information for choosing the next movement.

To the best of our knowledge, all previous (reactive) works make an implicit assump-

tion that has never been questioned: distance-to-obstacles (i.e. collision distances) are

computed by means of a single fixed path model: either straight or circular, commonly

depending on the robot being holonomic or not. Distances are then taken along those
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2-d paths, though robot paths are actually defined as continuous sequences of loca-

tions and orientations, that is, as three-dimensional 1 curves in C-Space as seen in

Figure 16.4(a). Thus, to be rigorous distance-to-obstacles should be directly measured

in C-Space, through the mechanism described next.

By representing all the paths from a given path model simultaneously in C-Space

it is obtained a 3-d surface, as the example in Figure 16.4(b). These surfaces will be

referred to as sampling surfaces, since distance-to-obstacle can be computed by measur-

ing the distance from the origin to the intersection of those surfaces with C-Obstacles.

Next we can “straighten out” the surface into a lower dimensionality space where ob-

stacle avoidance becomes easier, that is, a TP-Space. In this process the topology of

the surface is not modified. Since we are proposing a diversity of path models to be

used simultaneously, we will have different associated sampling surfaces in C-Space

to compute distance-to-obstacles. The whole process is illustrated in Figure 16.4(c).

Notice that the measurement of distances in C-Space combines linear and angular val-

ues, as is highlighted in Figure 16.4(a). This problem can be worked out by defining

alternative non-Euclidean metrics as discussed later on.

16.2.2 Definition of TP-Space

We define a TP-Space as any two-dimensional space where each point corresponds to

a robot pose in a sampling surface. It is convenient to consider points in a TP-Space

by their polar coordinates: an angular component α and a distance d. In this way the

angular coordinate has a closed range of possible values. The mapping between a TP-

Space and a sampling surface is carried out by selecting an individual trajectory out

from the family using the α coordinate, while d establishes the distance of the pose along

1We refer to C-Space as a 3-d space due to the three dimensions of its topological structure R2×S1,
although this differs from the usual meaning of 3-d Cartesian spaces with R3 structure.
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that selected trajectory. In the original work by Minguez and Montano [Min06], such

a distance is measured as the Euclidean distance disregarding the robot orientation.

Alternatively, it is proposed here to measure distances in a TP-Space through a non-

Euclidean metric, directly along C-Space sampling surfaces.

The region of interest in TP-Space is a circle centered at the origin and of radius Rm

(a constant that settles the collision avoidance maximum foresee range). We will refer

to the TP-Space domain as the 2-d space S × D, with S =] − π, π] and D = [0, Rm].

Note as well that the transformation is applied at each iteration of the navigation

process, thus for all our derivations the robot is always at the origin.

16.3 Parameterized trajectory generators (PTGs)

A PTG is any of the possible transformations that convert TP-Space points into robot

poses, as depicted in Figure 16.5. In the following a more formal definition of a PTG

is given and some of its properties are discussed.
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Figure 16.5: A point given by its polar coordinates (α, d) in TP-Space (above) represents a
robot pose (x, y, φ) on a particular sampling surface in C-Space (below). The transformation
is defined by a given PTG. The parameter α selects a particular path within a family, while
d indicates the distance from the origin.
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16.3.1 Basic definitions

We define a 2-d robot trajectory for a given parameter value α as:

q(α, t) =







x(α, t)

y(α, t)

φ(α, t)







, t ≥ 0 (16.3.1)

For realistic robots subject to non-holonomic constrains, trajectories are defined as

the integration of their time derivative q̇(α, t), that is,

q(α, t) =

∫ t

0

q̇(α, τ)dτ. (16.3.2)

where it applies the initial condition q(α, 0) = 0 for any α.

Note that TP-Space is defined in terms of distance d (see §16.2.2) rather than time

t, in which the kinematic equations are naturally defined. The reason for this change of

variable is that we are interested in the geometry of paths, which remains unmodified if

the velocity vector2 u(·) is multiplied by any positive scalar, an operation equivalent to

modifying the speed of the robot dynamically. For example, it is common in navigation

algorithms to adapt the robot velocities to the clearness of its surroundings.

Therefore, we define a PTG as:

PTG(α, d)
.
= q(α, µ−1

α (d)) (16.3.3)

where the function µ−1
α (d) maps distances d to times t. It is proven below that this

function exist and is well defined for many PTGs. Thus, a PTG is a mapping of

TP-Space points to a subset of C-Space:

2 Notice that we will use u to refer to the vector of robot (linear and angular) velocities, whereas
the term q̇ (the time-derivative of the pose) gives us the velocities in a Cartesian coordinate frame,
which are not of our interest here.
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PTG : A×D 7→ R2 × S

(α, d) 7→ q
(16.3.4)

In the common cases of car-like or differentially-driven robots the derivatives in

Eq. (16.3.2) are given by only one set of kinematic equations:

q̇(α, t) = J(q(t, α))u(α, t)

=







cos (φ(α, t)) 0

sin (φ(α, t)) 0

0 1







[

v(α, t)

ω(α, t)

]

(16.3.5)

Here u is the vector comprising the linear (v) and angular (ω) velocities of the robot

at each instant of time t and for each value of the PTG parameter α. The freedom

for designing different PTGs is therefore bound up with the availability of different

implementations of u(·). In §16.4 some of the possible designs are discussed.

In spite of the fact any function u(·) represents a kinematically valid path for a

robot, which follows from Eq. (16.3.5) by definition, the present work is built upon

the realization of not any arbitrary function leads to valid space transformations for

obstacle avoidance methods. We specify next when such a transformation is valid for

our purposes.

Definition. A space transformation between C-Space and TP-Space is said to be

valid when it fulfills the following conditions:

• C1. It generates consistent reactive trajectories. All path models are not appli-

cable to reactive navigation because of the memoryless nature of the movement

decision process, as discussed in section 16.1.
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• C2. It is WS-bijective. For each WS location (x, y), at most one trajectory can

exist taking the robot to it, regardless of the orientation. Otherwise, the target

position would be seen at two different directions (straight lines) in TP-Space –

recall that a PTG maps straight lines of the TP-Space into trajectories of the

C-Space.

• C3. It is continuous. Together with the last restriction, this condition assures

that transformations do not modify the topology of the real workspace around

the robot.

These three conditions hold for the case of classical circular arcs. An important

theoretical contribution is the following theorem that proves that a broader variety of

valid PTGs are indeed suitable to reactive navigation.

Theorem 16.3.1. A sufficient, but not necessary condition for a PTG to be valid is

its velocity vector u being of the form:

u(α, t) =






vm · fv (aα + bφ(α, t))

ωm · (aα + bφ(α, t))




 (16.3.6)

where vm and ωm settle the desired maximum linear and angular velocities in absolute

value, respectively, fv(α, t) is any Lipschitz continuous function which evaluates to

non-zero over the whole domain, and a, b are arbitrary constants with the restrictions

0 < |a/b| ≤ 1 and b < 0. Furthermore, a velocity vector of this form becomes fully

defined by just specifying its value for t = 0.

The following section is devoted to a detailed analysis of PTGs in this form and to

prove our claim of they always being valid in the sense that they fulfill all the conditions

listed above.
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16.3.2 Proofs

We start by defining the function µα(t) as the distance traveled by the robot along

trajectories in C-Space from the origin and until the instant t, that is:

µα(t) =

∫ t

0

∥
∥
∥
∥

∂q(α, τ)

∂τ

∥
∥
∥
∥
dτ (16.3.7)

where the norm could be the Euclidean distance, though we will employ here a custom

metric introduced in [Bla08f] which accounts for robot turns more properly through a

constant ρ that roughly represents the robot radius, leading to:

µα(t) =

∫ t

0

(
v(α, τ)2 + ρ2ω(α, τ)2

) 1
2 dτ (16.3.8)

Then, we can state the following lemma about the existence of µ−1
α (d), required in

Eq. (16.3.3) for the definition of PTGs.

Lemma 16.3.2. The function µα : t 7→ d is continuous and its inverse µ−1
α : d 7→ t is

well-defined for any t ≥ 0.

Proof. The first part, proving the continuity of µα(t) is trivial since the function is

defined as an integral, thus it always has a derivative. Next, it can be seen that the

function is strictly increasing due to its derivative being the norm of q̇, which in general

is non-negative, but given the hypothesis from theorem 1 of fv evaluating to non-zero

over all the domain, the case q̇ = 0 can be ruled out. Being continuous and strictly-

increasing, µα(t) becomes bijective for any t ≥ 0, thus its inverse is well-defined.

An important feature of any valid PTG is that different values of α must generate

unique trajectories (see condition C2), which is assured by the following lemma.
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Lemma 16.3.3. Provided b < 0 and 0 < |a/b| ≤ 1, each value α ∈ S determines

a unique trajectory passing through the origin with its heading tending to −α · a/b as

t→∞.

Proof. Since q̇(α, t) is Lipschitz continuous, and given the initial conditions q(α, 0) = 0

for any value of α, there exists only one trajectory for each α value [Eva92], which is

determined by the value of q̇(α, 0) = [v(α, 0) ω(α, 0)]⊤. By hypothesis from theorem

1, we have ω(α1, 0) 6= ω(α2, 0) for any α1 6= α2 as long as a 6= 0 (refer to Eq. (16.3.6)),

thus the uniqueness of each trajectory is assured.

Regarding the limit of the robot heading φ(α, t), we can solve the differential equa-

tion of the kinematic model in Eq. (16.3.5) for this term, that is:

φ̇(α, t) = ω(α, t)

= ωm · (aα + bφ(α, t)) (16.3.9)

which can be straightforwardly solved giving us:

φ(α, t) = −αa
b

(
1− eωmbt

)
(16.3.10)

The parameter b determines the evolution of the heading over time. Since the robot

heading must be bounded to the domain of S1, we discard the values of b > 0. The case

b = 0 must be avoided as well since in that case Eq. (16.3.10) is not defined. Therefore,

for the valid values b < 0, the heading converges to:

lim
t→∞

φ(α, t) = −αa
b

(16.3.11)

Notice that the condition 0 < |a/b| ≤ 1 assures φ(·) will always remain within its

valid domain S, which was the claim of this lemma.
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We address next the fundamental property of generated paths being consistent

reactive trajectories – as stated by condition C1. The geometrical meaning of this

property was discussed in section 15.1, and is now stated formally as follows.

Lemma 16.3.4. For any α ∈ S and t0 ≥ 0, there exists one α′ ∈ S such as:

q(α, t0 + t) = q(α, t0)⊕ q(α′, t) , ∀t ≥ 0 (16.3.12)

with α′ being a function of α and t0 (denoted, for instance, A(α, t0)) and where the ⊕

operator stands for 2-d pose composition (see appendix A).

Proof. It can be trivially shown that this statement holds for t = 0, when Eq. (16.3.12)

becomes:

q(α, t0) = q(α, t0)⊕ q(α′, 0) = q(α, t0)⊕ 0 = q(α, t0) (16.3.13)

Now, since both trajectories q(α, t0 + t) and q(α, t0) ⊕ q(α′, t) pass through a

common point in C-Space at t = 0, it is enough to prove that their derivatives q̇ are

identical at that instant for lemma 16.3.3 to imply that both trajectories coincide for

any t > 0.

Taking into account the change of coordinates introduced by the pose composition

operator, the condition of both time derivatives q̇(·) must coincide amounts to their

velocity vectors u(·) being identical at t = 0, that is, we must prove:

u(α′, 0) = u(α, t0) (16.3.14)

By noticing from Eq. (16.3.6) that u is a function of the term aα + bφ(α, t), the

above condition can be rewritten as:
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aα′ + b φ(α′, 0)
︸ ︷︷ ︸

0

= aα + bφ(α, t0)

aA(α, t0) = aα + bφ(α, t0)

→ A(α, t0) = α +
b

a
φ(α, t0) (16.3.15)

which gives us an expression for the A(α, t0) function that fulfills this lemma statement.

It is interesting to highlight that the resulting expression for A(α, t) indicates that

α′ is well-behaved, in the sense that it never exceed the limits ]− π, π]. It also reveals

that all trajectories eventually become a straight path, as can be seen by taking the

limit:

lim
t→∞

A(α, t) = α− b

a
α
a

b
= 0 (16.3.16)

where the fact that α = 0 generates a straight trajectory follows from the PTG design

equations in theorem 1. Note how the final part of all the trajectories being identical to

one of them aligns perfectly with our goal of consistent reactive trajectories (condition

C1).

Finally, the last requisite of a valid PTG (condition C3) is to generate continuous

sampling surfaces in C-Space, that is, the function PTG(α, d) must be continuous.

Lemma 16.3.5. Given the hypotheses of theorem 1, PTG(α, d) is a 2-manifold of C-

Space with boundaries, and is continuous and derivable over the whole domain (α, d) ∈

S×D.
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Proof. Firstly, due to lemma 16.3.2 it is enough to prove the continuity and differen-

tiability of q(α, t) since the mapping between distances d and times t conserves those

properties of q(·).

We show next that q(α, t) has well-defined derivatives, which in turns implies it is

continuous. For the case of ∂q(α,t)
∂t

the proof is trivial since by definition this derivative

is given by Eq. (16.3.5).

The derivation of ∂q(α,t)
∂α

is more involved. It is illustrative to keep Figure 16.6 as a

reference through the following derivations to clarify the geometrical meaning of each

term. Let dt be an infinitesimal increment in time, and (α, t) some fixed point in the

domain of TP-Space. Then, using lemma 16.3.4 we can rewrite q(α, t+ dt) as:

q(α, t+ dt) = q(α, dt)⊕ q(α′, t) (16.3.17)

where α′ is given by:

A(α, dt) = α +
b

a
φ(α, dt)

= α +
b

a
ω(α, 0)dt
︸ ︷︷ ︸

dα

= α + dα (16.3.18)

Making use of the definition of pose composition operators (see appendix A) we

can rearrange Eq. (16.3.17) as follows:

q(α′, t) = q(α, t+ dt)⊖ q(α, dt) (16.3.19)

The geometrical meaning of this operation is that, as illustrated in Figure 16.6(b),

the curve q(α′, t) matches the curve q(α, t) if translated and rotated to the pose
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Figure 16.6: A schematic representation of the mapping a PTG performs between TP-Space
points and C-Space robot poses. We represent the infinitesimal elements used in the proof
of Lemma 16.3.5. Basically, the idea represented here is that the curve for the trajectory
q(α′, t) matches precisely to the trajectory q(α, t) if the coordinate origin of the former is
changed to q(α, dt) for some α′ infinitesimally close to α.

q(α, dt). As a result, this means that infinitesimal changes dα in a pair (α, t) leads to

infinitesimal changes in q(α, t) that can be written down as:

q(α + dα, t) = q(α, t)⊕ J(φ(α, t))u(α, t)dt⊖









v(α, 0)dt

0

ω(α, 0)dt









(16.3.20)

which follows from Eq. (16.3.19) and the definition of q as an integral of the velocity

vector u. Since the pose composition ⊕ and inverse composition ⊖ operators are both

continuous and differentiable, it follows that the derivatives of q at the point (α, t) are

well-defined, and thus it is continuous and differentiable as stated in the lemma.

Finally, given q(α, t) is differentiable and so is PTG(α, d) at the whole domain of

(α, d), the surface generated by a PTG can be seen as a 2-manifold with boundaries

[Spa81].
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16.4 Design of PTGs

16.4.1 Discussion

Not any arbitrary design function u(α, t) leads to a valid PTG, since it must be some-

how guaranteed that collision avoidance can be performed in the resulting transformed

space by the reactive method running on it. Those methods have been designed to

work in the WS, but they will be applied to TP-Space (which can be seen as a virtual

WS). These requirements have been explored in detail in the previous section.

Besides these restrictions, other considerations may be also taken into account when

designing a PTG, such as the robot speed limit or any other kinematic constraints. For

example, a car-like robot will impose a minimum turning radius, which turns into a

maximum angular-to-linear velocity ratio.

While circular paths (the classic path model) can be shown to fulfill the require-

ments, a proof for the general case can not be provided due to the lack of a generic

analytical solution for Eq. (16.3.2). However, four different templates are presented

next that guarantee that only valid PTGs are obtained from them. Three of them are

combinations or simple arcs and the remaining one (named α−A) is an instance of the

generic template discussed in §16.3. These templates cover a sufficiently wide diversity

of trajectories, as shown in a later section with several experiments.

The four templates are summarized in Figures 16.7–16.8. The rest of this section is

devoted to discussing them. A common feature to all of the following design schemes

is that a variety of PTGs can be generated from each one by choosing different values

of the design parameters.

It must be remarked that these PTGs have potential applications not only to pure

reactive navigation, but to motion planning approaches in the line of Rapidly-exploring
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Random Trees [LaV01]. However, this topic has been not explored in this thesis.

16.4.2 C PTG: Circular trajectories

This is the simplest path model, and the only one used in previous works on reactive

navigation. Velocities remain constant with time along a given trajectory, as follows

from the design equations in Figure 16.7. In this case Eq. (16.3.2) is integrable and

gives us the following closed form expression for trajectories:

q (α, t) =













Kv0
ω0 tan

α
2
sin
(
tω0 tan

α
2

)

Kv0
ω0 tan

α
2

(
1− cos

(
tω0 tan

α
2

))

tω0 tan
α
2







, α 6= 0







Kv0t

0

0







, α = 0

(16.4.1)

where the parameter K is introduced for accounting for forward and backward trajec-

tories (for values of 1 and -1, respectively).

16.4.3 α-A PTG: Trajectories with asymptotical heading

These trajectories are generated by linear/angular velocities which are directly/inversely

proportional to the difference between the robot heading and the parameter α. As a

result, trajectories tend asymptotically to straight paths from the origin (see the cor-

responding diagram in Figure 16.7). We have verified that for our robots moving in

office-like scenarios this is one of the most frequently selected PTG. Unfortunately, this

PTG results in non-integrable trajectories and requires numerical solutions.
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16.4.4 C|Cπ
2
S and CS PTG: A set of optimal paths

These path models have been well studied in the field of motion planning, and represent

some of the optimal (shortest) path models for a car-like robot with a minimum turning

radius [Ven99]. To the best of our knowledge, the present approach is the first one to

enable the incorporation of optimal solutions from the motion planning field into a

reactive method. In this case both models lead to integrable expressions, although

they are omitted for clarity since the results are straightforward concatenations of

circular and straight segments.

16.5 Mapping the real environment into TP-Space

Navigating into a TP-Space implies two transformations: (i) the construction of TP-

Obstacles, and (ii) the translation of the target position (without orientation) into

TP-Space. Although both transformations map 2-d points from the environment into

TP-Space, they are managed in quite different ways. The target location remains as

a single point in TP-Space and it is computed at each iteration by the inverse PTG

function, ignoring the robot heading at it. Regarding the translation of obstacles, we

will assume without loss of generality that only point obstacles exist. If any other kind

of obstacles needs to be modeled (e.g. polygonal obstacles) they can be parameterized

as a continuous sequence of point obstacles and TP-Obstacles built by composition.

When point obstacles are moved into TP-Space, each point becomes a region, named

TP-Obstacle. Let o ∈ R2 be a real obstacle point in WS, C − Obstacle(o) its repre-

sentation in C-Space, and Surf(PTG) the C-Space surface of a PTG. We define the

TP-Obstacle for point o as:



322 Mapping the real environment into TP-Space

TP-Obstacle(o) =
{
(α, d)|(α, d) = PTG−1(q), ∀q ∈ C-Obstacle(o) ∩ Surf(PTG)

}

That is, TP-Obstacles are defined as the transformation into TP-Space (by means of

the inverse PTG mapping) of the intersection between C-Obstacles and the sampling

surface of the PTG. Since a robot can collide with any obstacle from many differ-

ent poses, TP-Obstacles are always two-dimensional regions in TP-Space. Holonomic

obstacle avoidance methods will measure obstacle distances along straight paths in

TP-Space, thus, in practice, only the closest obstacle must be kept for each direction

of the transformed space. The whole process of transforming obstacles into TP-Space

is illustrated in Figure 16.4(c), where the rightmost graph shows a polar plot of the

closest TP-Obstacle at each direction as normalized distances. TP-Space charts from

now on are shown using this polar representation.

The process of building TP-Obstacles implies computing only the part of C-Obstacles

that contributes with useful information: the intersection with a given sampling sur-

face. Although this is a computational expensive operation, an efficient method to

obtain an approximate solution has been developed. It must be remarked that exact

solutions may exist for integrable PTGs, but we choose to rely on an approximate

method to enable the utilization of any PTG regardless its integrability. The method

for computing the intersection of C-Obstacles with the PTG sampling surface is based

on a lookup table with collision tests precomputed from simulations. A closely related

idea was previously reported in [Sch98] for the case of circular paths and any-shape

robots, although here the process is extended to an arbitrary path model given by a

PTG: the physical space around the robot is arranged into a rectangular grid whose

cells store their associated TP-Obstacle, built from the set of pairs (α, d) that lead

to collision, as illustrated in Figure 16.9. Therefore, the problem of translating a set
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Figure 16.9: The process for a fast construction of TP-Obstacles involves building a rectan-
gular grid where each cell keeps the collision pairs (α, d) for its associated TP-Obstacle and
a given PTG. Then moving real obstacles into TP-Space is accomplished by the addition of
the occupied cells.

of obstacles into TP-Space becomes that of adding the TP-Obstacles elements for the

occupied cells.

16.6 From movement commands to real world ac-

tions

We consider now that the motion generated by the holonomic collision avoidance

method in the virtual WS (the TP-Space) is a pair stating the robot desired speed

s and direction αm (in the interval ]−π, π]). This motion command is translated back

into a real robot movement in two steps:

1. We obtain a normalized velocity command as

Unorm(αm) = u(αm, 0) = [v(αm, 0)ω(αm, 0)]
⊤
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i.e. through the evaluation of the PTG design functions at α = αm. We take the

initial response (at t = 0) since the PTG reference system is the robot current

pose, i.e. the robot is always at the origin of trajectories in the TP-Space.

2. The velocity command for the real robot urob is computed by scaling unorm ac-

cording to the holonomic velocity s in TP-Space (provided by the holonomic

method). Mathematically:

urob (αm, s) = s · unorm (αm)

maxαm (u(α, 0))
(16.6.1)

where m(·) is the custom metric defined in [Bla08f], which in this case gives us:

m (u (α, 0)) = m

(
∂P (α, τ)

∂τ

)

=

∥
∥
∥
∥
∥
∥
∥
∥







1 0 0

0 1 0

0 0 r













cosφ (α, 0) 0

sinφ (α, 0) 0

0 1







[

v (α, 0)

ω (α, 0)

]

∥
∥
∥
∥
∥
∥
∥
∥

=
√

v(α, 0)2 + (r · ω(α, 0))2 (16.6.2)

16.7 A complete reactive navigation system

In order to implement a navigation based on TP-Space, it is presented next a complete

navigation system, sketched in Figure 16.10, which is a detailed view of Figure 16.3(b).

The overall system comprises a control loop where sensor readings along with an esti-

mation of the target relative location are supplied to the reactive navigation system.
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Figure 16.10: A complete reactive navigation system based on TP-Space involves translat-
ing obstacles and the target location into the TP-Space, through a variety of PTGs simul-
taneously. Each one generates a virtual WS navigation scenario which is solved by a simple
obstacle avoidance method. Next, the resulting movements are evaluated to find the most
advantageous transformation, which is selected to generate the real robot velocity command
using the PTG design equations.

This system computes a velocity command that is sent back to the robot, closing the

control loop. This process is repeated periodically (e.g. at 10Hz), resulting in a fast

response to dynamic obstacles while steering the robot towards the target. We assume

that the target location is given in some fixed coordinate system, and that a localiza-

tion system (not addressed here) is available to accurately estimate the position of the

target relative to the robot.

Within the system, firstly the sensed obstacles and the target are translated into

TP-Space, typically using several PTGs simultaneously, yielding a different virtual WS

(TP-Space) for each PTG. Next, a holonomic obstacle avoidance method is applied to

each one to end up with their respective movement commands. To select the most

advantageous one, we evaluate them by weighting the following factors (normalized

within the range [0,1]):

• f1: Collision-free distance for the selected movement direction (in TP-Space).

• f2: Direction relative to target (in TP-Space). Let αm be the desired movement
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direction, and αt the direction towards the target, in the transformed space.

Then:

f2 = exp

{

−
(
αm − αt
2π/3

)2
}

(16.7.1)

• f3: Robot heading towards target (in C-Space). This term prioritizes the move-

ments that make the robot to face the target, in the real world. If θ is the

heading of target at the end of robot direction movement, then this factor can

be evaluated as:

f3 = exp

{

−
(

θ

π/2

)2
}

(16.7.2)

• f4: Euclidean distance to the target (in WS). This factor gives more relevance to

movements that take the robot closer to the target:

f4 =
dmax −min {dt, Rm}

Rm

(16.7.3)

where dt is the minimum distance from robot to target in the selected trajectory

and Rm is the normalization factor specified in the PTG design.

• f5: Hysteresis. This factor contributes to stabilize the behavior of the system,

avoiding high-frequency oscillations between different possible transformations

that perform similarly through short periods of time:

f5 =

{

1, if this PTG was selected in the last iteration.

0, otherwise.
(16.7.4)

Logically, the global behavior of the system depends on the values of these factors,

though empirically we have determined that a rough tuning suffices to achieve a good

performance in most situations and on different robots. In our implementation we
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Figure 16.11: A comparison between two implemented holonomic obstacle avoidance algo-
rithms in a synthetic environment: (a) and (b) show navigations from a central point towards
seven different target locations using the Virtual Force Field (VFF) and the Nearness diagram
(ND) methods, respectively. The later generates straighter paths for the virtual holonomic
robot, which makes the real robot less shaky in cluttered environments. This is confirmed
by the histograms of the changes in the steering between iterations, shown in (c) and (d) for
both methods.

have applied the weights 0.4, 0.15, 0.15, 0.2, 0.1 for each one, respectively. Intuitively,

this distribution of the weights gives a maximum relevance to the clearance (term f1),

and in second place to the closeness of the trajectory toward the target (term f4).

The transformation with the highest score is chosen at each iteration, and then its

corresponding movement is converted back into a velocity command for the real robot

as discussed in a previous section: first, a normalized command is directly extracted

from the PTG design equations, and then it is scaled to account for the speed given

by the obstacle avoidance method.

Two holonomic obstacle avoidance methods have been tested with TP-Space: a Vir-

tual Force Field (VFF) method and a custom implementation of the Nearness Diagram
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approach [Min04]. To compare the performance of these methods on a kinematically

free robot, some simulated experiments have been carried out, whose results are shown

in Figure 16.11. A major distinctive feature of ND is that it results in mostly straight

paths, which is reflected in few changes in the real robot direction (see the histograms

of Figure 16.11(c)-(d)). Nevertheless, VFF is simpler to implement than ND, and

performs equally well in uncluttered environments.

The major concern in getting a real-time functional implementation of this naviga-

tion system is to have a fast TP-Obstacles building process, which has been achieved

through the abovementioned efficient procedure based on precomputed lookup-tables.

One lookup-table is stored for each PTG for a fast consultation during navigation.

Although building these tables takes a long time (typically 15-35 seconds for our con-

figuration), they must be updated only if the shape of the robot changes; on the other

hand, they allow TP-Obstacles to be built in such a short time as 0.2ms per PTG.

This quick transformation time and the also quick response of the holonomic methods

keep the whole system fast enough to perform in real-time within dynamic scenarios.

16.8 Experimental evaluation and discussion

PTG-based reactive navigation has been intensively tested for more than two years in

office-like scenarios with our robots SENA, a robotic wheelchair [Gon06a,Gon06b], and

Sancho [Gon09b], a service robot built upon a Pioneer 3-DX mobile base, both driven

differentially and equipped with laser range finders for obstacle detection. Next we

discuss four different experiments, each one aimed to illustrate a differentiated feature

of the proposed navigation system.
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16.8.1 First experiment: simulated robot

This experiment demonstrates the feasibility of our approach for dealing with a car-like

robot in simulated cluttered scenarios. It must be remarked that any reactive method

that ignores the robot kinematics will fail if applied to a kinematically-constrained

robot. The car-like robot is commanded to navigate towards the target point shown in

Figure 16.12(a) making use of two PTGs: C|Cπ
2
S and CS, both being able to generate

(possibly) optimal paths for this kind of robot [Ven99]. The selection of the active PTG

at each instant of time is graphically represented in Figure 16.12(b), where it can be

seen how the C|Cπ
2
S model is solely used when maneuvering to get the robot out of the

starting location. Notice how our approach allows such a maneuvering in a memoryless

system. Nevertheless, it must be stressed that any reactive system, including the one

described in this work, has limited foreseeing capabilities and may not be able to find

a valid path in all the situations.

16.8.2 Second experiment: real robotic wheelchair

In this experiment with the robotic wheelchair SENA [Gon06a] we illustrate the fea-

sibility of controlling a kinematically constrained real mobile platform with a strong

rectangular-like shape using a simple obstacle avoidance method (ND in this case).

Ignoring the shape of this robot would most probably lead to collision. The resulting

trajectory for this experiment is shown in Figure 16.13(d), and some snapshots dur-

ing the navigation can be seen in Figure 16.13(e)-(h). Here we have employed four

PTGs simultaneously: a forward C PTG, a backward C PTG, and two different in-

stances of the α-A PTG, whose selection over time is plotted in Figure 16.13(a). In

this experiment the backward movement (PTG with index 1) is never selected.

Regarding the time requirements of the system for this configuration of PTGs, it
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Figure 16.12: A simulated experiment to demonstrate the manoeuvring capabilities of a
car-like robot with our reactive navigation system. (a) The resulting trajectory, (b) the active
PTG at each instant of time, and (c)-(d) the linear and angular velocities of the robot.
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Figure 16.13: In this experiment, SENA (a robotic wheelchair) performs a reactive navi-
gation using four PTGs, whose selection over time is shown in (a). The linear and angular
velocities along the navigation are plotted in (b)-(c), respectively, and the resulting trajectory
is depicted in (d). Snapshots (e)-(j) show some instants along the course of the navigation
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takes a mean of 1.22ms (on a 1.8GHz Pentium-M) to execute one complete step of

the navigation system, including the mapping of all the obstacles into TP-Space, ND-

based collision avoidance, the selection of the best movement, and its transformation

into a command for the real robot. Provided that the execution frequency is 10Hz, our

method occupies a mere 1.22% of the CPU time.

16.8.3 Third experiment: comparison to the “arc approach“

It is worth to illustrate a situation where our approach could be compared to previous

reactive techniques in order to reveal its advantages. The following experiment consists

of our mobile robot Sancho, equipped with a front and a rear laser scanner, being

commanded a reactive navigation from a cluttered room towards a corridor outside.

The navigation is repeated twice: the first time the robot uses a set of five PTGs

(of types C, α-A, and CS), while the second time it uses just forward and backward

circular arcs (type C PTG). The overall trajectories of the robot for each case are

shown in the two graphs at the top of Figure 16.14. In this cluttered environment the

obstacle avoidance method (the ND algorithm) has problems finding a good movement

by using just circular arcs. One can clearly observe a much poorer performance of the

navigation in this case, in contrast to the case of the five PTGs, as also revealed by

the overall path length and time taken by each navigation, plotted in Figure 16.14.

It is remarkable that by using more path models (five PTGs) the robot accomplishes

the navigation in 88 seconds less than using just circular arcs, also saving 11.4m from

the overall path length. One of the reasons of these differences is that, for the case of the

circular arcs, the robot encountered significant problems at some specific places along

its trajectory, such as turning a pronounced corner of about 90o or passing the doorway

by the end of the navigation. For comparison purposes, both events are marked (with
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their respective time steps 241 and 591) in Figure 16.14 for the path described using

five PTGs. To illustrate how the additional PTGs have improved the navigation of

the robot at those specific parts of the navigation, in that figure we show the sensed

obstacles and their translations into TP-Space for the PTGs selected at those time

steps. At time step 241, a PTG of the type CS (refer to §16.4.4) is selected since it

includes a movement which fits perfectly to the maneuver the robot needs to bypass the

obstacle. The narrow “gap” in the TP-Obstacles which appears in this case represents

the small range of CS trajectories (α parameter values) that makes the robot to pass

by the corner without colliding. Similarly, the graphs for time step 591 show how a

PTG of the type α-A reveals collision-free maneuvers for passing through the narrow

doorway. We must emphasize that these PTGs are selected at these specific instants of

time because the circular arcs are not able to find better movements using the criterion

of the obstacle avoidance algorithm.

To sum up, this experiment has described an example of how the use of other

path models apart from arcs introduces a significant improvement into the overall

performance of the navigation. Despite the fact that circular arcs may be the optimal

choice for the most part of a typical navigation, the existence of other choices at some

specific moments allows the robot to find maneuvers that would be otherwise much

more difficult (or even impossible) to find by means of arcs, a fact that ultimately may

determine the performance and reliability of the whole reactive navigator.

16.8.4 Fourth experiment: dynamic environments

Finally, we present an experiment where SENA, the robotic wheelchair, navigates for

almost two hours in a non-prepared, crowded scenario. We have chosen for this experi-

ment the entrance of our building at the University of Málaga. The robot is commanded
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to navigate repeatedly between two fixed target locations, labeled as ‘A’ and ‘B’ in Fig-

ure 16.15(a)-(b), and in its way it must avoid some static obstacles (columns, furniture,

etc.) and moving people.

During the experiment the robot avoids collisions with several people walking in

the opposite direction than the robot, as well as some students who intentionally try

to block its way. In all the cases, the reactive navigator (using five PTGs in this case)

successfully avoids all the collisions and gets out of the blocking situations.

To perform this experiment in such a dynamic scenario, we have required robust

localization within the environment, which has been carried out through particle filter-

based localization (see Chapter 4) for occupancy grid maps (see Figure 16.15(a)). For

robustness both in localization and in detecting all the surrounding obstacles, we in-

strumented the robotic wheelchair with three laser range scanners at different heights

and positions: one at the front, a rear scanner, and another one on the top of the robot,

as highlighted in Figure 16.15(e).

16.8.5 Discussion

We have presented an approach for the reactive navigation of a kinematically-constrained

and any-shape mobile robot, on the basis of a clear and useful separation of the prob-

lems of robot shape and kinematic restrictions, and collision avoidance. For that,

a generalized kinematics abstraction mechanism has been developed which allows us

using a variety of path models (PTGs) to obtain a better sampling of the whole C-

Space from which more and better collision-free paths towards the target location can

be found. The generalization of path models enables the introduction of optimal path

models into our reactive navigation system for the first time in a non-planned approach

to robot navigation. The implementation of the navigation system has demonstrated
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to be effective and very efficient for robots in cluttered, dynamics scenarios, which

has been verified along more than a year of extensive tests. PTG-based navigation in

non-pure reactive approaches is an interesting research line that will be addressed in

the future.
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APPENDIX A

GEOMETRY CONVENTIONS

A.1 Conventions

In this section we review the conventions employed in this thesis for designating geo-

metric positions with orientations, that is, poses.

For the case of a 2-d pose, it comprises a 2-d location (x, y) plus a single heading

angle φ. The positive direction of this angle is illustrated in Figure A.1(a).

On the other hand, 3-d poses are represented by a 3-d location (x, y, z) and three

rotation angles. In this case we follow the general convention in which the order of the

rotations is around the axes z, y and x, respectively. Each rotation is applied following

the so-far transformed axes, not the original ones. This process can be observed in

Figure A.1(b).

A.2 Operations

The most important operations with poses are composition and inverse composition.

The former consists of concatenating two poses or a pose and a point. Given a point
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(a) 2-d pose (b) 3-d pose

Figure A.1: Representation of 2-d and 3-d poses and the direction of positive angles in each
case.

p and a pose q, their composition is denoted as [Lu97a,Smi88]

p′ = p⊕ q

and its geometrical meaning is that the transformed point p′ is obtained by moving the

original point p to the new system of reference defined by q. The inverse composition

can be used to reverse this operation, that is, to compute the coordinates of the point

p′ “as seen from” the reference system of q. This operation is denoted as

p = p′ ⊖ q

Both operations can be implemented by means of homogeneous coordinates, where

2-d or 3-d points are represented by 3 o 4-vectors where the extra element is fixed to

the unit, that is,
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Transforming a point is accomplished by means of left-multiplying its vector by

the homogeneous matrix of the pose for the case of composition, or by its inverse

homogeneous matrix for the case of inverse composition.

The matrix of a 2-d pose q is given by

Rq =







cosφ − sinφ x

sinφ cosφ y

0 0 1







and that for a 3-d pose can be obtained by left-multiplying the three rotations around

the z, y and x axes, in that order, giving us:

Rq = Rz · Ry ·Rx

=










cosφ cosχ cosφ sinχ sinψ − sinφ cosψ cosφ sinχ cosψ + sinφ sinψ x

sinφ cosχ sinφ sinχ sinψ + cosφ cosψ sinφ sinχ cosψ − cosφ sinψ y

− sinχ cosχ sinψ cosχ cosψ z

0 0 0 1










where the yaw, pitch and roll angles are denoted as φ, χ and ψ, respectively.





APPENDIX B

NUMERICALLY-STABLE
METHODS FOR

LOG-LIKELIHOODS

This appendix describes practical methods to overcome problems with the numerical

stability of operations with logarithmic weights or likelihood values. Logarithmic scales

are widely employed in particle filter implementations to greatly extend the dynamic

range of particle weights.

B.1 Average

Let {lli}Ni=1 be a set of N log-likelihoods such as lli = log(li). We are interested in the

log-average of all the li, denoted as log(l̄), where

l̄ =
1

N

N∑

i=1

li.

Operating,
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log l̄ = log

(

1

N

N∑

i=1

li

)

= − logN + log

(
N∑

i=1

exp (lli)

)

The numerical problem comes from the operation exp(lli), where overflows could

easily occur. To solve this, we define the maximum log-likelihood llmax = maxi lli and

rewrite the equation above as

log l̄ = − logN + log

(

exp (llmax)
N∑

i=1

exp (lli − llmax)
)

= − logN + llmax + log

(
N∑

i=1

exp (lli − llmax)
)

which is the desired numerically-stable expression, since the arguments of the expo-

nential are biased such as the maximum value becomes exp(llmax − llmax) = 1.

B.2 Weighted average

In this case, we are interested in a weighted average l̄ of likelihoods li with weights wi,

that is,

l̄ =

∑N
i=1 li · wi
∑N

i=1wi

where both the weights and the likelihoods are given in a logarithmic scale:

lli = log li

lwi = logwi

Operating with log(l̄) we obtain
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log l̄ = log

(∑N
i=1 exp(lli) exp(lwi)
∑N

i=1 exp(lwi)

)

= − log

(
N∑

i=1

exp(lwi)

)

+ log

(
N∑

i=1

exp(lli + lwi)

)

where, as in the previous section, the numerical problems arise from potentially too

large (or too small) arguments in the exponentials. If we define the maximum of the

log-weights and log-likelihoods as

lwmax = max
i

lwi

llmax = max
i

lli

, respectively, the equation above becomes

log l̄ = − log

(
N∑

i=1

exp(lwi − lwmax)
)

+ log

(
N∑

i=1

exp(lli + lwi − llmax − lwmax)
)

+llmax.





APPENDIX C

BERNOULLI TRIALS IN
REJECTION SAMPLING

Consider two probability distributions, which we will call prior and observation likeli-

hood, to be normally distributed according to the one-dimensional densities N (0, σ2
p)

and N (∆µ, σ2
o), respectively. For convenience we assume the prior to be centered at

zero, with ∆µ modeling the separation between the two distributions.

In the following we derive the probability p of accepting one random sample in a

rejection sampling trial, where a sample is drawn from the prior and is accepted with

a probability proportional to the associated observation likelihood, that is:

p =
p(z|x)

max {p(z|x)} (C.0.1)

where p(z|x) denotes the observation likelihood. Since p(z|x) is a Gaussian, the quo-

tient above reduces to:

p = exp

{

−1

2

(
x−∆µ

σo

)2
}

(C.0.2)
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Observe how this value depends on the sample x, which is distributed following the

prior N (0, σ2
p). Thus, we can estimate the expected value of p by:

E[p] =

∞∫

−∞

exp

{

−1

2

(
x−∆µ

σo

)2
}

N (x; 0, σ2
p)dx (C.0.3)

By multiplying and dividing by the appropriate constant, the terms inside the

integral can be transformed into the product of two Gaussians:

E[p] = σo
√
2π

∞∫

−∞

N (x; ∆µ, σ2
o)N (x; 0, σ2

p)dx (C.0.4)

Following a probabilistic interpretation of the integral above similar to that dis-

cussed in §2.5, it can be shown that Eq. (C.0.4) can be rewritten as

E[p] = σo
√
2π · N (0;∆µ, σ2

o + σ2
p)

=
σo
√
2π

√

2π(σ2
o + σ2

p)
exp

(

−1

2

∆µ2

σ2
o + σ2

p

)

For convenience, we define the constant τ = σo/σp, such as:

E[p] =
1√

1 + τ−2
exp

(

− ∆µ2

2σ2
p(1 + τ 2)

)

which is the final expression used for the numerical results shown in §4.4.



APPENDIX D

MAXIMUM MEAN

INFORMATION FOR A

SYNTHETIC ENVIRONMENT

As the resolution of an occupancy grid increases, its mean information (MI), as defined

in §10.4, tends towards a maximum value. Unfortunately, a closed form expression

for this bound can not be derived in the general case since it depends on the environ-

ment, the inverse sensor model and the number of observations merged into the map.

For a particular case, however, we can derive such an expression to demonstrate the

convergence of the MI and its high independence of the grid resolution.

Assume a robot equipped with a 360◦ field-of-view radial range sensor, standing at

the center of a circular environment of radius R, and making only one observation (z1).

Due to the circular symmetry we consider the circular grid map p(mρ) instead of the
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Closed form expression
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Figure D.1: The MI values for the synthetic scenario discussed in the appendix are shown
as continuous plots, together with the theoretical limit (derived in this appendix) as a dashed
line. It can be seen how the MI tends toward the computed limit as the resolution gets more
fine-grained.



D. Maximum mean information for a synthetic environment 353

classical p(mxy), where ρ is the distance from the origin (where the robot is initially) to

a given point x, y. Thus, the map content is same in all directions for the whole range

of orientations ] − π, π] from the origin. Initially, there is no prior information about

the map, thus p(mρ) = 0.5 for all the values of ρ. If we consider a range sensor whose

measurements are corrupted with additive Gaussian noise with standard deviation σ,

its inverse sensor model can be defined as:

p (mρ| z) =







e−
(ρ−z)2

2σ2 ρ ≤ z + σ
√
ln 4

0.5 otherwise
(D.0.1)

where z represents the sensed range. Such a sensor model was plotted in Figure 10.3.

For the case of just one observation the Bayesian estimation of the map becomes

simply p(mρ|z1) = p(mρ|z) where z is the actual measurement. If we make the cell size

to tend toward zero, the expression for the MI, as defined in Eq. (10.4.4), becomes an

integral over the map (which is no more a discrete grid but a continuous surface):

Ī (m) =

∫ ∫
(1−H(mρ))dρdθ

∫

θ

∫

ρ
Obs (mρ) ρ dρ dθ

(D.0.2)

where the binary function Obs(mρ) takes the value of 1 for those positions which

have been observed, and 0 otherwise. The circular symmetry allows us to discard the

integration over since it leads to constant factors in both parts of the quotient. Taking

this into account, replacing the integration limits, and solving the denominator, we end

up with:

Ī (m) =

∫ z+σ
√
ln 4

0

[

1−H
(

exp
(

− (ρ−z)2
2σ2

))]

ρ dρ

1
2

(

z + σ
√
ln 4
)2 (D.0.3)
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The integral in the numerator has no analytical primitive, but precise values can

yet be obtained by numerical integration. To demonstrate the convergence of the grid-

based MI measurement towards the continuous solution Eq. (D.0.3) we have generated

grids for different R, σ, and resolution values. Some of the obtained grids are shown

in Figure D.1(a)–(c), whereas the computed MI values are plotted in Figure D.1(d)

together with the theoretical predictions from Eq. (D.0.3). It is clear from these graphs

that MI effectively converges as the resolution increases and that this limit can be

accurately predicted.



APPENDIX E

CONSISTENCY TEST FOR

CANDIDATE PAIRINGS

We are interested in testing the hypothesis that a given pair of features in maps A and

B do actually match. This statistical test will rely solely on the rigid-body constraint

that dictates that both inter-feature distances d2A and d2B, measured in each map, must

be equal. Note the usage of squared distances due to convenience during the derivation.

We assume that the uncertainty in the feature points is modeled by a 2-d isotropic

Gaussian with a standard deviation of σ, and furthermore the Gaussians for differ-

ent features are uncorrelated (i.e. the errors are independent). Each of the squared

distances d2i is then given by:

d2i = |pi,1 − pi,2|2 = (xi,1 − xi,2)2 + (yi,1 − yi,2)2 (E.0.1)

By means of linear uncertainty propagation we can model each d2i as a Gaussian
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with mean d̄2i and variance σ2
d2i

= JΣJ⊤, where J stands for the Jacobian of Eq. (E.0.1)

and Σ is the covariance of the feature point coordinates. It is clear that, under our

assumption of independence for the error in the coordinates, this covariance amounts

to σ2I4, thus by replacing the values of the Jacobians we obtain:

σ2
d2i

= σ2JJ⊤ = 8σ2d̄2i (E.0.2)

Once defined the distribution of each variable d2i , we can finally define the auxiliary

variable z as the difference between the two squared distances, that is, z = d2A − d2B.

Under the hypothesis of the pairing to be valid, both distances dA and dB should be

equal, thus z should be null. This allows us to test the hypothesis with a confidence c

by means of the following chi-square test:

χ2 =
(d̄2A − d̄2B)2

8σ2(d̄2A + d̄2B)
< χ2

1,c (E.0.3)

where χ2
d,c is the inverse of the chi-square cumulative distribution function with d

degrees of freedom. In the denominator it has been also used the fact that the variance

of z is the sum of the variances of the individual squared distances.



APPENDIX F

THE MOBILE ROBOT
PROGRAMMING TOOLKIT

(MRPT) PROJECT

Implementing mobile robotics software is a complex task where several heterogeneous

factors should be accounted for. On the one hand, the core of most robotics algorithms

comprises of pure mathematical operations such as linear algebra, vector and matrix

manipulation, or other calculations (e.g. particle filter resampling). This part of the

software can be, and usually is, implemented using MATLAB in an offline fashion. On

the other hand, access to the robotic hardware or execution time optimizations demand

a more efficient and versatile language (e.g. C/C++, Python, etc.).

In an efford to unify the implementation of software for mobile robotics, our group

MAPIR 1 started the Mobile Robot Programming Toolkit (MRPT) project. MRPT

comprises a set of ready-to-use applications for gathering, manipulating and visualizing

datasets, as well as for offline processing of these datasets applying different localization

and SLAM methods. Moreover, it is also a collection of libraries (refer to Figure F.1)

representing one coherent programming framework where all the algorithms described

1http://mapir.isa.uma.es/
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Figure F.1: The structure of the elements within MRPT as a graph of dependencies. Ap-
plications depend on one or more MRPT libraries. Those marked with a (*) are experimental
or under development libraries.

in this thesis have been implemented. It must be also remarked that MRPT is employed

within the BABEL framework [Fer99,FM08] for developing software modules for online

robot operation. Work is also in progress to provide MRPT packages for Willow

Garage’s Robot Operative System (ROS).

The whole toolkit has been developed in C++, with many time critical functions

being implemented in assembler (sometimes exploiting the SSE2 capabilities of the

processor). The manipulation of images is done through the highly-optimized library

OpenCV 2, in whose development the author has also participated in order to achieve

a seamless integration with MRPT.

MRPT is free software, released under the GNU General Public License (GPL)

version 3. In addition to the official website 3, it can also be found in the official

repositories of the most popular GNU/Linux distributions 4.

2http://sourceforge.net/projects/opencvlibrary/
3http://www.mrpt.org/
4At the time of writing this, MRPT is available for Debian, Ubuntu and Fedora.
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