
PhD
dissertation

Jose Luis
Blanco Claraco

Motivation

Overview

Contributions to Localization, Mapping and
Navigation in Mobile Robotics

PhD dissertation

Jose Luis Blanco Claraco
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Robotics

Robotics is a success in the industry (millions of robotic arms
installed in the world)
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Mobile Robotics

Why hasn’t mobile robotics enjoyed such a success yet?

→ A mobile robot should be autonomous (quite complex!)

Images: http://singularityhub.com/, http://lemonodor.com/, http://www.robots-dreams.com/



PhD
dissertation

Jose Luis
Blanco Claraco

Motivation

Overview

Thesis motivation

Requirements for an autonomous robot

Among others:

Move without colliding.

Keep track of its position in the world.

Be able to model its environment by itself.

Solve complex plans.

Reason in an uncertain world.

...
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Requirements for an autonomous robot

Among others:

Move without colliding.

Keep track of its position in the world.

Be able to model its environment by itself.

Solve complex plans.

Reason in an uncertain world.

...

In this thesis

Localization.

Mapping.

Navigation.
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This talk is organized into four parts, each having contributions
about a different ability of mobile robots:

1. Localization
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An omnipresent problem: probabilistic filtering

Given a map of an environment, how can a robot localize itself
robustly using its sensors?

Bayesian probabilistic filtering: an extremely versatile
framework for estimating variables from noisy observations.
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m: The map.

xt : The robot poses.

zt : The observations.

ut : The robot actions.
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The problem: probabilistic filtering

p(xt |z1:t , u1:t ,m)︸ ︷︷ ︸
Posterior

∝ p(zt |xt ,m)︸ ︷︷ ︸
Observation likelihood

×∫
p(xt |xt−1, ut)︸ ︷︷ ︸
Transition model

p(xt−1|z1:t−1, u1:t−1,m)︸ ︷︷ ︸
Last posterior

dxt−1

Part I of this thesis is completely built around this equation!

As a whole: A new optimal filter.

Observation model: Consensus-based likelihood.

Transition model: IMU + odometry fusion.
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Thesis outline

This talk is organized into four parts:

1. Localization

3. Large-scale SLAM

2. SLAM

4. Navigation
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Part I

Mobile Robot Localization

1 Optimal particle filtering: applications to robot localization

2 A Consensus-based observation likelihood

3 Fusion of odometry and an IMU
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Outline of Part I

1 Optimal particle filtering: applications to robot localization
Existing filters
Proposed solution
Comparison to other algorithms
Experiments
Papers

2 A Consensus-based observation likelihood

3 Fusion of odometry and an IMU



PhD
dissertation

Jose Luis
Blanco Claraco

Optimal
particle
filtering

Existing filters

Proposed
solution

Comparisons

Experiments

Papers

A Consensus-
based
observation
likelihood

Fusion of
odometry and
an IMU

A classification of Bayesian filters

Proposal

distribution
System models Algorithms

–
Linear

Gaussian

–
Non-Linear

Gaussian

Standard
Non-Linear

Non-Gaussian

Optimal
Non-Linear

Gaussian

Optimal
Non-Linear

Non-Gaussian



PhD
dissertation

Jose Luis
Blanco Claraco

Optimal
particle
filtering

Existing filters

Proposed
solution

Comparisons

Experiments

Papers

A Consensus-
based
observation
likelihood

Fusion of
odometry and
an IMU

A classification of Bayesian filters

Proposal

distribution
System models Algorithms

–
Linear

Gaussian
Kalman Filter

–
Non-Linear

Gaussian
EKF, UKF

Standard
Non-Linear

Non-Gaussian

Optimal
Non-Linear

Gaussian

Optimal
Non-Linear

Non-Gaussian



PhD
dissertation

Jose Luis
Blanco Claraco

Optimal
particle
filtering

Existing filters

Proposed
solution

Comparisons

Experiments

Papers

A Consensus-
based
observation
likelihood

Fusion of
odometry and
an IMU

A classification of Bayesian filters

Proposal

distribution
System models Algorithms

–
Linear

Gaussian
Kalman Filter

–
Non-Linear

Gaussian
EKF, UKF

Standard
Non-Linear

Non-Gaussian

SIR, Aux. PF,

FastSLAM

Optimal
Non-Linear

Gaussian

Optimal
Non-Linear

Non-Gaussian



PhD
dissertation

Jose Luis
Blanco Claraco

Optimal
particle
filtering

Existing filters

Proposed
solution

Comparisons

Experiments

Papers

A Consensus-
based
observation
likelihood

Fusion of
odometry and
an IMU

A classification of Bayesian filters

Proposal

distribution
System models Algorithms

–
Linear

Gaussian
Kalman Filter

–
Non-Linear

Gaussian
EKF, UKF

Standard
Non-Linear

Non-Gaussian

SIR, Aux. PF,

FastSLAM

Optimal
Non-Linear

Gaussian

FastSLAM 2.0,

Grisetti et al.

Optimal
Non-Linear

Non-Gaussian



PhD
dissertation

Jose Luis
Blanco Claraco

Optimal
particle
filtering

Existing filters

Proposed
solution

Comparisons

Experiments

Papers

A Consensus-
based
observation
likelihood

Fusion of
odometry and
an IMU

A classification of Bayesian filters

Proposal

distribution
System models Algorithms

–
Linear

Gaussian
Kalman Filter

–
Non-Linear

Gaussian
EKF, UKF

Standard
Non-Linear

Non-Gaussian

SIR, Aux. PF,

FastSLAM

Optimal
Non-Linear

Gaussian

FastSLAM 2.0,

Grisetti et al.

Optimal
Non-Linear

Non-Gaussian

Optimal PF

(In this thesis)



PhD
dissertation

Jose Luis
Blanco Claraco

Optimal
particle
filtering

Existing filters

Proposed
solution

Comparisons

Experiments

Papers

A Consensus-
based
observation
likelihood

Fusion of
odometry and
an IMU

The proposed filter

Characteristics of the proposed method:

A particle filter based on the optimal proposal
[Doucet 2000].

Can deal with non-parameterized observation models,
using rejection sampling to approximate the actual
densities.

Integrated KLD-sampling [Fox 2003] for a dynamic sample
size (Optional).

The weights of all the samples are always equal.
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The proposed filter

The key for an efficient particle filter is using the
optimal proposal distribution [Doucet2000]:

x
[i ]
t ∼ q(xt |x t−1,[i ], z t , ut) = p(xt |x t−1,[i ], z t , ut)
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The proposed filter

The key for an efficient particle filter is using the
optimal proposal distribution [Doucet2000]:

x
[i ]
t ∼ q(xt |x t−1,[i ], z t , ut) = p(xt |x t−1,[i ], z t , ut)

In localization with grid maps, there is no closed-form expression
for this term.
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The proposed filter

The key for an efficient particle filter is using the
optimal proposal distribution [Doucet2000]:

x
[i ]
t ∼ q(xt |x t−1,[i ], z t , ut) = p(xt |x t−1,[i ], z t , ut)

This term can be expanded using the Bayes rule as:

q(xt |x t−1,[i ], z t , ut) =
p(zt |xt , x

t−1,[i ], z t−1, ut)p(xt |x t−1,[i ], z t−1, ut)

p(zt |x t−1,[i ], z t−1, ut)
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The proposed filter

The key for an efficient particle filter is using the
optimal proposal distribution [Doucet2000]:

x
[i ]
t ∼ q(xt |x t−1,[i ], z t , ut) = p(xt |x t−1,[i ], z t , ut)

This term can be expanded using the Bayes rule as:

q(xt |x t−1,[i ], z t , ut) =
p(zt |xt , x

t−1,[i ], z t−1, ut)p(xt |x t−1,[i ], z t−1, ut)

p(zt |x t−1,[i ], z t−1, ut)

The denominator (new weight) does not depend on xt !!
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Comparison to Sequential Importance Resampling
(SIR)

Method: SIR

1 particle → 1 particle (With the standard proposal).
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Comparison to Sequential Importance Resampling
(SIR)

Jose Luis Blanco
University of Málaga

“An Optimal Filtering Algorithm for Non-Parametric 
Observation Models in Robot Localization”

2. The proposed method
Comparison to… basic Sequential Importance Resampling (SIR)

t–1 t

[1]

[2]

[3]

[4]

Observation 
likelihood

1 particle 1 particle                  Prone to particle depletion!

Method: SIR

1 particle → 1 particle (With the standard proposal).
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Comparison to the Auxiliary PF

Method: APF

1 particle → N particles (With the standard proposal).
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2. The proposed method

t–1 t

[1]

[2]

[3]

[4]

Observation 
likelihood

Propagation 

Comparison to… Auxiliary Particle Filter (APF)  [Pitt & Shephard, 1999]Method: APF

1 particle → N particles (With the standard proposal).
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How does our method work?

Jose Luis Blanco
University of Málaga

“An Optimal Filtering Algorithm for Non-Parametric 
Observation Models in Robot Localization”

2. The proposed method
Illustrative example of how our method works:

[1]

t–1 t

[2]

[3]

[4]

Particles at time t-1
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How does our method work?

Each particle propagates in time probabilistically:
this is the reason of the duplication.

Jose Luis Blanco
University of Málaga

“An Optimal Filtering Algorithm for Non-Parametric 
Observation Models in Robot Localization”

2. The proposed method
Illustrative example of how our method works:

t–1 t 

 
this is the reason of the duplication

Group [1]

[1]

[2]

[3]

[4]
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How does our method work?

The observation likelihood states which particles are really
important.

Jose Luis Blanco
University of Málaga

“An Optimal Filtering Algorithm for Non-Parametric 
Observation Models in Robot Localization”

2. The proposed method
Illustrative example of how our method works:
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How does our method work?

We can predict which groups will be more important, before
really generating the new samples!

Jose Luis Blanco
University of Málaga

“An Optimal Filtering Algorithm for Non-Parametric 
Observation Models in Robot Localization”

2. The proposed method
Illustrative example of how our method works:

t–1 t

Group [1]

[1]

[2]

[3]

[4]

Group [2]

Group [3]

Group [4]

Group [1] 55%

Group [2]  0%

Group [3]  45%

Group [4]  0%

Observation 
likelihood
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How does our method work?

Particles are drawn according to the optimal proposal, only
for those groups that really contribute to the posterior.

Jose Luis Blanco
University of Málaga

“An Optimal Filtering Algorithm for Non-Parametric 
Observation Models in Robot Localization”

2. The proposed method
Illustrative example of how our method works:
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Experiment with a real robot
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(optimal sampling localization.avi)
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Papers

ICRA 2008 (Pasadena, USA): An Optimal
Filtering Algorithm for Non-Parametric
Observation Models in Robot Localization.

IJRR: Under review.
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Outline of Part I

1 Optimal particle filtering: applications to robot localization

2 A Consensus-based observation likelihood
Introduction
Our solution
An example
Experiments
Papers

3 Fusion of odometry and an IMU
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Introduction

A central component of Bayesian filtering is the sensor
observation model:

p (x |z)︸ ︷︷ ︸
Posterior

∝ p (x)︸︷︷︸
Prior

p (z |x)︸ ︷︷ ︸
Observation
likelihood

For a laser range scanner, the observations at instant t are:

zt =
{

z i
t

}
i=1..L

Given a pose x and a perfectly known map m:

d i

Very narrow peak

),( mxzp i
Assuming cond. 

independence

( ) ( )| , | ,i

i

p z x m p z x m=∏
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What does this product fusion imply for robot
localization?

An example: a range scan
with 3 measurements:
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Introduction
What does this mean for the robot pose estimation?
Example: range scan with 3 measurements

robot

known map
Unexpected 
obstacle

The three ranges are saying that the robot pose x 
should be closer to the wall

),|(),|(),|(),( 321 mxdpmxdpmxdpmxzp ⋅⋅=

d1

d2

d3

The three ranges agree in the robot pose x

x
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x

x

d3d1 d2
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What does this product fusion imply for robot
localization?

The peak likelihood is not compatible with any of the ranges!!

But in the presence of
unexpected changes...

x
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Introduction
What does this mean for the robot pose estimation?
Example: range scan with 3 measurements

robot

known map
Unexpected 
obstacle

The three ranges are saying that the robot pose x 
should be closer to the wall
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d1
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The three ranges agree in the robot pose x
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Our proposal: The sum fusion rule

Our solution: to consider individual likelihood values as
opinions about the final fused likelihood which is calculated by
methods from Consensus Theory.

x

x x

x
(robot pose)

Inflated

measurement 

uncertainty

Real

measurement

uncertainty

Usual sensor fusion

(Product rule)

Measurements

( )i

in flated z | ,p x m ( )i

in fla ted z | ,
i

p x m∏

(robot pose)

Consensus-based sensor fusion

(Sum rule)

(robot pose)

(robot pose)

z1 z2 z3

z1 z2 z3 z1 z2 z3

z1 z2 z3

( )i
z | ,p x m ( )iz | ,

i

i

w p x m
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Our proposal: The Range Scan Likelihood
Consensus (RSLC)

Our proposal: Linear Opinion Pool (LOP) of individual likelihoods:

p ( zt | xt ,m) ∝
L∑

i=1

p
(

z i
t

∣∣ xt ,m
)︸ ︷︷ ︸

Individual
likelihood values

Each likelihood is computed from the “matching likelihood” for the
M points in the map:

p
(

z i
t

∣∣ xt ,m
)
∝

M∑
j=1

P
(

cij | xt ,m, z
i
t

)
Including the option of the point not corresponding with any map
point (∅):

P
(

ci∅| xt ,m, z
i
t

)
= 1−

M∑
j=1

P
(

cij | xt ,m, z
i
t

)
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Simulations: Static world

In the case of a perfectly known map, the RSLC behaves
similarly to BM or LF.

0 10 20 30 40 50 60 70 80 90 100 

Used scan ranges (%)

0.01

0.02

0.03

0.04

0.05

0.06
Beam model

LF

RSLC

Beam model

LF

RSLC

0 10 20 30 40 50 60 70 80 90 100 

Used scan ranges (%)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

(b) (c)

L
ik

el
ih

o
o
d

as
si

g
n

ed
to

th
e

g
ro

u
n

d
tr

u
th

M
ea

n
 e

rr
o

r 
(m

)

Start

End



PhD
dissertation

Jose Luis
Blanco Claraco

Optimal
particle
filtering

A Consensus-
based
observation
likelihood

Introduction

Our solution

An example

Experiments

Papers

Fusion of
odometry and
an IMU

Simulations: Dynamic world



PhD
dissertation

Jose Luis
Blanco Claraco

Optimal
particle
filtering

A Consensus-
based
observation
likelihood

Introduction

Our solution

An example

Experiments

Papers

Fusion of
odometry and
an IMU

Simulations: Dynamic world

For a dynamic map, the RSLC reduces the error w.r.t. the
BM and the LF.

Moved obstacles

Removed
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ICRA 2007 (Rome, Italy): A Consensus-based
Approach for Estimating the Observation
Likelihood of Accurate Range Sensors.
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1 Optimal particle filtering: applications to robot localization

2 A Consensus-based observation likelihood

3 Fusion of odometry and an IMU
Introduction
Filtering
Implementation
Results
Papers
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Introduction

Another important part of the Bayesian filtering equation is the
transition model:

p(xt |z1:t , u1:t ,m) ∝ p(zt |xt ,m)×∫
p(xt |xt−1, ut)︸ ︷︷ ︸
Transition model

p(xt−1|z1:t−1, u1:t−1,m)dxt−1

What is the new pose xt given the last one xt−1 and the action ut?

In mobile robotics this term is the probabilistic motion model:
robot actions are not deterministic in the real world.
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Turning

radius (R)

x

y

∆x

∆y

∆φ

φ(t)

The most usual approach: use the robot odometry as
robot actions.
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Introduction

Turning

radius (R)

x

y

∆x

∆y

∆φ

φ(t)

Odometry

encoder:

Gyroscope:

∆x

∆y

∆φ

( )d t

dt

φ

Sensed

variables:

The most usual approach: use the robot odometry as
robot actions.

Our contribution here: probabilistic fusion of
proprioceptive sensors.
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Introduction

Turning

radius (R)

x

y

∆x

∆y

∆φ

φ(t)

Odometry

encoder:

Gyroscope:

∆x

∆y

∆φ

( )d t

dt

φ

Sensed

variables:

Each sensor contributes different information: they
complement each other.
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Filtering

Our solution: Apply an Extended Kalman Filter (EKF) to
perform the fusion of odometry and a gyroscope.

The state vector: the robot pose (xk yk φk) + the last
orientation φk−1.

xk =


xk

yk

φk

φk−1
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1) Prediction:

The mean: use the robot kinematic model.

x̂−k = f
(
x̂k−1, uk

)
f
(
x̂k−1, uk

)
=


xk

yk

φk

φk−1



=


xk−1 + ∆xk cosφk−1 −∆yk sinφk−1

yk−1 + ∆xk sinφk−1 + ∆yk cosφk−1

φk−1 + ∆φk

φk−1
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The covariance: independent contributions from xk−1 and
uk .

P−k =
(
∇xk

f ∇uk
f
)( Pk−1 0

0 Cuk

)(
∇xk

f >

∇uk
f >

)
= ∇xk

f Pk−1∇xk
f > +∇uk

f Cuk
∇uk

f >
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2) Update:
Kalman gain Kk computed from innovation Sk :

ỹk = zk − h
(
x̂−k
)

Sk =
(
∇xk

h ∇SA
h ∇nh

) P−k 0 0
0 σ2

SA
0

0 0 σ2
n

 ∇xk
h>

∇SA
h>

∇nh>


Kk = P−k H>k S−1

k

Noise parameters:

σ2
SA

: uncertainty about the actual sensor sensitivity.

σ2
n: gyroscope electrical noise (additive white Gaussian

noise, AWGN).
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2) Update:
Kalman gain Kk computed from innovation Sk :

ỹk = zk − h
(
x̂−k
)

Sk =
(
∇xk

h ∇SA
h ∇nh

) P−k 0 0
0 σ2

SA
0

0 0 σ2
n

 ∇xk
h>

∇SA
h>

∇nh>


Kk = P−k H>k S−1

k

Noise parameters:

σ2
SA

: uncertainty about the actual sensor sensitivity.

σ2
n: gyroscope electrical noise (additive white Gaussian

noise, AWGN).



PhD
dissertation

Jose Luis
Blanco Claraco

Optimal
particle
filtering

A Consensus-
based
observation
likelihood

Fusion of
odometry and
an IMU

Introduction

Filtering

Implementation

Results

Papers

Implementation

Implementation on a real robot

Hardware platform: Custom design based on a 8-bit AVR
microcontroller.

Sensor: Analog Devices gyroscope (ADXRS401).

Real-time operation at 100Hz.

a

b

c
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Results

Odometry + GyroscopeOdometry only

Experiment I:

Smooth path of 4 meters.
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Conclusion

Uncertainty in (x , y , φ) reduced by a factor of ∼ 10.

Odometry + GyroscopeOdometry only

Experiment I:

Smooth path of 4 meters.
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Odometry + GyroscopeOdometry only

Experiment II:

The robot turns around itself.
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Conclusion

Uncertainty in (x , y , φ) reduced by a factor of ∼ 106.

Odometry + GyroscopeOdometry only

Experiment II:

The robot turns around itself.
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Comparison to ground truth:

Experiment I: Forward Experiment II: Spinning 

x y φ x y φ 

Odometry 4.194m 0.849m 34.42º 0.350m 0.114m -49.55º 

Sensor 

fusion 
4.187m 0.934m 25.32º 0.096m 0.233m 2.65º 

Ground 

truth 
4.169m 1.031m 25.80º 0.072m 0.282m 2.50º 
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ISSPA 2007 (Sharjah, United Arab
Emirates): Mobile robot ego-motion
estimation by proprioceptive sensor fusion.
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4 Optimal filtering in RBPF-SLAM
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5 Range-Only SLAM

6 Uncertainty measures for SLAM and exploration
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Differences between localization and SLAM

The optimal PF

A generic optimal filtering algorithm has been introduced
in this thesis.

It has been applied to robot localization.

Would it be applicable to SLAM as well?

→ Yes, with modifications.
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Differences between localization and SLAM

The optimal PF

A generic optimal filtering algorithm has been introduced
in this thesis.

It has been applied to robot localization.

Would it be applicable to SLAM as well?
→ Yes, with modifications.
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RBPF-SLAM: estimating the robot path

x1 x2 x3

a

a

b

a

b

c

d

e

Dimensionality ∝ time: exponential number of particles.

t = 1→ {xa
1}

t = 2→ {xa
1 , x

a
2}, {xa

1 , x
b
2 }

t = 3→ {xa
1 , x

a
2 xa

3}, {xa
1 , x

a
2 , x

b
3 }, {xa

1 , x
a
2 , x

c
3 }, ...
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The problems with RBPF-SLAM

Problems of our optimal filter with a RBPF

It resamples at each step → Quick loss of diversity.

Dynamic number of samples → Quick exponential growth.

The solutions

Selective resampling.

An approximation for KLD-sampling.
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The problems with RBPF-SLAM

Problems of our optimal filter with a RBPF

It resamples at each step → Quick loss of diversity.

Dynamic number of samples → Quick exponential growth.

The solutions

Selective resampling.

An approximation for KLD-sampling.
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Selective resampling

Instead of selecting particles by their “survival probabilities”:

Only run resampling if the ESS if below a threshold.

Weights must be maintained now.
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Approximation to KLD-sampling
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Time step #200
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Optimal Sampling SM-based method
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SM-based PF:

Optimal PF:

(1) (2) (3)
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IJRR: “Optimal Filtering for Non-Parametric Observation
Models: Applications to Localization and SLAM” (Under
review).
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4 Optimal filtering in RBPF-SLAM

5 Range-Only SLAM
Introduction
Our Sum of Gaussians (SOG) approach
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6 Uncertainty measures for SLAM and exploration
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Range-only SLAM

Advantages of RO-SLAM

Data association is usually trivial.

Some technologies work across walls, etc.

One big drawback

Ambiguity...
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This complicates a standard EKF-SLAM approach.
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The proposed solution

To employ a RBPF and keep independent distributions for
each beacon.

Use a Sum of Gaussians (SOG) for each beacon.
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Inverse sensor model implementation

The first time a beacon is observed: create the SOG.

Subsequent observations: update both the SOG
parameters and its weight (each Gaussian mode is an
EKF).
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The symmetry in 3D RO-SLAM

For robot moving in planar scenarios, there is an ambiguity
that will ever remain...
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(ROSLAM symmetry1.avi)



PhD
dissertation

Jose Luis
Blanco Claraco

Optimal
filtering in
RBPF-SLAM

Range-Only
SLAM

Introduction

Our SOG
approach

Results

Papers

Uncertainty
measures for
SLAM and
exploration

-10 -8 -6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Actual position 

of the beacon

Robot poses

The symmetry in 3D RO-SLAM

...if there is a priori knowledge → populate only one half of the
3D space.
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Simulations

The method has been validated with several simulations:

(roslam simul.avi)
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UWB real sensors

Experiments with real UWB sensors have been performed as
well.

(roslam real.avi)
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The presented method:

IROS 2008 (Nice, France) Efficient
Probabilistic Range-Only SLAM.

Very related to this method:

ICRA 2008 (Pasadena, USA) A Pure
Probabilistic Approach to Range-Only
SLAM.

Parallel works (with other authors: A.
Ortiz-de-Galisteo, F.A. Moreno, J. Mart́ınez):

RAS Mobile Robot Localization based on
Ultra-Wide-Band Ranging: A Particle Filter
Approach.

ISSPA 2007 (Sharjah, United Arab
Emirates) Combination of UWB and GPS
for indoor-outdoor vehicle localization.
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4 Optimal filtering in RBPF-SLAM

5 Range-Only SLAM

6 Uncertainty measures for SLAM and exploration
Information in SLAM
EMI and EMMI
EMMI for loop closure detection
EMI for exploration
Papers
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Information in SLAM

The problem:

Measuring the information or uncertainty in a RBPF-based
implementation of SLAM at a given instant of time.

Why measuring the information?

In active exploration, to decide the next robot movement.

In active loop-closing behavior: to detect the end of a loop
closure.



PhD
dissertation

Jose Luis
Blanco Claraco

Optimal
filtering in
RBPF-SLAM

Range-Only
SLAM

Uncertainty
measures for
SLAM and
exploration

Information in
SLAM

EMI and EMMI

EMMI for loop
closure detection

EMI for
exploration

Papers

Information-guided exploration

Why is it an advantage to be prone to loop closures?

(a) (b)

(c) (d)

Uncertainty in 

the robot pose

Start



PhD
dissertation

Jose Luis
Blanco Claraco

Optimal
filtering in
RBPF-SLAM

Range-Only
SLAM

Uncertainty
measures for
SLAM and
exploration

Information in
SLAM

EMI and EMMI

EMMI for loop
closure detection

EMI for
exploration

Papers

Information-guided exploration

Previously employed uncertainty measures:

Effective Sample Size (ESS).

Area covered by particles.

Entropy of the robot path.

Joint entropy of the path + the map (the most grounded
method) [Stachniss et al. 2005].

Instead we propose:

To firstly build an auxiliary map, the expected map (EM).

Then, measure its Information (EMI) or Mean Information
(EMMI).

It is shown why our alternative behaves better that the others.
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The expected map (EM)

The EM is defined as the average of the map m over all
possible paths x t . In particular, for RBPF-SLAM:

p(EM|z t , ut)
.

= Ex t

[
p(m|x t , z t , ut)

]
=

∫
· · ·
∫ ∞
−∞

p(m|x t , z t , ut)p(x t |z t , ut)dx t

≈
M∑
i=1

ω
[i ]
k p(mxy |x [i ],t , z t , ut)
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The expected map (EM)

For grid maps, the EM has the property of revealing
discrepancies between individual maps:

( ) 9.0][
=

i
xymp ( ) 1.0][

=
j
xymp

][i
m

][ j
m

Expected map

( ) 5.0=xyEMp

(a) (b)

(c)
(Low entropy) (Low entropy)

Contradictory hypotheses:

High entropy
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The expected map (EM)

Example with two particles, each holding one grid map cell:
p1 and p2.

It is important to remark it one more time: the way the EM
detects inconsistencies is really new in comparison to the
joint entropy.

p1

p2

i

ii pHw )( Paths-map

joint entropy

(a) (b)

p1

p2

i

ii pwH Entropy values 

in EMMI
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The expected map (EM)

If both cells are unobserved, p1 = p2 = 0.5, our method and
the joint entropy agree.

It is important to remark it one more time: the way the EM
detects inconsistencies is really new in comparison to the
joint entropy.

p1

p2

i

ii pHw )( Paths-map

joint entropy

(a) (b)

p1

p2

i

ii pwH Entropy values 

in EMMI
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The expected map (EM)

If both cells are observed and equal, p1 = p2 = 1 or p1 =
p2 = 0, our method and the joint entropy agree (low entropy
→ desirable).

It is important to remark it one more time: the way the EM
detects inconsistencies is really new in comparison to the
joint entropy.

p1

p2

i

ii pHw )( Paths-map

joint entropy

(a) (b)

p1

p2

i

ii pwH Entropy values 

in EMMI
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The expected map (EM)

If both cells are observed and inconsistent, e.g. p1 = 0,
p2 = 1, our method gives a high entropy, while the joint
entropy is low.

It is important to remark it one more time: the way the EM
detects inconsistencies is really new in comparison to the
joint entropy.

p1

p2

i

ii pHw )( Paths-map

joint entropy

(a) (b)

p1

p2

i

ii pwH Entropy values 

in EMMI
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Information vs. Entropy

Apart from defining the EM, it is also proposed to replace
“entropy” by “information”:

Entropy: H(mxy ) = −p(mxy ) log p(mxy )− p̄(mxy ) log p̄(mxy )

Map information: I (mxy ) = 1− H(mxy )

Cell information: I (m) =
∑
∀x,y

I (mxy ) (bits)

Information and entropy are almost synonymous, but I (·) is defined
for convenience:

Non-observed cells (p = 0.5) do not count.

Independence of the size and resolution of grid maps.
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The EMI and EMMI

Expected Map Information (EMI)

The overall information of the entire EM of a RBPF.
Useful for: Exploration.

Expected Map Mean Information (EMMI)

The mean information per grid cell of the entire EM of a RBPF.
Useful for: Detection of loop closures.
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EMMI for loop closure detection
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Abstract

Rao–Blackwellized particle filters �RBPFs) are an implementation of

sequential Bayesian filtering that has been successfully applied to

mobile robot simultaneous localization and mapping �SLAM) and ex-

ploration. Measuring the uncertainty of the distribution estimated by

a RBPF is required for tasks such as information gain-guided explo-

ration or detecting loop closures in nested loop environments. In this

paper we propose a new measure that takes the uncertainty in both

the robot path and the map into account. Our approach relies on the

entropy of the expected map �EM) of the RBPF, a new variable built

by integrating the map hypotheses from all of the particles. Unlike

previous works that use the joint entropy of the RBPF for active ex-

ploration, our proposal is better suited to detect opportunities to close

loops, a key aspect to reduce the robot path uncertainty and conse-

quently to improve the quality of the maps being built. We provide

a theoretical discussion and experimental results with real data that

support our claims.

KEY WORDS—localization, mapping

1. Introduction

The automated mapping of unknown environments is one of

the fundamental problems that need to be solved to achieve

truly autonomous mobile robots. The difficulty of this task fol-

lows from the fact that a precise map can only be obtained

from a well-localized robot, but in turn the quality of the ro-

bot pose estimation depends on the map accuracy: this is the

simultaneous localization and mapping (SLAM) problem. In

The International Journal of Robotics Research
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recent years, methods based on estimation theory have dom-

inated the research in this field. In these approaches the ro-

bot pose and the map are represented in terms of probability

densities which are tracked over time. Tracking is usually per-

formed through a Bayesian filtering of either Gaussian (Dis-
sanayake et al. 2001) or Gaussian mixture (Porta and Kröse

2006) distributions with Kalman filters, or sequential Monte

Carlo (SMC) sampling schemes with particle filters (Doucet

et al. 2000b). More concretely, the ability of SMC methods to

solve the problems of global localization (Dellaert et al. 1999)

and SLAM (Doucet et al. 2000a) efficiently has been demon-

strated, because they can deal with non-linear models and any

shape, multi-modal distributions. From this family of meth-

ods, Rao–Blackwellized particle filters (RBPFs) are widely

employed to estimate both the robot path and the map simul-

taneously (Grisetti et al. 2007b� Montemerlo et al. 2002). In

this scheme, probability densities are maintained by a set of

weighted particles, which are hypotheses for the robot path.

The Rao–Blackwellization consists of deriving maps analyti-

cally from these paths, which reduces the dimensional com-

plexity of the SLAM problem (Doucet et al. 2000a). The most

likely path (and, therefore, map) is usually considered to be

that associated with the particle with the highest weight, as the

example in Figure 1(a) shows.

In general, SLAM methods passively process incoming

sensor data and update the map and path estimates iteratively.

However, the advantages of allowing the robot to actively con-

trol its movements while building a map, that is, active explo-

ration, are well known and have been reported in the literature

(Stachniss et al. 2004� Sim and Roy 2005). Exploration meth-

ods aim at controlling a robot through an unknown scenario in

such a way that the whole environment is mapped while min-

imizing some cost function, such as the total distance traveled

(Yamauchi 1998� Burgard et al. 2000) or the uncertainty in lo-

calization (Stachniss et al. 2005b). To illustrate the potential

impact of movement selection in the accuracy of the resulting

map, consider the example in Figure 2(a) where a robot ex-
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Overview

A fundamental choice in SLAM is the kind of map
representation:

Metric maps: Detailed, quantitative information
(landmarks, occupancy grids).
Topological maps: Graphs. Sparse information.
Hybrid representations: Graphs where nodes are local
metric maps.

Hybrid maps

Promising solution, adopted in many previous works.

Kuipers, Byun, “A Robot Exploration and Mapping
Strategy...”, 2001

Estrada, Neira, Tardós, “Hierarchical SLAM:...”, 2005.

Typically, the problem is addressed from the point of view of a
hierarchical metric map.
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representation:

Metric maps: Detailed, quantitative information
(landmarks, occupancy grids).
Topological maps: Graphs. Sparse information.
Hybrid representations: Graphs where nodes are local
metric maps.

Hybrid maps

Promising solution, adopted in many previous works.

Kuipers, Byun, “A Robot Exploration and Mapping
Strategy...”, 2001

Estrada, Neira, Tardós, “Hierarchical SLAM:...”, 2005.

Typically, the problem is addressed from the point of view of a
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Overview

We introduce a new approach to SLAM, ideally suitable for
large-scale environments and long-term, robust operation.

Contributions:

Introduction of the concept of hybrid metric-topological
(HMT) path.

Consistent formulation of HMT-SLAM as a unified
Bayesian estimation problem.

The estimation of the robot HMT path is an advance
comparable to RBPF or FastSLAM in metric SLAM.
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Overview

Some relevant advantages of HMT-SLAM

Better accuracy in the estimation of loop closures.

Efficient representation of multiple hypotheses of the
topological structure of the environment.

A potential application not addressed by previous works:
global localization within a partially mapped
environment.
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Basics of HMT-SLAM

HMT path

We introduce the concept of hybrid path of a robot.
Each pose is composed of a metric xt and a topological γt

component:
st = {xt , γt}

2

1∆

1
MMetric sub-map 2

MMetric sub-map 

Transformation

2      (Local metric coordinates)

2  (Topological area)           
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x
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Derivation

p(st ,m|ut , ot) = p(st |ut , ot)p(m|st , ut , ot)

Definition of conditional probability:
one part for the HMT path, one for the map.
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?
p(m|st , ut , ot) = p

({
kM
}
,
{

ab∆
}∣∣ st , ut , ot

)
p(st ,m|ut , ot) = p(st |ut , ot)p(m|st , ut , ot)
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?

= p
({

kM
}∣∣ st , ut , ot

)︸ ︷︷ ︸
Content of the

metric sub - maps

p
({

ab∆
}∣∣ {kM

}
, st , ut , ot

)︸ ︷︷ ︸
Arcs in the topological part
of HMT - maps

p(m|st , ut , ot) = p
({

kM
}
,
{

ab∆
}∣∣ st , ut , ot

)
p(st ,m|ut , ot) = p(st |ut , ot)p(m|st , ut , ot)
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?

Conditional independence
of sub-maps

p
({

kM
}∣∣ st , ut , ot

)
=

∏
k

p
(

kM
∣∣ kst , ut , ot

)
= p

({
kM
}∣∣ st , ut , ot

)
p
({

ab∆
}∣∣ {kM

}
, st , ut , ot

)
?

p(m|st , ut , ot) = p
({

kM
}
,
{

ab∆
}∣∣ st , ut , ot

)
p(st ,m|ut , ot) = p(st |ut , ot)p(m|st , ut , ot)
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)

= p
({

kM
}∣∣ st , ut , ot

)
p
({

ab∆
}∣∣ {kM

}
, st , ut , ot

)
?

p(m|st , ut , ot) = p
({

kM
}
,
{

ab∆
}∣∣ st , ut , ot

)
p(st ,m|ut , ot) = p(st |ut , ot)p(m|st , ut , ot)



PhD
dissertation

Jose Luis
Blanco Claraco

HMT-SLAM

Overview

Basics of
HMT-SLAM

Advantages

Experiments

Papers

Clustering
local maps

Matching grid
maps

Derivation

?

These have closed-form solutions for
grid maps and landmark maps.

p
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}
,
{
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?

?

Individual estimations obtained each time
a topological loop closure occurs.

p
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?
p(st |ut , ot) ∝ p(ot |st , ut , ot−1)p(st |ut , ot−1)

p(st ,m|ut , ot) = p(st |ut , ot)p(m|st , ut , ot)
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?
p(st |ut , ot) ∝ p(ot |st , ut , ot−1)p(st |ut , ot−1)

This part can be estimated using a particle filter:

{
st,[i ]

}
∼ p(st |st−1,[i ], ut−1, ot−1)

p(st ,m|ut , ot) = p(st |ut , ot)p(m|st , ut , ot)
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Derivation

?
p(st |ut , ot) ∝ p(ot |st , ut , ot−1)p(st |ut , ot−1)

This part can be estimated using a particle filter:

{
st,[i ]

}
∼ p(st |st−1,[i ], ut−1, ot−1)

This process includes:

Detecting when the robot enters into new areas.

Generating topological loop closure hypotheses.

p(st ,m|ut , ot) = p(st |ut , ot)p(m|st , ut , ot)
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Advantages of HMT-SLAM

More accurate loop closures.

Capable of handling localization in partially known
environments.
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Advantages of HMT-SLAM

More accurate loop closures.

In HMT-SLAM, loop closure becomes a partition in the robot
topological path:

0M 1M 2M 3M 4M

Sequence of traversed areas

Some topological hypotheses

{ }0,1, 2,3, 4tγ = { }Partition: 0,1, 2,3, 4

{ }0,1, 2,3,0tγ = { }{ }Partition: 0, 4 ,1, 2,3

{ }0,1, 2,3,1tγ = { }{ }Partition: 0, 1, 4 , 2,3

{ }( ), , , ,ab k t t t tp x u oγΔ M
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Localization with partially unknown maps

An example:

0M 1M

2M

3M

4M

5M
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Localization with partially unknown maps

An example:

0M 1M

2M

3M

4M

5M 6M
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Localization with partially unknown maps

An example:
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Advantages of HMT-SLAM

Localization with partially unknown maps

An example:

0M 1M
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Localization with partially unknown maps

An example:
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Dataset: Málaga

2Km robot path. About 4700 laser scans.

Covered area: 30 000 m2

Several loop closures.

Acquisition time: 21min
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Dataset: Málaga

2Km robot path. About 4700 laser scans.

Covered area: 30 000 m2

Several loop closures.

Acquisition time: 21min
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Dataset: Edmonton

1Km robot path. About 3000 laser scans.

Covered area: 7 000 m2

One loop closure. Acquisition time: 12min

Gathered at the “Edmonton Convention Centre” by Nick
Roy.
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(HMT-SLAM malaga.avi)
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TRO: Towards a Unified Bayesian Approach to
Hybrid Metric-Topological SLAM.

ICRA 2007 (Rome, Italy): A New Approach
for Large-Scale Localization and Mapping:
Hybrid Metric-Topological SLAM.
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Introduction

Sub maps

To build hybrid maps, we need to cluster areas of the space
into discrete “entities” → nodes in the HMT maps.
In the literature the common approach is to group landmarks
into metric sub-maps.

Our proposal

Instead of clustering the map elements, clustering the robot
observations.
This has advantages since segments of the robot path become
conditional independent while submaps still overlap.
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Graphs of observations

We propose to build an auxiliary graph of observations:

Arbitrary global
reference system
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Graphs of observations

We propose to build an auxiliary graph of observations:

Arbritary global
reference system

x

y
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O2

O3

Local frames
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Graphs of observations

The Sensed Space Overlap (SSO) is a function that assigns a
similarity measurement to any pair of observations:

SSO : V × V → [0, 1]
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Partitioning graphs

Normalized cut (Ncut)

The N-cut was first introduced by Shi & Malik in the context of
image segmentation.

This partitioning method finds bisections of a graph being a
trade-off between their sizes and their mutual connections.

Ncut(A, B) =
cut(A, B)

assoc(A, V )
+

cut(A, B)

assoc(B, V )

A B

cut(A,B)

assoc(A,A)

assoc(B,B)
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Experiments

This technique has been already shown in action within
HMT-SLAM.
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Another experiment: recursive bisection of a global indoor map:
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Cluster 1 out of 9
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Finally, if we rearrange the weight matrix according to the
clustering, it is closer to being block diagonal:
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Introduction

Why to match grid maps?

In “standard” global mapping → metric loop closure.

In multi-robot mapping → to join maps.

In HMT-SLAM → to detect topological loop closures.
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Introduction

Pros

Rigid transformations only (no scale changes).

Grids carry very useful information.

Cons

Ambiguity: large portions of the grids look the same.

Data-association is not applicable to raw grids.
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Introduction

The problem of the ambiguity:
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Introduction

Previous methods

Correlation (costly).
Histograms (requires a robot with a perfect compass).

Our proposal

To employ Computer Vision techniques previously applied to
matching images.
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Map 1 Map 2

Grid map Point map Grid map Point map

Preprocessing Preprocessing

Detection

Descriptor extraction

Detection

Descriptor extraction

Determination of 

potential matches

Multi-hypothesis

RANSAC

Simplification of 

hypotheses (I) 

...

...
ICP-based refinement

Simplification of 

hypotheses  (II)

...

( )p q : Sum of Gaussians

We employ hybrid maps:

grid + points

The points are just employed

for a final refinement of the

matching.
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Overview

First steps: Gaussian + median filter, then detect points.

We have evaluated four detectors:

Harris.
Kanade-Lucas-Tomasi (KLT).
SIFT.
SURF.
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Harris

Wg=3

Wm=3

SIFT

Wg=9

Wm=11
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Each feature is then assigned a descriptor.

We have evaluated four detectors:

Log-polar patch.
Linear-polar patch.
Spin images (polar histogram of intensities).
SIFT.
SURF.
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Each feature is then assigned a descriptor.

We have evaluated four detectors:

Log-polar patch.
Linear-polar patch.
Spin images (polar histogram of intensities).
SIFT.
SURF.
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Linear-polar patch:

y (m)

Map image Polar space descriptor (PSD)
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Then potential pairings are determined by thresholding the
inter-feature distances with two thresholds Tδ and Td :

d
T

ij
d

ij
δ

T
δ

1

0

j

0
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How to pick a combination of detector+descriptor+their parameters?
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Establishing hypotheses

A modified version of RANSAC is used.

Instead of 1 hypothesis → a multitude of them.

All the tests are probabilistic (chi-square tests).

Consequences

The output of the RANSAC step is a SOG.

Compatible with HMT-SLAM: multiple hypotheses for the
arcs between areas a

b∆.



PhD
dissertation

Jose Luis
Blanco Claraco

HMT-SLAM

Clustering
local maps

Matching grid
maps

Introduction

Overview

Descriptors

Results

Papers

Descriptors

Establishing hypotheses

A modified version of RANSAC is used.

Instead of 1 hypothesis → a multitude of them.

All the tests are probabilistic (chi-square tests).

Consequences

The output of the RANSAC step is a SOG.

Compatible with HMT-SLAM: multiple hypotheses for the
arcs between areas a

b∆.
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Results: Multiple hypotheses

An example of multiple hypotheses with real sub-maps:



PhD
dissertation

Jose Luis
Blanco Claraco

HMT-SLAM

Clustering
local maps

Matching grid
maps

Introduction

Overview

Descriptors

Results

Papers

Results: Multiple hypotheses

An example of multiple hypotheses with real sub-maps:
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Results: Benchmark

The method has been intensively tested against a testbed of 59
sub-maps obtained from 4 different public datasets:

The datasets:

Intel offices dataset.

Freiburg campus.

MIT dataset.

Málaga campus.

The 3 first ones available at: http://radish.sf.net/

The last one available at: http://mrpt.sf.net/
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Results: Benchmark
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Results: Benchmark

Results of the benchmark

Result Disregarding ambiguity

True positives 97.56% (40/41) ·
False positives 3.47% (58/1670) 1.38% (23/1670)

True negatives 96.53% (1612/1670) 98.62% (1647/1670)

False negatives 2.44% (1/41) ·
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TRO: A Robust, Multi-Hypothesis
Approach to Matching Occupancy Grid
Maps (Under review).
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Introduction

Robot navigation

Problem: Take the robot from point
A to point B.

Paradigms

Planned

Reactive

Mixed



PhD
dissertation

Jose Luis
Blanco Claraco

Generalized
space transfor-
mations for
navigation

Introduction

About PTGs

Theoretical
results

Papers

Reactive
navigation
with PTGs

-3

-2

-1

0

1

2

3

-3
-2

-1
0

1
2

3

-3

-2

-1

0

1

2

3

x (m)

y (m)

φ (rad)

Trajectory

origin

Sampling 
surface in
C-Space

Trajectories generated 

for two α values

Introduction

Why is this complicated?

Two main independent sources of problems:

Kinematic restrictions: Most robots cannot move in any
arbitrary direction!

Robot shape: Colission must be avoided with any part of
the robot, which can turn → C-Space

(a) (b)

y

x

φ

Obstacle

Initial pose

End pose

x
x y

φ

Initial pose C-Obstacle

Initial pose

End pose
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Introduction

Why is this complicated?

Two main independent sources of problems:

Kinematic restrictions: Most robots cannot move in any
arbitrary direction!

Robot shape: Colission must be avoided with any part of
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Introduction

We will focus on reactive methods:

Sensor 

readings Motor

actuation

Reactive navigation

Mobile robot

Target 

location

Holonomic 

robots

Non-Holonomic 

robots

Classical

free-space

sampling

path models

Other

possibilities?

How does a robot decide in which direction to move?

Sampling the obstacles around with some path model
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Introduction

“Sampling the obstacles” has been done in all previous works
(never put explicitly):

For non-holonomic robots: only circular arcs have been
employed.
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Introduction

Why considering other models apart from arcs?

Reactive navigation decides just from the free-space it
“samples”:
We must provide it a motivation to start moving into any
given direction.

(a) (b)
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Introduction

Obstacle avoidance algorithms are either:

For non-holonomic robots: They assume circular arcs.

For holonomic robots: Well known methods (VFF,
Nearness Diagram), but not applicable to many real
robots.

The solution introduced by [Minguez & Montano, 2006]: to
abstract the robot shape and kinematics with a space
transformation.
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Introduction

Our contribution:

A generalization of this abstraction by means of
Parameterized Trajectory Generators (PTGs)

Sensor
readings

Best motor 
actuation

Holonomic
obstacle avoidance

Target
location

Mobile robot

PTG #1
…

… …

…PTG #N

N × Kinematics Abstractions

Target and 
obstacles 

transformation

Inverse
transformation …

Motor 
actuations

Selector
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What are PTGs?

Definition

A PTG maps a 2-d space, the Trajectory Parameter (TP)
space, into a manifold of the robot C-Space.
An inverse PTG does exactly the opposite operation.

The key idea is reducing the dimensionality to 2-d, then apply
“standard” holonomic methods.
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What are PTGs?

(a) (b)

y

x

φ

Obstacle

Initial pose

End pose

x
x y

φ

Initial pose C-Obstacle

Initial pose

End pose

Planning in C-Space is complicated: robot trajectories are in 3-d !

Visualize a family of trajectories and a surface will emerge...
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What are PTGs?

It’s the PTG sampling
surface, and it’s parameters
are α and d .

(This surface is a manifold

of C-Space)
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What are PTGs?

Relation of PTGs with the TP-Space:
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What are PTGs?

The name “sampling surfaces” comes from this:
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Given all these definitions, we have proven that many PTGs are
suitable for reactive navigation (not trivial!):
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Definition of a valid PTG

It must fulfil:

C1. It generates consistent reactive trajectories (the
memoryless nature of the movement decision process).
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Definition of a valid PTG

It must fulfil:

C1. It generates consistent reactive trajectories (the
memoryless nature of the movement decision process).
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Definition of a valid PTG

It must fulfil:

C1. It generates consistent reactive trajectories (the
memoryless nature of the movement decision process).

C2. It is WS-bijective for each WS location (x , y).
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Definition of a valid PTG

It must fulfil:

C1. It generates consistent reactive trajectories (the
memoryless nature of the movement decision process).

C2. It is WS-bijective for each WS location (x , y).

C3. It is continuous.
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Definition of a valid PTG

It must fulfil:

C1. It generates consistent reactive trajectories (the
memoryless nature of the movement decision process).

C2. It is WS-bijective for each WS location (x , y).

C3. It is continuous.

C2 + C3 → the PTG will not modify the topology of the real
workspace around the robot.
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Theorem

A sufficient, but not necessary condition for a PTG to be valid is its
velocity vector u being of the form:

u(α, t) =

[
vm · fv (aα + bφ(α, t))
ωm · (aα + bφ(α, t))

]
where vm and ωm settle the desired maximum linear and angular
velocities in absolute value, respectively, fv (α, t) is any Lipschitz
continuous function which evaluates to non-zero over the whole
domain, and a, b are arbitrary constants with the restrictions
0 < |a/b| ≤ 1 and b < 0.

Corollary

Furthermore, a velocity vector of this form becomes fully defined by
just specifying its value for t = 0.
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The proofs imply the derivation of 4 auxiliary lemmas. All the
details can be found in the thesis.

To remark it again: this is the first time it is proven that
reactive navigation is possible with other models apart from
circular arcs.
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Book chapter: Foundations of Parameterized
Trajectories-based Space Transformations for
Obstacle Avoidance. (Mobile Robots Motion
Planning – New challenges), 2008.
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Applications of PTGs

In the last slides we have discussed PTGs as a theoretical tool.

Applications of PTGs

To reactive navigation.

To planned or mixed schemes.
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Applications of PTGs

In the last slides we have discussed PTGs as a theoretical tool.

Applications of PTGs

To reactive navigation.

To planned or mixed schemes.
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A PTG-based reactive navigator

A system has been proposed to integrate multiple PTGs into a
reactive navigator:

Mobile robot

Localization 
system

TP-Space based reactive navigation system

Target global

location

Sensor
readings

TP-Obstacles

Builder
(PTG-1)

Target translation
(PTG-1)

Target relative

location

Robot estimated 

global pose

PTG
× N

Holonomic
obstacle

avoidance

Selection of 

the best
transformation

Direction

translation
PTG: V(α,0)

Virtual WS navigation 

scenariosN

N

N

Unconstrained

movement

command

Speed
translation

×

Velocity
command

Scale

factor

Output velocity

command

+
–

The holonomic navigator running on the TP-Spaces is the Nearness
Diagram [Minguez & Montano 2004].



PhD
dissertation

Jose Luis
Blanco Claraco

Generalized
space transfor-
mations for
navigation

Reactive
navigation
with PTGs

A reactive
navigator

Experiments

Papers

Experiment #1

0 100 200 300 400 500 600 700 800 900 1000

-0.2

0

0.2

v
 (

m
/s

)

0 100 200 300 400 500 600 700 800 900 1000
-20

0

20

w
 (

d
eg

/s
)

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

P
T

G
 i

n
d
ex

#1: CS
#0: C|C,S

(a)

(b)

(c)

(d)

Starting pose

Target



PhD
dissertation

Jose Luis
Blanco Claraco

Generalized
space transfor-
mations for
navigation

Reactive
navigation
with PTGs

A reactive
navigator

Experiments

Papers

Experiment #2

-10 -8 -6 -4 -2 0 2

-4

-2

0

2

4

6

0 50 100 150 200 250 300 350 400
0

1

2

3

P
T

G
 i

n
d

ex
0 50 100 150 200 250 300 350 400

-0.5

0

0.5

v
 (

m
/s

)

0 50 100 150 200 250 300 350 400
-20

0

20

40

w
 (

d
eg

/s
)

(a)

(b)

(c) (d)

(e)

Starting pose

Target point

Step #150

Step #0

Step #290

#0: C 
+

#1: C 
-

#2: α-A

#3: α-A

(f) (g)

Step #80 Step #150

Step #200 Step #290 Step #398

Step #80

Step #200

(h) (i) (j)



PhD
dissertation

Jose Luis
Blanco Claraco

Generalized
space transfor-
mations for
navigation

Reactive
navigation
with PTGs

A reactive
navigator

Experiments

Papers

Experiment #2

(sena-nav.avi)



PhD
dissertation

Jose Luis
Blanco Claraco

Generalized
space transfor-
mations for
navigation

Reactive
navigation
with PTGs

A reactive
navigator

Experiments

Papers

Experiment #3

(sancho-nav.avi)



PhD
dissertation

Jose Luis
Blanco Claraco

Generalized
space transfor-
mations for
navigation

Reactive
navigation
with PTGs

A reactive
navigator

Experiments

Papers

Experiment #3

0 100 200 300 400 500
C1

+

C–

CS

Time step

C2
+

α-A

Selected PTGs over time

Using 5 PTGs Using circular arcs only

Time step #241

TP-Obstacles for CS PTG 

Time step #591

Target Target

Start Start

Time to 

target

Path

length

0 20 40 60 80 100 120 140 160 180

0 5 10 15 20 25

Using 5 PTGs

Using 5 PTGs

Using arcs

Using arcs

(secs.)

(meters)

Sensed obstacles TP-Obstacles for α-A PTGSensed obstacles 

Time step #78 Time step #241 Time step #445 Time step #591

#241
#445

#591

#78

Selection Selection

Selection

Selection
Target



PhD
dissertation

Jose Luis
Blanco Claraco

Generalized
space transfor-
mations for
navigation

Reactive
navigation
with PTGs

A reactive
navigator

Experiments

Papers

Experiment #4

C1
+

α-A C2
+ C-

0

0.1

0.2

0.3

0.4

Target ‘A’

Target ‘B’

(a) (b)

Target ‘A’

Target ‘B’

Occupancy grid map of the scenario

(c) (d)

(f)(e)

Top laser scanner

Rear laser scanner

Front laser scanner

0 2000 4000 6000 8000 10000 12000 14000 16000

P
T

G
C1

+

α-A

C2
+

C-



PhD
dissertation

Jose Luis
Blanco Claraco

Generalized
space transfor-
mations for
navigation

Reactive
navigation
with PTGs

A reactive
navigator

Experiments

Papers

Experiment #4

(sena-nav-out.avi)



PhD
dissertation

Jose Luis
Blanco Claraco

Generalized
space transfor-
mations for
navigation

Reactive
navigation
with PTGs

A reactive
navigator

Experiments

Papers

Papers

AR: Extending Obstacle Avoidance
Methods through Multiple
Parameter-Space Transformations, 2008.

Auton Robot (2008) 24: 29–48
DOI 10.1007/s10514-007-9062-7

Extending obstacle avoidance methods through multiple
parameter-space transformations

Jose-Luis Blanco · Javier González ·
Juan-Antonio Fernández-Madrigal

Received: 23 June 2006 / Accepted: 15 October 2007 / Published online: 17 November 2007
© Springer Science+Business Media, LLC 2007

IROS 2006 (Beijing, China): The
Trajectory Parameter Space (TP-Space): A
New Space Representation for
Non-Holonomic Mobile Robot Reactive
Navigation.



PhD
dissertation

Jose Luis
Blanco Claraco

Conclusions

Some
statistics

The end

Part V

Conclusions



PhD
dissertation

Jose Luis
Blanco Claraco

Conclusions

Some
statistics

The end

Thesis conclusions

This thesis comprises several important contributions to the
fields of mobile robotics and estimation theory:

First unified Bayesian approach to hybrid SLAM.

Optimal particle filtering → localization & SLAM.

Introduction of PTGs → reactive navigation.

Efficient solution to RO-SLAM with SOG.

New information metrics for RBPF-SLAM & exploration.

Range scan likelihood fusion via Consensus theory.

New probabilistic, multi-hypotheses grid-to-grid matching.

Grounded method for partitioning sub-maps.

Fusion odometry + IMU.
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Paper references

Some citation statistics according to Google Scholar
(2009/NOV/1):

TRO 2008: HMT-SLAM → 14 citations.

ICRA 2006: Observation clustering → 10 citations.

ICRA 2007: HMT-SLAM → 4 citations.

The rest of papers: average of ∼ 2 citations.

(Not counting self-references)
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MRPT statistics

The MRPT is an open-source initiative to release the works in
this thesis, among others, as a coherent C++ programming
framework.

It’s been integrated into major GNU/Linux repositories
(Debian, Ubuntu, Fedora).
Integrated into our group’s BABEL development
framework.
>1300 source files, > 610,000 lines of code.
∼20 downloads/day during 2009.
Web traffic:
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