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Motivation Robotics is a success in the industry (millions of robotic arms
installed in the world)
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Mobile R ics
Why hasn't mobile robotics enjoyed such a success yet?

— A mobile robot should be autonomous (quite complex!)

Images: http://singularityhub.com/, http://lemonodor.com/, http://www.robots-dreams.com/
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Requirements for an autonomous robot

Motivation

Among others:

Move without colliding.

Keep track of its position in the world.

Solve complex plans.

°
°
@ Be able to model its environment by itself.
°
@ Reason in an uncertain world.

°
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Keep track of its position in the world.

Be able to model its environment by itself.

Reason in an uncertain world.

o
o
@ Solve complex plans.
o
°
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In this thesis

@ Localization.

@ Mapping.

o Navigation.
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This talk is organized into four parts, each having contributions
Gz about a different ability of mobile robots:

1. Localization
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Given a map of an environment, how can a robot localize itself
robustly using its sensors?

Overview
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Given a map of an environment, how can a robot localize itself
robustly using its sensors?

Bayesian probabilistic filtering: an extremely versatile
framework for estimating variables from noisy observations.

\‘\\“ @ m: The map.
Vs J Vi @ x¢: The robot poses.

H@%@%@H @ z;: The observations.
@ @ o @ u;: The robot actions.

Overview
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Posterior Observation likelihood

Overview
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Transition model Last posterior

Part | of this thesis is completely built around this equation!

o As a whole: A new optimal filter.
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p(Xt|Zl:ta uy:¢, m) 8

p(z¢|x¢, m) X
—_———

Posterior Observation likelihood

Overview

P(Xt|Xt—17 Ut) P(Xt—1|21:t—1, ui:t—1, m) dxi—1

~
Transition model Last posterior

Part | of this thesis is completely built around this equation!

o As a whole: A new optimal filter.
@ Observation model: Consensus-based likelihood.

@ Transition model: IMU + odometry fusion.
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This talk is organized into four parts:

Overview

1. Localization
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This talk is organized into four parts:

Overview

1. Localization

3. Large-scale SLAM 4. Navigation
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Mobile Robot Localization

@ Optimal particle filtering: applications to robot localization

© A Consensus-based observation likelihood

© Fusion of odometry and an IMU
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o Optimal particle filtering: applications to robot localization
Optima o Existing filters

filtering @ Proposed solution

@ Comparison to other algorithms

@ Experiments

@ Papers
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Existing filters

classification of Bayesian filters

Proposal

System models

Algorithms

distribution
¥
- mee.)r Kalman Filter
Gaussian
Non-Linear
- . EKF, UKF
Gaussian
Standard Non—Linea-r SIR, Aux. PF,
Non-Gaussian FastSLAM
. Non-Linear FastSLAM 2.0,
Optimal . L
Gaussian Grisetti et al.
) Non-Linear Optimal PF
Optimal ] i .
Non-Gaussian (In this thesis)
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Characteristics of the proposed method:

@ A particle filter based on the optimal proposal
[Doucet 2000].

@ Can deal with non-parameterized observation models,
using rejection sampling to approximate the actual
densities.

Proposed
solution

@ Integrated KLD-sampling [Fox 2003] for a dynamic sample
size (Optional).

@ The weights of all the samples are always equal.
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The key for an efficient particle filter is using the
optimal proposal distribution [Doucet2000]:

[1] t—1[i] t ,ty _ t—1,[i] t .t
Xt~ qxex B 28 ut) = plxe|x B 2 ut)
Proposed
solution
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The key for an efficient particle filter is using the
optimal proposal distribution [Doucet2000]:

[1] =1l ot by _ t—1,[i] t .t
xih ~ q(xe|xtTH 2t Uty = pxe|xt U 2t 0t
Proposed
solution

In localization with grid maps, there is no closed-form expression
for this term.
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The key for an efficient particle filter is using the
optimal proposal distribution [Doucet2000]:

[1] =1l ot by _ t—1,[i] t .t
xih ~ q(xe|xtTH 2t Uty = pxe|xt U 2t 0t
Proposed
solution

This term can be expanded using the Bayes rule as:

t—1,[i] #t ut) _ p(zt|Xt)Xt_17[i]7Zt_l7 ut)p(Xt|Xt_17[i]’Zt_1’ ut)
) ) -

q(xe|x p(ze|xt=LI1, zt=1 yt)
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The key for an efficient particle filter is using the
optimal proposal distribution [Doucet2000]:

Xl[’] ~ q(Xt|Xt_17[i]7zt7 ut) = p(Xt|Xt_17[i]’Zt7 ut)

Proposed
solution

This term can be expanded using the Bayes rule as:

_— p(Zt|Xt,Xt_1’[i],Zt_1, Ut)p(Xt|Xt_1’[i], Zt_l, ut)

t ty
q(xe|x Zhut) = p(ze|xt=LI1, z=1 )

The denominator (new weight) does not depend on x;!!
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1 particle — 1 particle (With the standard proposal).

t=1 t

Comparisons

(1
°

[i] Observation
likelihood

4
®
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1 particle — N particles (With the standard proposal).

t=1 t

Comparisons

(1
°

Observation
likelihood




r H How does our method work?

PhD
dissertation

Particles at timet-1



‘; H How does our method work?

PhD

dissertation t—l

Group [1]
w_— >
®
Comparisons [i]
[3
°®

(4
e

Each particle propagates in time probabilistically:
this is the reason of the duplication.
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this is the reason of the duplication.
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Group [2]
Group [1]

[2

(»
(3
[}
(4
9]
Group [4]

The observation likelihood states which particles are really
important.

Observation
likelihood

Comparisons
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Group [1] - 55%
Group [2] > 0%

Observation
Comparisons likelihood

Group [3] > 45%
Group [4] 2 0%

Group [4]

We can predict which groups will be more important, before
really generating the new samples!



r H How does our method work?

PhD
dissertation

Group [2]

2 ‘
Comparisons [.] ,
=

(3
[}
(4
9]
Group [4]

Particles are drawn according to the optimal proposal, only
for those groups that really contribute to the posterior.

Group [1]
[1
)

Observation
likelihood
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Experiments

S ———=———=c—= 10¢
z | — — — Standard proposal PF
5 } Our optimal PF 3
z \ 2
g 1 g 10°
g £
= k3
H 20
Z 01 £
2 z
H i i s t o s b S A, A M A s gy P
5 [ I T T I 1T 10!
2 . . . . .
001 [ LTI [ [T 0 100 200 300 400 500 Time 600
1 10 Number of particles 100 steps

(b) (©
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(optimal_sampling_localization.avi)
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@ ICRA 2008 (Pasadena, USA): An Optimal
Filtering Algorithm for Non-Parametric

Papers

@ |JRR: Under review.

Observation Models in Robot Localization.

ICRA 2008

® ‘
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Introduction

Our solution

An example

Experiments

Papers

A Consensus-
based
observation
likelihood
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For a laser range scanner, the observations at instant t are:

Introduction

Zt = {Zl{}izl..L
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dissertation A central component of Bayesian filtering is the sensor

Jose Luis observation model:

p(x|z) o p(x) p(z]x)
N—— N —

Posterior Prior Observation
likelihood

For a laser range scanner, the observations at instant t are:

Introduction

Zt = {Zl{}izl..L

Given a pose x and a perfectly known map m:

p(z'|x,m) Assuming cond.
independence
Very narrow peak  ————

~a
p(z\x,m):Hp(z’ |x,m)
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An example: a range scan
with 3 measurements:

p(d*|x,m)

Introduction



What does this product fusion imply for robot

localization?
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Unexpected
obstacle known map

An example: a range scan
with 3 measurements:

p(d*|x,m)

Introduction

But in the presence of
unexpected changes...

A AA X

a3

The peak likelihood is not compatible with any of the ranges!!



Our proposal: The sum fusion rule
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opinions about the final fused likelihood which is calculated by
methods from Consensus Theory.

i i )
P inflated (Z | x,m) H Pinfiatea (Z Ix,m
i

m e::}:c‘:.i nt Usual sensor fusion
uncertainty, (Product rule)
>
Our solution
| 4 m

u i t i

o 25 x . 20 x
Measurements 4 A4 (robot pose) (robot pose)

p(z‘lx,m) ZW,p(z‘Ix,m)

Real .
measurement Consensus-based sensor fusion
uncertainty (Sum rule)

v

7 23 x 2 273 x*
2 (robot pose) N < (robot pose)
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Our proposal: The Range Scan Likelihood

Consensus (RSLC)

il Our proposal: Linear Opinion Pool (LOP) of individual likelihoods:

dissertation

L
p(z|x¢, m) Z p(z{|xt,m)

i—1
! Individual
likelihood values

Each likelihood is computed from the “matching likelihood"” for the
M points in the map:

M

p (zi|xe, m) o ZP (cij| xe, m, z{)
=1

Our solution

Including the option of the point not corresponding with any map
point (0):

M

P (Ci@|xt7mvz£) = 1 - ZP (Cij|xt,m72£)
j=1
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010 20 30 4 S0 60 0 80 90 100
Used scan ranges (%)
(b)

similarly to BM or LF.

Likelihood assigned to

the ground truth

10

30 30 40 % @ o %0 %0 00
Used scan ranges (%)
(©)

In the case of a perfectly known map, the RSLC behaves
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o 27 Beam model Detailed view of ilri of the trajectory

3 Likelihood Field
O RrsLe

* Ground truth

dissertation

Sensed ranges

Removed
obstacle

\

0 10 20 0 40 S0 e 70 s 90 10
Used scan ranges (%)|

Likelihood assigned to the ground truth

— - — Beam model
LF

Experiments
04| — rsie

Moved obstacles

020 30 a0 %0 60 70

s 90 100
Used scan ranges

- A |
o (d)

For a dynamic map, the RSLC reduces the error w.r.t. the
BM and the LF.
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IEEE fﬁa &
@ ICRA 2007 (Rome, ltaly): A Consensus-based 2007 1528 Itemational Conference
Approach for Estimating the Observation e —

Likelihood of Accurate Range Sensors.

Roma, ltaly
10-14 Aprl 2007

Papers
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Fusion of @ Introduction
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an IMU o Fllter'ng
@ Implementation
@ Results
@ Papers



Introduction

Another important part of the Bayesian filtering equation is the
transition model:

p(Xt|zlzt7U1:t7m) 08 p(zt‘xtam) X

/ P(Xt|Xt—17 Ut) P(Xt—1|21:t—1a ur:t—1, m)dxt—l
—_———

Transition model

Introduction What is the new pose x; given the last one x;_1 and the action u;?

In mobile robotics this term is the probabilistic motion model:
robot actions are not deterministic in the real world.
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dissertation @ The most usual approach: use the robot odometry as

robot actions.

@ Our contribution here: probabilistic fusion of
proprioceptive sensors.

y Sensed
variables:
Turning Ax
n | Odometry Ay
ntroduction encoder: A
Y, 00)
Ay bemmm oo
y G d¢t)
yroscope:
e > dt




Introduction

T @ Each sensor contributes different information: they

complement each other.

Y Sensed
variables:

Turning

Ax
Ay
A9

Odometry

Introduction F-
encoder:

Ay pmmm—--

de(n)
dt

Gyroscope:
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Our solution: Apply an Extended Kalman Filter (EKF) to
perform the fusion of odometry and a gyroscope.

@ The state vector: the robot pose (xx yx ¢«) + the last
orientation ¢_1.

Xk

Yk
Filtering Xy = Qbk

Ok—1
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@ The mean: use the robot kinematic model.

)'Z; = f()'ikfl,uk)
Xk
f (R, uk) = ;i
Pk—1

Filtering

Xk—1 + Dxy cos pr_1 — Ayksin pp_1
Yk—1 + Axisingp_1 + Ayk cos pp_1
Gr—1 + Ay
k-1
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@ The covariance: independent contributions from x,_1 and

uy.
P., O kafT
( Vka Vka ) < 0 Cuk > ( VkaT

= VP Ve f' 4+ Vi, fC,V, '

Py



Filtering

: PhD_
dlss$rtat|én 2) Update:
co Clarac Kalman gain K, computed from innovation Sy:

e =2 — h (%)

P, 0 0 v
Sk=(Vxh Vs,h Voh)| 0 o5 0 Vs.h'
0 0 o2 VohT

- -1
Ki =P, H/S,



Filtering

: PhD_
dlss$rtat|on 2) Update:
' Kalman gain Ky computed from innovation Sg:

e =2 — h (%)

P, 0 0 v
Sk=(Vxh Vs,h Voh)| 0 o5 0 Vs.h'
0 0 o2 VohT

K =P H]S, !
Noise parameters:

° a_%A: uncertainty about the actual sensor sensitivity.

e o2: gyroscope electrical noise (additive white Gaussian
noise, AWGN).
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Implementation on a real robot

@ Hardware platform: Custom design based on a 8-bit AVR
microcontroller.

@ Sensor: Analog Devices gyroscope (ADXRS401).

@ Real-time operation at 100Hz.

Implementation




Resul

PhD

ts

dissertation Experi ment I .

Smooth path of 4 meters.

Odometry only

Odometry + Gyroscope

7

Results

) § Final pose o § Final pose
Estimated uncertainty Estimated uncertainty
o robot path robot path
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Experiment I:

Smooth path of 4 meters.

Odometry only Odometry + Gyroscope

Final pose T N Final pose

uncertainty Estimated uncertainty
robot path

Estimated
robot path

i 05 ! s v

(©)

Results

(b)

Uncertainty in (x,y, ¢) reduced by a factor of ~ 10.
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The robot turns around itself.

Odometry only Odometry + Gyroscope

Final pose o

03 o uncertainty "

EN @ g Final pose
E S s

ncertaint

Estimated ety

05 Estimated 02
robot path " robot path
3 2 ] 0 xm 1 2 3 4 08 06 04 02 0 xqm 02 04 06 4)‘1« 0
(@) (©)

N T ey 45 ) 7] 75 T3 7 T FrE—vr

(b) @

Results
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The robot turns around itself.

Odometry only Odometry + Gyroscope
0
.
Final pose o
03 o uncertainty B
@ L% o Final pose
Estimated " Estimated uncertainty
robot path . robot path
] T H g : N
(@) (©)
!
- I I T - =
Results (b) ()

Uncertainty in (x, y, ¢) reduced by a factor of ~ 10°.




Results

Comparison to ground truth:

Experiment [: Forward Experiment II: Spinning
x y [ x y [
Odometry | 4.194m | 0.849m | 34.42° | 0.350m | 0.114m | -49.55°
Sensor | 4 1e7m | 0.934m | 25.32° | 0.096m | 0.233m | 2.65°
fusion
Ground

4.169m | 1.031m | 25.80° | 0.072m | 0.282m | 2.50°

truth

Results
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@ ISSPA 2007 (Sharjah, United Arab
Emirates): Mobile robot ego-motion
estimation by proprioceptive sensor fusion.

Papers

2007 9th International
Symposium on Signal Processing
an ons




PhD
dissertation

Part Il

SLAM

@ Optimal filtering in RBPF-SLAM

© Range-Only SLAM

@ Uncertainty measures for SLAM and exploration
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Differences between localization and SLAM

The optimal PF

@ A generic optimal filtering algorithm has been introduced
in this thesis.

Introduction

@ It has been applied to robot localization.

Would it be applicable to SLAM as well?



Differences between localization and SLAM

The optimal PF

@ A generic optimal filtering algorithm has been introduced
in this thesis.

Introduction

@ It has been applied to robot localization.

Would it be applicable to SLAM as well?
— Yes, with modifications.
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Introduction

Dimensionality o time: exponential number of particles.
t=1—{q}

t=2 — {Xf7x2a}7 {X137X2b}

t=3— {x, 8 x5} {6, 8, x5}, {x, 8, x5}, ..



The problems with RBPF-SLAM

Problems of our optimal filter with a RBPF

o It resamples at each step — Quick loss of diversity.

Introduction

@ Dynamic number of samples — Quick exponential growth.




The problems with RBPF-SLAM

Problems of our optimal filter with a RBPF

o It resamples at each step — Quick loss of diversity.

Introduction

@ Dynamic number of samples — Quick exponential growth.

The solutions

@ Selective resampling.

@ An approximation for KLD-sampling.
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" ) Instead of selecting particles by their “survival probabilities”:
he propose
changes

@ Only run resampling if the ESS if below a threshold.
@ Weights must be maintained now.



The proposed
changes

Histogram over the whole path | Histogram over the last pose
Exponential Polynomial
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SM-based method
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Experiments

Time step #200
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Optimal PF:

Experiments

SM-based PF:




Results
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Dynamic sample size

P Overall ion time (s)
80 sﬁ—/-‘
Experiments 60 I ‘ 40
40 r/_/ \_,_I_F 20
00
0 20 40 60 80 100 120 140 160 180 200 0 SM-based PF Optimal PF

(a) Time steps (b)
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@ [JRR: "Optimal Filtering for Non-Parametric Observation
Papers Models: Applications to Localization and SLAM" (Under
review).



© Range-Only SLAM
@ Introduction
@ Our Sum of Gaussians (SOG) approach
@ Results
@ Papers



Advantages of RO-SLAM
o Data association is usually trivial.

@ Some technologies work across walls, etc.

One big drawback

o Ambiguity...




T
Actual p

T
osition |

of the beacon

/

4

4

Robot poses'

>

This complicates a standard EKF-SLAM approach.
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% % /
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@) O

The proposed solution

@ To employ a RBPF and keep independent distributions for
each beacon.

@ Use a Sum of Gaussians (SOG) for each beacon.




1o
\ K=05 KL divergence
; 2

10°

03 04 05 08 07 08 09 1
K
(b) ()

Inverse sensor model implementation

@ The first time a beacon is observed: create the SOG.

@ Subsequent observations: update both the SOG

parameters and its weight (each Gaussian mode is an
EKF).
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For robot moving in planar scenarios, there is an ambiguity
Our SO that will ever remain...



(ROSLAM _symmetryl.avi)



o o D RO A

...if there is a priori knowledge — populate only one half of the
Our SO 3D space.



The method has been validated with several simulations:

(roslam_simul.avi)



Experiments with real UWB sensors have been performed as
well.

(roslam_real.avi)



The presented method:

@ IROS 2008 (Nice, France) Efficient
Probabilistic Range-Only SLAM.

Very related to this method:

@ ICRA 2008 (Pasadena, USA) A Pure
Probabilistic Approach to Range-Only
SLAM.

Parallel works (with other authors: A.
Ortiz-de-Galisteo, F.A. Moreno, J. Martinez):

@ RAS Mobile Robot Localization based on
Ultra-Wide-Band Ranging: A Particle Filter
Approach.

@ ISSPA 2007 (Sharjah, United Arab
Emirates) Combination of UWB and GPS
for indoor-outdoor vehicle localization.

lCRA 2008
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Information in SLAM
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The problem:

Measuring the information or uncertainty in a RBPF-based
implementation of SLAM at a given instant of time.

Why measuring the information?

Information in
AM

@ In active exploration, to decide the next robot movement.

@ In active loop-closing behavior: to detect the end of a loop
closure.




Information-guided exploration

PhD Why is it an advantage to be prone to loop closures?

dissertation
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Information in
AM

Information-guided exploration

Previously employed uncertainty measures:

o Effective Sample Size (ESS).

@ Area covered by particles.

@ Entropy of the robot path.

e Joint entropy of the path + the map (the most grounded
method) [Stachniss et al. 2005].

Instead we propose:

@ To firstly build an auxiliary map, the expected map (EM).

@ Then, measure its Information (EMI) or Mean Information
(EMMLI).

It is shown why our alternative behaves better that the others.



The expected map (EM)

The EM is defined as the average of the map m over all
possible paths xt. In particular, for RBPF-SLAM:

p(EM|z', ut) = p(m|xt, zt, ut)]

_ / / p(mlxt, 2t ut)p(xt|zt, ut)dx

~ Zwk Xy|x[]t,z,u)
i=1

EMI and EMMI



EMI and EMMI

The expected map (EM)

For grid maps, the EM has the property of revealing
discrepancies between individual maps:

I
i i i Expected map

-
N\ rd

@ ®
B p(n7)=0.9 (Low entropy)

© & plm')=0.1 (Low entropy)
& plem,)=0s

Contradictory hypotheses:
High entropy



The expected map (EM)

It is important to remark it one more time: the way the EM
detects inconsistencies is really new in comparison to the
joint entropy.

Z w,H(p;) Paths-map [Z wip, ]b'mw) values
joint entropy.

in EMMI

EMI and EMMI

(b)
Example with two particles, each holding one grid map cell:
p1 and pp.




The expected map (EM)

It is important to remark it one more time: the way the EM
detects inconsistencies is really new in comparison to the
joint entropy.

Z w,H(p;) Paths-map [Z wip, ]b'mw) values
joint entropy.

in EMMI

EMI and EMMI

(b)
If both cells are unobserved, p1 = p» = 0.5, our method and
the joint entropy agree.




The expected map (EM)

It is important to remark it one more time: the way the EM
detects inconsistencies is really new in comparison to the
joint entropy.

Z w,H(p;) Paths-map [Z wip, ]b'mw) values
joint entropy.

in EMMI

EMI and EMMI

(b)

If both cells are observed and equal, p1 = pp =1 or p1 =
p2 = 0, our method and the joint entropy agree (low entropy
— desirable).




The expected map (EM)

It is important to remark it one more time: the way the EM
detects inconsistencies is really new in comparison to the
joint entropy.

Z w,H(p;) Paths-map [Z wip, ]b'mw) values
joint entropy.

in EMMI

EMI and EMMI

(b)

If both cells are observed and inconsistent, e.g. p; = 0,
p> = 1, our method gives a high entropy, while the joint
entropy is low.




Information vs. Entropy

Apart from defining the EM, it is also proposed to replace
“entropy” by “information”:

Entropy: H(mxy) = _p(mxy) |0g p(mxy) - /_J(mxy) |Og I_J(mxy)
Map information: [(my,) =1 — H(m,y)
Cell information:  [(m) = > I(m,,)  (Dbits)

Vx,y

Information and entropy are almost synonymous, but /(-) is defined
for convenience:

EMI and EMMI

@ Non-observed cells (p = 0.5) do not count.

@ Independence of the size and resolution of grid maps.



The EMI and EMMI

Expected Map Information (EMI)

The overall information of the entire EM of a RBPF.
Useful for: Exploration.

Expected Map Mean Information (EMMI)

The mean information per grid cell of the entire EM of a RBPF.
Useful for: Detection of loop closures.

EMI and EMMI




EMMI for loop closure detection
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closure detection




EMMI for loop closure detection

PhD Step #50 Step #100
dissertation

Step #150

EMMI for loop
closure detection

the certainty

)

m?

Area 99% (i




EMI for exploration
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EMI for
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" Using EMT

345§ 7
Potential actions.

Using joint-entropy

345 67
Potential actions

EMI for
exploration




EMI for exploration
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Decision #12:

EMI for
exploration

o
Using EMI

203 4 5 6 78
Potential actions

9 10

Using joint-entropy

203 4 5 6 1
Potential actions

5 0 1011



EMI for exploration

PhD
dissertation

Decision #18:

Using EMI
s
£
> 000
3
3 am
Z m
T2 s a s 8 9 10 11 12
Potential actions
200
N Using joint-entropy
0
£
&

234567809 0101
Potential actions

EMI for
exploration
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@ [JRR: A Novel Measure of Uncertainty for
Mobile Robot SLAM with
Rao-Blackwellized Particle Filters.

Papers
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Large-scale SLAM

@ HMT-SLAM

© Clustering local maps

Q Matching grid maps
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Overview

P A fundamental choice in SLAM is the kind of map
representation:
@ Metric maps: Detailed, quantitative information
(landmarks, occupancy grids).
@ Topological maps: Graphs. Sparse information.
@ Hybrid representations: Graphs where nodes are local
metric maps.

Overview



Overview

P A fundamental choice in SLAM is the kind of map
L representation:

@ Metric maps: Detailed, quantitative information
(landmarks, occupancy grids).

@ Topological maps: Graphs. Sparse information.

@ Hybrid representations: Graphs where nodes are local

metric maps.

Overview

Hybrid maps

Promising solution, adopted in many previous works.

o Kuipers, Byun, “A Robot Exploration and Mapping
Strategy...”, 2001

o Estrada, Neira, Tardds, “Hierarchical SLAM:...”, 2005.

Typically, the problem is addressed from the point of view of a
hierarchical metric map.




Overview
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We introduce a new approach to SLAM, ideally suitable for
large-scale environments and long-term, robust operation.

Overview

Contributions:

@ Introduction of the concept of hybrid metric-topological
(HMT) path.

@ Consistent formulation of HMT-SLAM as a unified
Bayesian estimation problem.

The estimation of the robot HMT path is an advance
comparable to RBPF or FastSLAM in metric SLAM.



Overview
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L

Some relevant advantages of HMT-SLAM

@ Better accuracy in the estimation of loop closures.

Overview

o Efficient representation of multiple hypotheses of the
topological structure of the environment.

@ A potential application not addressed by previous works:
global localization within a partially mapped
environment. )




Basics of HMT-SLAM
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We introduce the concept of hybrid path of a robot.

Each pose is composed of a metric x; and a topological ~;

o component:
HMT-SLAM

St = {Xta’Yt}

Metric sub-map 'M

Metric sub-map M

“‘ S s, = <7r > xl>
SN ol
S S TORATTOR,
= ‘.a‘e»:a:e“.‘»:«:“».‘.‘;\\:‘;‘,
5
SN o N
SIS SO
OSSR SN
SSRSSSSSSEIXII =
S e SN ===
SRS —
e ese SIS s
RIS et

ks

x,  (Local metric coordinates)
Transformation 2A 5=

%, =2 (Topological area)



Probabilistic model
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5o

P St AM Graphical model of &G — )= =)
standard SLAM ’ 7 e o vriaos

)
\\
Graphical model of

HMT-SLAM @gj‘* ***** ’*“'Haz-b;;m
) J
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Derivation

LGN P(s, m|uf, o) = p(s|u’, of)p(mls", u*, of)

dissertation

Definition of conditional probability:
one part for the HMT path, one for the map.

Basics of
HMT-SLAM



Derivation

SR -5, mlut, of) = p(st|ut, ot p(m]st, ut. of)

dissertation

'
p(m|st7 ut7 ot) —_ p({k/\/l} , {abAH St’ ut’ ot)

Basics of
HMT-SLAM



Derivation

LGN P(s, m|ut, o) = p(s|u’, 0f)p(m|s, u*, of)

dissertation

'
p(m|st7 ut7 ot) —_ p({k/\/l} , {abAH St’ ut’ ot)
= p({*M}]s',ut,0) p ({**A}| {*M} 5", ", ")

HMT-SLAM

Content of the Arcs in the topological part
metric sub - maps of HMT - maps



Derivation

LGN P(s*, m|ut, o) = p(s[u’, 0f)p(m|s", u*, of)

dissertation

'
p(m|st7 ut7 ot) —_ p({k/\/l} , {abAH St’ ut’ ot)

= p({M}] " 0 0%) p ({2} {*M} 5", ", o)

Basics of
HMT-SLAM

Conditional independence
p({kMHst’ut’ot) - lzlp(kM|kst’ut’ot) of sub-maps



Derivation

LGN P(s*, m|ut, o) = p(s[u’, 0f)p(m|s", u*, of)

dissertation

'
p(m|st7 ut7 ot) —_ p({k/\/l} , {abAH St’ ut’ ot)

= p({M}] " 0 0%) p ({2} {*M} 5", ', o)

Basics of
HMT-SLAM

p({kM}|St7Ut,Ot) _ Hp(kM|k5t,Ut,Ot)
k

Hp(kM’ kXt,k t,Ut,Zt,wt)
k



Derivation

LGN P(s*, m|ut, o) = p(s[u’, 0f)p(m|s", u*, of)

dissertation

'
p(m|st7 ut7 ot) —_ p({k/\/l} , {abAH St’ ut’ ot)

= p({M}] " 0 0%) p ({2} {*M} 5", ", o)

Basics of
HMT-SLAM

p({¥M}|s, ut,0") = Hp kM| kst ut, o)
Hp M’kxt’k t,Ut,Zt,wt)

_ Hp M|k t

These have closed-form solutions for
grid maps and landmark maps.



Derivation

SR -5, mlut, of) = p(st|ut, ot p(mlst, ut. of)

dissertation

p(m|st7 ut7 ot) —_ p({k/\/l} , {abAH St’ ut’ ot)
= p ({*M}]s',ut,0) p ({2} M} 5" ut,0f)
|

Basics of
HMT-SLAM

'
p({TA}{*M} s, vt 0f)



Derivation

SR -5, mlut, of) = p(st|ut, ot p(mlst, ut. of)

dissertation

p(m|st7 ut7 ot) —_ p({k/\/l} , {abAH St’ ut’ ot)
= p ({*M}]s',ut,0) p ({2} M} 5" ut,0f)
‘ |
p ({abA}‘ {kM} ’st7 ut7ot) — H p (abA’ {kM} 7St, ut,ot)
(a,b)




Derivation

LI P(s, m|uf, o) = p(s|u’, 0f)p(m|s’, u*, of)

dissertation

p(m|st7 ut7 ot) —_ p({k/\/l} , {abAH St’ ut’ ot)
=p ({*M}|s" ut ") p ({°A}[ {*M] " v, 0f)
|

Basics of
HMT-SLAM

'
p ({abA}‘ {kM} ’st7 ut7ot) — H p (abA’ {kM} 7St, ut,ot)
(a,b)
_ H H N (abAi’ abzi)
(a,b) i

Individual estimations obtained each time
a topological loop closure occurs.
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LGN P(s, m|uf, o) = p(s|u’, of)p(mls", u*, of)
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Basics of
HMT-SLAM



Derivation

SO o(st, mlut, of) = p(st|ut, o p(mlst, ut, of)
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p(st|ut, of)  p(o¢|st, ut, 0t 1)p(st|ut, ot~ 1)

Basics of
HMT-SLAM



Derivation

eI P(s, m|uf, o) = p(s|u’, of)p(mls, u*, of)

dissertation

p(st|ut, of)  p(o¢|st, ut, 0t 1)p(st|ut, ot~ 1)

This part can be estimated using a particle filter:

Basics of
HMT-SLAM

{st,[i]} ~ p(St|St71’[i], ut—l’ Ot—l)



Derivation

N p(st, m|ut, ot) = p(st|ut, o")p(m]|st, ut, of)

dissertation

p(st|ut, of)  p(o¢|st, ut, 0t 1)p(st|ut, ot~ 1)

This part can be estimated using a particle filter:

Basics of
HMT-SLAM

{St,[i]} ~ p(st|st*1’["], ut—l’ Ot—l)

This process includes:

@ Detecting when the robot enters into new areas.

@ Generating topological loop closure hypotheses.




Advantages of HMT-SLAM
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Advantages

@ More accurate loop closures.

o Capable of handling localization in partially known
environments.



Advantages of HMT-SLAM

PhD

dissertation More accurate loop closures.

; In HMT-SLAM, loop closure becomes a partition in the robot
topological path:

Sequence of traversed areas

() ()~

. Some topological hypotheses

={0,1,2,3,4} OO0+  Partition:{0,1,2,3,4}

N

7={0,1,2,3,0} Of Q Partition:{{0,4},1,2,3}

71={0,1,2,3,1} O}@ Partition:{0,{1,4},2,3}

p( abAH kM},Xt,;/t,ut,O‘)




Advantages of HMT-SLAM
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Localization with partially unknown maps

An example:

Advantages @ @. !

O,




Advantages of HMT-SLAM
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Localization with partially unknown maps

An example:

Advantages @ @. !




Advantages of HMT-SLAM
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Localization with partially unknown maps

() @?@

Cu—(w)
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An example:




Advantages of HMT-SLAM
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Localization with partially unknown maps

An example:




Advantages of HMT-SLAM

Localization with partially unknown maps

An example:
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Experiments




Experiments

PhD
dissertation

Dataset: Malaga
@ 2Km robot path. About 4700 laser scans.
@ Covered area: 30 000 m2

@ Several loop closures.

Experiments @ Acquisition time: 21min




Experiments
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@ 1Km robot path. About 3000 laser scans.
o Covered area: 7 000 m2
@ One loop closure. Acquisition time: 12min

o Gathered at the "Edmonton Convention Centre” by Nick
Roy.

Experiments
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(HMT-SLAM_malaga.avi)
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Luis

@ TRO: Towards a Unified Bayesian Approach to
Hybrid Metric-Topological SLAM. P Er——

Papers

@ ICRA 2007 (Rome, ltaly): A New Approach oEEE in) AR
for Large-Scale Localization and Mapping:
Hybrid Metric-Topological SLAM.

2007 IEEE Intern
on Robo
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Introduction
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To build hybrid maps, we need to cluster areas of the space
into discrete “entities” — nodes in the HMT maps.

In the literature the common approach is to group landmarks
Graphs of into metric sub-maps.

observations

Our proposal

Instead of clustering the map elements, clustering the robot
observations.

This has advantages since segments of the robot path become
conditional independent while submaps still overlap.
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We propose to build an auxiliary graph of observations:

Local frame

Graphs of
observations

Arbitrary global
reference system



Graphs of observations
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" We propose to build an auxiliary graph of observations:

Local frames

Graphs of
observations

Arbritary global
reference system

Nodes — observations
Edges — similarity or overlap between observations



Graphs of observations
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The Sensed Space Overlap (SSO) is a function that assigns a
similarity measurement to any pair of observations:

Craphe of S550:V xV —]0,1]

— : Sensed Space Overlap (SS0)




Partitioning graphs
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Normalized cut (Ncut)

@ The N-cut was first introduced by Shi & Malik in the context of
image segmentation.

@ This partitioning method finds bisections of a graph being a
Graph o o o .
& trade-off between their sizes and their mutual connections.

partitioning

cut(4,B)
—————— - ~
L= -~ ’ \
P N ]
cut(A, B cut(A, B \ o ;o \
Neut(A, B) = (4. B) (A B) \ ® o ! \ assoc(B.B)
assoc(A, V) assoc(B, V) M ° K \ \
1
assoc(4,4) ‘/j\—_' ® L' ; ® /<

~~~~~
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This technique has been already shown in action within
HMT-SLAM.

Experiments




Experiments
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Another experiment: recursive bisection of a global indoor map:

Experiments
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Experiments

Cluster 1 out of 9



Experiments
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Jose Luis
Blanco Claraco

Finally, if we rearrange the weight matrix according to the
clustering, it is closer to being block diagonal:

Experiments
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Experiments

All the sub-maps
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@ RAS: Subjective Local Maps
for Hybrid Metric-Topological
SLAM.

Subjective local maps for hybrid metric-topological SLAM?

Papers

@ ICRA 2006 (Orlando, USA): @
Consistent Observation -
Grouping for Generating
Metric-Topological Maps
that Improves Robot
Localization.
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Why to match grid maps?
@ In “standard” global mapping — metric loop closure.

Introduction

@ In multi-robot mapping — to join maps.

@ In HMT-SLAM — to detect topological loop closures.
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o Rigid transformations only (no scale changes).

o Grids carry very useful information.

Introduction

@ Ambiguity: large portions of the grids look the same.

o Data-association is not applicable to raw grids.




Introduction

dissertation The problem of the ambiguity:

Introduction




Introduction
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Previous methods

Correlation (costly).
Histograms (requires a robot with a perfect compass).

Introduction

Our proposal

To employ Computer Vision techniques previously applied to
matching images.
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Grid map

L= 2rs [RiE
-

e [ ]
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Overview

Determination of
potential maiches

Multi-hypothesis
RANSAC
Simplification of
ypotheses (1)

ICP-based refinement

Simplification of
hypotheses (II)

p(q) : Sum of Gaussians

r \
Gridmap  Point map

We employ hybrid maps:

grid 4 points

The points are just employed
for a final refinement of the
matching.
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o First steps: Gaussian + median filter, then detect points.
@ We have evaluated four detectors:
o Harris.

o Kanade-Lucas-Tomasi (KLT).
o SIFT.

e SURF.

Overview
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o First steps: Gaussian + median filter, then detect points.
@ We have evaluated four detectors:
o Harris.

o Kanade-Lucas-Tomasi (KLT).
o SIFT.

e SURF.

Overview



Overview

PhD
dissertation

Overview




Descriptors
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o We

Descriptors

@ Each feature is then assigned a descriptor.

have evaluated four detectors:
Log-polar patch.
Linear-polar patch.

Spin images (polar histogram of intensities).
SIFT.
SURF.



Descriptors
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o We

Descriptors

@ Each feature is then assigned a descriptor.

have evaluated four detectors:

Log-polar patch.

Linear-polar patch.

Spin images (polar histogram of intensities).
SIFT.

SURF.



PhD Linear-polar patch:

dissertation

Map image Polar space descriptor (PSD)

£ [uy]

Descriptors
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Then potential pairings are determined by thresholding the
inter-feature distances with two thresholds T5 and Ty4:

d, K
14
Descriptors AT T
Td
”””””””””””””””””””””””””””” I T
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, dlo
0
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How to pick a combination of detector+descriptor+their parameters?

Descriptors
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How to pick a combination of detector+descriptor+their parameters?

2 1000
34610
30
2
f aome 201

Descriptors e s nsw nae H
02%  203%  eem  2081% H
20 50 F

Best probability of misclassification (%)

KLT- Harris- KLT- Harris- KLT- Harris- KLT- KLT-
SIFT SIFT SURF SURF Spin Spin  LinPolar LinPolar LogPolar Log Polar

Harris- Harris-

SIFT SURF

Minimum errors and computation times
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Establishing hypotheses
@ A modified version of RANSAC is used.

@ Instead of 1 hypothesis — a multitude of them.

@ All the tests are probabilistic (chi-square tests).

Descriptors
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Establishing hypotheses

@ A modified version of RANSAC is used.

@ Instead of 1 hypothesis — a multitude of them.

@ All the tests are probabilistic (chi-square tests).

Consequences

@ The output of the RANSAC step is a SOG.

@ Compatible with HMT-SLAM: multiple hypotheses for the
arcs between areas jA.
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An example of multiple hypotheses with real sub-maps:

Results
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An example of multiple hypotheses with real sub-maps:

Results




Results: Benchmark
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The method has been intensively tested against a testbed of 59
sub-maps obtained from 4 different public datasets:

The datasets:
@ Intel offices dataset.

o Freiburg campus.
o MIT dataset.

o Malaga campus.

Results

The 3 first ones available at: http://radish.sf.net/
The last one available at: http://mrpt.sf.net/



dissertation

Results

Results: Benchmark
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Results of the benchmark

Result Disregarding ambiguity
True positives 97.56% (40/41) :
False positives 3.47% (58/1670) 1.38% (23/1670)

Results

True negatives | 96.53% (1612/1670) | 98.62% (1647/1670)
False negatives 2.44% (1/41)
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@ TRO: A Robust, Multi-Hypothesis
Approach to Matching Occupancy Grid
Maps (Under review).

Papers
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Part IV

Robot navigation

@ Generalized space transformations for navigation

@ Reactive navigation with PTGs
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Generalized @ Generalized space transformations for navigation

space transfor-

mations for @ Introduction
e e About PTGs

@ Theoretical results
@ Papers



Introduction

Introduction

Robot navigation

Problem: Take the robot from point
A to point B.

Paradigms

@ Planned
@ Reactive
@ Mixed




Introduction

Why is this complicated?

Two main independent sources of problems:
@ Kinematic restrictions: Most robots cannot move in any
arbitrary direction!
e @ Robot shape: Colission must be avoided with any part of
the robot, which can turn — C-Space )




Introduction

Why is this complicated?
Two main independent sources of problems:
@ Kinematic restrictions: Most robots cannot move in any
arbitrary direction!

@ Robot shape: Colission must be avoided with any part of
the robot, which can turn — C-Space

Introduction

A
T End pose

- Obstacle : End pose

4 N ) ;
-+ \‘ 1 . ‘.
! Initial pose

4 . o

T @ ‘3¢ Initial pose 2 \
T 3 ; C-Obstacle
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Target
location
_—
Reactive navigation
: Sensor
Introduction readings

a Mobile robot

Motor
actuation

We will focus on reactive methods:

<

Holonomic

. &

« o —»

ZN

Non-Holonomic

Tobots a
=< &9

Classical
free-space
sampling
path models

Other
possibilities?

How does a robot decide in which direction to move?



Introduction

We will focus on reactive methods:

Holonomic

robots #
Target '\T /'
location o
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Reactive navigation / \ free-space
Sensor Q

sampling
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Mobile robot actuation <
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Introduction

How does a robot decide in which direction to move?

Sampling the obstacles around with some path model



Introduction

“Sampling the obstacles”
(never put explicitly):

has been done in all previous works

Introduction

For non-holonomic robots: only circular arcs have been
employed.
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Why considering other models apart from arcs?

Reactive navigation decides just from the free-space it
“samples”:
We must provide it a motivation to start moving into any
given direction.

Introduction




Introduction

Obstacle avoidance algorithms are either:

@ For non-holonomic robots: They assume circular arcs.

Introduction e For holonomic robots: Well known methods (VFF,
Nearness Diagram), but not applicable to many real
robots.

The solution introduced by [Minguez & Montano, 2006]: to
abstract the robot shape and kinematics with a space
transformation.
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Our contribution:

A generalization of this abstraction by means of
Parameterized Trajectory Generators (PTGs)

Introduction
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What are PTGs?

dissertation

L

Definition
A PTG maps a 2-d space, the Trajectory Parameter (TP)

space, into a manifold of the robot C-Space.
An inverse PTG does exactly the opposite operation.

About PTGs

The key idea is reducing the dimensionality to 2-d, then apply
“standard” holonomic methods.
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End pose

A Obstacle : End pose
I / : :
™ ’: . Initial pose
About PTGs T ‘ ¢ :
B
T 2 \
T . i . C-Obstacle

Planning in C-Space is complicated: robot trajectories are in 3-d !

Visualize a family of trajectories and a surface will emerge...
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About PTGs

are PTGs?

It's the PTG sampling
surface, and it's parameters
are a and d.

(This surface is a manifold
of C-Space)

Sampling

. 4 surface in
P C-Space
PR ol B
3L = ! T
i Trajectories generated -~
AR for two e values
3 [ A
TR A R
i Trajectory | _.
0J.t--"" origin -V
' - . '
1 ,:u ‘-i | /_T}}-\\*
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What are PTGs?

dissertation

Relation of PTGs with the TP-Space:

TP-Space C-Space  Trajectory

About PTGs for a=¢,
0

Straight line




What are PTGs?
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About PTGs ¥ (m) Workspace
3 9 (rad)
21 Rectangular
robot
ml f
0 A= =

Point obstacles

-3 -2 -1 0 1 2 3
x (m)

C-Space

C-Obstacles

Sampling surface
(PTG)

2y ()

d sin(a)

=

The name “sampling surfaces” comes from this:

- o

TP-Space

TP-Obstacles

(Intersection of
C-Obstacles with
sampling surface))

-

A

2 3
d cos(a)
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: Given all these definitions, we have proven that many PTGs are
rets suitable for reactive navigation (not trivial!):
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Definition of a valid PTG
It must fulfil:

Theoretical
results

o C1. It generates consistent reactive trajectories (the
memoryless nature of the movement decision process).
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Theoretical
results
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It must fulfil:

Theoretical
results

o C1. It generates consistent reactive trajectories (the
memoryless nature of the movement decision process).
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Definition of a valid PTG
It must fulfil:

Theoretical

e o C1. It generates consistent reactive trajectories (the
memoryless nature of the movement decision process).

o C2. It is WS-bijective for each WS location (x, y).
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Definition of a valid PTG

It must fulfil:

Theoretical o C1. It generates consistent reactive trajectories (the
memoryless nature of the movement decision process).

e C2. It is WS-bijective for each WS location (x, y).

o C3. It is continuous.




Theoretical results

Definition of a valid PTG
It must fulfil:

o C1. It generates consistent reactive trajectories (the
Theoretical memoryless nature of the movement decision process).

results
e C2. It is WS-bijective for each WS location (x, y).
o C3. It is continuous.

C2 + C3 — the PTG will not modify the topology of the real
workspace around the robot.




Theoretical results

Theorem

A sufficient, but not necessary condition for a PTG to be valid is its
velocity vector u being of the form:

Vm - fv (aa + b()b(aa t))

u(a, t) = wm - (aa+ bo(a, t))

Faih where v,,, and w,, settle the desired maximum linear and angular
velocities in absolute value, respectively, f,(«a, t) is any Lipschitz
continuous function which evaluates to non-zero over the whole
domain, and a, b are arbitrary constants with the restrictions
0<|a/b| <1 andb<0.

Corollary

Furthermore, a velocity vector of this form becomes fully defined by
Just specifying its value for t = 0.




Theoretical results

The proofs imply the derivation of 4 auxiliary lemmas. All the
details can be found in the thesis.

Theoretical
results

To remark it again: this is the first time it is proven that
reactive navigation is possible with other models apart from
circular arcs.
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@ Book chapter: Foundations of Parameterized
Trajectories-based Space Transformations for
Obstacle Avoidance. (Mobile Robots Motion
Planning — New challenges), 2008.
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Reactive @ Reactive navigation with PTGs
navigation . .

with PTGs @ A reactive navigator

@ Experiments

@ Papers



Applications of PTGs

In the last slides we have discussed PTGs as a theoretical tool.

Applications of PTGs

A reactive
navigator

@ To reactive navigation.

@ To planned or mixed schemes.




Applications of PTGs

In the last slides we have discussed PTGs as a theoretical tool.

Applications of PTGs

A reactive
navigator

@ To reactive navigation.

@ To planned or mixed schemes.




A PTG-based reactive navigator

PhD
dissertation A system has been proposed to integrate multiple PTGs into a

reactive navigator:

TP-Space based reactive navigation system Velocity

command
Unconstrained

Target global Target relative Virtual WS navigation movement Direction
location /™ location Target i N ( scenarios command translation
" (PTG ( PTG: V(,0)
- Holonomic Selection of
Robot estimated

obstacle the best

global pose 5 avoidance
TP-Obstacles N
Localization Builder e
. system (PTG
A reactive
navigator
g U RPN
Sensor [ Output velocity
readings Mobile robot

The holonomic navigator running on the TP-Spaces is the Nearness
Diagram [Minguez & Montano 2004].
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Experiments
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Using cireular ares only

o Selected PTG over time 0 20 40 60 80 100 120 140 160 10(secs
Time to Using 5 PTGs
oA target Using ares
c
[ Path
length Using arcs

s 20 25 (meters)

Time step #591

Experiments
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@ AR: Extending Obstacle Avoidance
Methods through Multiple
Parameter-Space Transformations, 2008.

@ IROS 2006 (Beijing, China): The

Papers Trajectory Parameter Space (TP-Space): A
New Space Representation for
Non-Holonomic Mobile Robot Reactive
Navigation.
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Part V

Conclusions
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Conclusions

Thesis conclusions

This thesis comprises several important contributions to the

fields of mobile robotics and estimation theory:

First unified Bayesian approach to hybrid SLAM.

Optimal particle filtering — localization & SLAM.
Introduction of PTGs — reactive navigation.

Efficient solution to RO-SLAM with SOG.

New information metrics for RBPF-SLAM & exploration.
Range scan likelihood fusion via Consensus theory.

New probabilistic, multi-hypotheses grid-to-grid matching.
Grounded method for partitioning sub-maps.

Fusion odometry + IMU.
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Some citation statistics according to Google Scholar
(2009/NOV/1):
Some

statistics e TRO 2008: HMT-SLAM — 14 citations.
@ ICRA 2006: Observation clustering — 10 citations.
e ICRA 2007: HMT-SLAM — 4 citations.

@ The rest of papers: average of ~ 2 citations.

(Not counting self-references)
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dissertation

e this thesis, among others, as a coherent C++ programming
framework.

Some
statistics
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P The MRPT is an open-source initiative to release the works in

this thesis, among others, as a coherent C++ programming
framework.

@ It's been integrated into major GNU/Linux repositories

Some (Debian, Ubuntu, Fedora).

@ Integrated into our group's BABEL development
framework.

@ >1300 source files, > 610,000 lines of code.

@ ~20 downloads/day during 2009.

o Web traffic:

18,000

146

16,000

Wiki pageloads / month

14,000

13,006

42,000
10,000

8,000

4,000

2,000

eb Mar- fpr Hay Jun Jul Aug Sep Dt Now
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The end
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