
A ROS REACTIVE NAVIGATION SYSTEM FOR GROUND
VEHICLES BASED ON TP-SPACE TRANSFORMATIONS

E. Rodŕıguez, J.L. Blanco, J.L. Torres, J.C. Moreno, A. Giménez, J.L. Guzmán
Universidad de Almeŕıa

Ctra. Sacramento 04120 Almeŕıa
enrique.romir@gmail.com, {jlblanco,jtm224,jcmoreno,agimfer,joguzman}@ual.es

Resumen

This work1 focuses on the analysis and bench-
marking of the mrpt navigation ROS package.
The package includes a reactive navigation method
based on Trajectory Parameter Space (TP-Space)
transformations, together with other nodes such as
an alternative particle-filter localization system. A
description of its structure and methods in which it
is based will be performed. To validate the suitabil-
ity of the package, tests are performed with a mo-
bile robot with strong kinematic constraints (Ack-
erman steering) and the result will be compared
with the navigation ROS package, a standard for
robots autonomous navigation.

Palabras clave: Reactive navigation, planned
navigation, obstacle avoidance, MRPT, ROS.

1 INTRODUCTION

Autonomous navigation is one of the most im-
portant objectives in mobile robotics. The most
common package for navigation in the ROS en-
vironment is the navigation package2 , which
includes a localization system based on Adapta-
tive Monte Carlo Localization (AMCL) approach
and move base for navigation itself. This package
includes motion planning navigation algorithms
with the drawback that, in general, are designed
for circular shaped robots (e.g. obstacles are
grown as if robots were circular) with differential
configuration, so navigation becomes difficult for
robots with other shapes or with different config-
urations (e.g. Ackerman), because in those cases
recovery behaviors cannot be applied adequately
or the robot cannot turn over itself.

As an alternative, in this work we will focus in
describing and testing an alternative ROS naviga-
tion stack based on TP-Space transformations [1]
and the MRPT library [2]. Mobile Robot Pro-
gramming Toolkit (MRPT) is a cross-platform
and open-source C++ library employed in com-

1To appear in: XXXVII Jornadas de Automática,
2016.

2
http://wiki.ros.org/navigation

mon robotics research areas like Simultaneous Lo-
calization and Mapping (SLAM), computer vision,
and motion planning (obstacle avoidance) [3]. The
mrpt navigation package 3 offers a realiable and
effective alternative to address the problem of mo-
bile robots navigation with kinematic constraints
and any-shape robots.

The problem of mobile robots navigation has been
arduously studied by different robotics communi-
ties and has two branches. On the one hand, mo-
tion planning navigation may be considered, in
which a path is traced from the initial position to
a goal given in a well known environment. Due to
the computational cost of this approach, real time
calculations are not ensured. On the other hand,
we can deal with reactive or obstacle avoidance
navigation, in which the path to goal is contin-
uously changed in a partially-known or dynamic
environment.

As a combination of both approaches, hybrid nav-
igation arises from the calcualtion of the trajecto-
ries that are deformed for collisions avoidance in
dynamic environments. Existing implementations
in both branches have practical models that typi-
cally ignore the kinematic constraints of the robot,
as its shape or configuration. The most used are
based on treating the robot as a free-flight point
that can perform straight or circular movements
in any direction.

Therefore, as an improvement of these simplifica-
tions, space transformations methods [1, 4] were
proposed as an alternative for reactive navigation
to take into account the shape of the robot and
its kinematics constraints in planar environment.
This is achieved by finding the right movements to
reach the goal avoiding collisions in a transformed
space that embeds the robot shape. Reactive nav-
igation is based on finding the free space around
the robot for trace a motion path. This search is
performed with some path models that measure
the distance to obstacles. All existent reactive
methods use path models that are an extension
of the robot short-term motor actuation, where
straight paths are employed for holonomic robots

3
http://wiki.ros.org/mrpt_navigation

http://wiki.ros.org/navigation
http://wiki.ros.org/mrpt_navigation

and circular arcs are considered for non holonomic
ones.

The proposals in [1, 4] go beyond these mod-
els and implement more types of path models to
help the robot finding more efficient and shorter
paths, keeping in mind that it can not be an ar-
bitrary path, it must meet the robot kinematic
constraints.

The system allows decoupling kinematic con-
straints and obstacle avoidance using path models
to transform the motion path and obstacles to a
space of less complexity, called Trajectory Param-
eter Space (TP-Space). This transformation can
treat the robot as a free-flying point in TP-Space
since the kinematic constraints and dimensions of
the robot are already embedded into the trans-
formation process. In this way, we can entrust
the obstacle avoidance task in the transformed
space to any standard method for free-flight point
robots. The generalization of path models is called
Parameterized Trajectory Generator (PTG) in [1],
allowing to implement the transformation of any
path model and at the same time select the best
alternative in every moment that suits in the mo-
tion plan, not only using circular path as tradi-
tional methods.

This paper relies in the use of other path mod-
els instead of circular arcs that allows the robot
to find alternatives beyond simple obstacle avoid-
ance and which are adapted to their kinematic
constraints or shape. Furthermore, it could eval-
uate multiple path models simultaneously and se-
lect the most suitable at each step.

The rest of the paper is organized as follows. In
section 2, TP-Space and PTGs are introduced.
Section 3 discusses the alternative ROS package.
In section 4, we will present a comparison between
the two navigation stacks. Finally, conclusions are
outlined in section 5.

2 BACKGROUND

Previous section mentioned the different naviga-
tion approaches. Next we explore in detail the
basis of the TP-Space navigation package.

2.1 Trajectory Parameterized Space

Reactive navigation is based on transformation
parameter space method, which consists of a frame
where a robot with any shape and kinematically
constraint becomes in real time in a free-flight
point in a space where common obstacles avoid-
ance methods can be applied.

For motion planning navigation is often used the

Configuration Space (C-Space) [5], which repre-
sents the robot as a point at the cost of great com-
plexity and the difficulty of using it accurately in
real time.

A simplification of this space is the Velocity Space
(V-Space) [6, 7, 8, 9, 10]. V-Space represents the
space of linear and angular velocities of the robot,
so goal points are curved paths in this space. The
disadvantage of this is that the free-space sam-
pling only can be performed with curved arcs, so
other paths models can not be applied.

The Trajectory Parameterized Space (TP-Space)
[4] arises as an alternative to the V-Space, built
upon the following observation: while an arbitrary
path is described in the three-dimensional C-Space
(2D position plus heading), the poses along a cir-
cular arc can be defined in TP-Space through two
parameters only, namely the path curvature and
the distance along the arc. The majority of meth-
ods dealing with non-holonomic robots assume a
family of compatible circular paths from which
to select the robot movement at each instant of
time. MRPT reactive navigation is based on this
space where the robot can be treated as a free-
flight point and assuming a decoupled kinematic
constraints and the obstacle avoidance problems.

Hence, TP-Space is defined as a two-dimensional
space where each point corresponds to a robot
pose on C-Space sampling surface. The compo-
nents of this space are an angular component α
and a distance d.

2.2 Parameterized Trajectory Generator

We mentioned before that MRPT implements a
set of path models to measure the distance to ob-
stacles. These path models are called Parameter-
ized Trajectory Generators (PTGs) and represent
an allocation of TP-Space points (α,d) at C-Space
positions ((x,y),ϕ) so the straight path from origin
becomes compatible with C-Space.

Not every function that is designed is a valid PTG.
They must ensure obstacle avoidance considering
the kinematic constraints. Must meet the follow-
ing objectives:

• It should generate consistent paths for reac-
tive navigation because it uses a memoryless
system.

• Regardless of heading, no more than one tra-
jectory should exist taking the robot from its
current pose to any other location.

• It must be continuous to ensure that trans-
formations do not modify the topology of the
robot planar workspace.

Figure 1: A complete reactive navigation system based on TP-Space involves translating obstacles and
the target location into the TP-Space, through a variety of PTGs simultaneously. Each one generates
a virtual WS navigation scenario which is solved by a simple obstacle avoidance method. Next, the
resulting movements are evaluated to find the most advantageous transformation, which is selected to
generate the real robot velocity command using the PTG design equations.

Next we briefly describe the PTGs implemented
in MRPT and tested in this benchmark, which
are summarized in table 1:

• C PTG: Circular trajectories

This is the simplest path model and the com-
mon for traditional reactive navigation. Ve-
locities remain constant along the path.

• α-A PTG: Trajectories with asymptotically-
known heading.

These trajectories are generated by lin-
ear and angular velocities, which are di-
rectly/inversely proportional to the difference
between the robot heading and the parameter
α.

• α-SP PTG: Trajectories built upon a spiral
segment

The purpose of this template is to show that
valid and consistent reactive trajectories exist
and which are not a composition of circular
arcs and straight segments.

• C|Cπ/2S and CS PTG: Trajectories built
from sequences of straight and circular arc
paths.

These paths represent optimal path models
for car-like robots with a minimum turning
radius R.

3 THE MRPT ROS
NAVIGATION PACKAGE

Autonomous robot navigation is done commonly
with the navigation ROS package that provides

the localization node Adaptive Monte Carlo Lo-
calization (AMCL), the move base controller and
several planners.

This package is specially developed for robots with
a differential configuration and a circular shape,
so we must adapt de code for robot with other
configuration or make our owns planners.

Alternatively to this package we find
mrpt navigation, a package that implements a
localization node similar to AMCL (supporting
additional sensors and map types) and a reactive
navigation system (figure 1).

The mrpt navigation package includes the follow-
ing nodes:

• mrpt bridge: C++ functions that convert
between common ROS messages and MRPT
classes.

• mrpt local obstacles: Construction of a
local obstacle map (point cloud, voxel or oc-
cupancy grid) from recent sensor readings
within a configurable time window.

• mrpt localization: Node for 2D robot lo-
calization with a particle filter and many dif-
ferent kinds of metric maps. It is a wrap-
per for MRPT’s particle filtering algorithms
that can be seen as an alternative to ROS
navigation amcl.

• mrpt map: Node to publish metric maps
(static, prebuilt).

• mrpt msgs: Common messages for MRPT
packages.

PTG
Type of

trajectory
PTG equations

Design
parameters

Example of
generated

paths

C V (α, t) =

[
Kv0

w0 tan(
α

2
)

]
v0, w0

k = ±1

α-A V (α, t) =

 v0e
−(α−φ(α,t)

Kv
)
2

w0

((
1− e−(

α−φ(α,t)
Kw

)2
)−1

− 1

2

) v0, w0,

kv,Kw

α-SP V (α, t) =

[
fv(α, t)
fω(α, t)

]
→


fv(α, t) = v0

(
1− β

(
α− φ(α, t)

2π

)2
)

fω(α, t)


ω0, α > φ(α, t)

0, α = φ(α, t)

−ω0, α < φ(α, t)

v0, w0, β

C|Cπ/2S V (α, t) =



[
−v0
v0
R

]
, t ≤ R

v0

|α|
2[

v0
v0
R

]
,
R

v0

|α|
2
< t ≤ R

v0

(
|α|
2

+
π

2

)
[
v0

0

]
,
R

v0

(
|α|
2

+
π

2

)
< t

v0, R

CS V (α, t) =



[
v0
v0
R

]
, t ≤ R

v0

|α|
2[

v0

0

]
,
R

v0

|α|
2
< t

v0, R

Table 1: Some examples of valid PTG design templates which have been evaluated on real robots.
Columns represent the relationship of the parameter α with the type of trajectory, the design equations
(the trajectory velocity vector), and a graphical example of generated paths in C-Space (as a 2D top
view) for each approach. The employment of many other models increments the chance for the robot
to find a good movement. Design parameters of the templates are v0 and ω0, the linear and angular
maximum desired velocities, respectively, and R, the minimum turning radius for a car-like robot model
in the two latest templates.

• mrpt rawlog: Node for ROS topic logging,
like rosbag but storing logs in an MRPT-

specific file format called rawlog, compatible
with the GUI application RawLogViewer.

• mrpt reactivenav2d: Pure reactive naviga-
tion with TP-Space algorithms.

Using a plain-text configuration file, all naviga-
tion parameters as the dimension of the robot,
the maximum velocities (linear and angular), a fil-
ter to change the speed gradually or the obstacle
avoidance method (ND or VFF), are configured.

This reactive system implements two obstacles
avoidance methods that can be applied in any sit-
uation:

• Vector Force Field (VFF)

The main objective of an obstacle vector field
is to produce a force which acts on the robots
in such a way that it avoids the obstacle. This
is most commonly done by creating a repul-
sive force which diminishes as the distance
from the obstacle increases. In an instance
where there are multiple obstacles multiple
forces are added together to create one ob-
stacle vector field. Both this vector field and
the environmental vector field are superim-
posed and the result is used to determine the
movement of the vehicle [11].

• Nearness Diagram (ND)

By using space divisions, entities as nearby
obstacles or free areas are identified and used
to select among a discrete set of potential ac-
tions. In real time, the sensory information is
used to identify one situation, and the associ-
ated action is executed computing the motion
commands [12].

4 EXPERIMENTAL RESULTS

The objective of this work is to provide a prelim-
inary benchmark of both navigation packages in
a realistic situation, revealing the advantages and
disadvantages offered by each one for a rectangu-
lar robot with Ackerman configuration.

Figure 2: Map built for the experiments area.

The test is performed on a circuit where a number
of obstacles have been placed and the robot has to

overcome them. The sensorial system is based in a
low-cost LIDAR and encoders. A representation
of the map including the obstables is shown in
figure 2. Time spent and trajectory to reach the
goal will be evaluated as well as the behavior of the
robot in speed and direction. Videos for one real
experiment run with each method are available
online4.

4.1 Motion planning navigation

For motion planning navigation it has been
used the navigation ROS package, with
"global planner" as global planner which gen-
erates a path from robot position to the goal, and
"dwa local planner" as the local planner, trac-
ing small paths in front of the robot that track the
global trajectory.

In figure 3 it can be seen in red the trajectory that
global plan traces and the local trajectory that
the robot tries to follow is represented in green.

Experimental tests have shown that the robot
moves intermittently or ”shaky”, that is, the lin-
ear velocity changes constantly and the robot does
not move continuously. Due to planning naviga-
tion, when the robot moves, trying to follow the
global plan, the servo-direction moves in both
ways following the trajectory’s line.

Figure 4 shows a representation of the linear and
angular velocities of the robot during the test. The
linear velocity is shown in blue and the angular
velocity (rotational) is shown in red.

Due to robot hardware it has established a maxi-
mum linear speed of 0.7m/s and a maximum an-
gular speed of 2rad/s. These settings allow the
robot to move with no significant alterations of
the planning navigation as a consequence of sud-
den accelerations.

The robot completed the test in 96.66 seconds.

4.2 MRPT Reactive navigation

For reactive navigation it has been used the
mrpt navigation ROS package, with two PTGs:
circular trajectories (C) and trajectories with
asymptotical heading (α-A). For obstacle avoid-
ance, the Vector Force Field method will be used.

In figure 5, it can be seen a representation of
the linear and angular velocities, as in the motion
planning navigation. In this case, the linear speed
remains constant around 0.5m/s most of the time
and the angular velocity change when the robot
has to dodge an obstacle.

4Global planner https://vimeo.com/133033742
and reactive method https://vimeo.com/133034961

https://vimeo.com/133033742
https://vimeo.com/133034961

Figure 3: Trajectory obtained with the motion planning approach.

Figure 4: Velocities during the execution of the
planned tracjectory.

Figure 6 shows the path followed by the robot dur-
ing the test. It can be seen that in the obstacle
avoidance, the robot traces smooth curves around
the obstacle and always maintains a continuous
linear path. When the robot approaches an ob-
stacle the linear speed decreases.

The robot completed the test in 41.63 seconds.

4.3 Localization

In both navigation packages a localization sys-
tem based on an adaptive particle filter [13] has
been used. For motion planning the amcl pack-
age included in ROS navigation has been used
and for reactive navigation it has been used

Figure 5: Velocities during the execution of the
reactive navigation.

mrpt localization package with a similar inter-
face to amcl but supporting different particle-filter
algorithms and sensors. In both cases, the esti-
mated robot position in the map is shown as a
cloud-point of red arrows, as depicted in figure 3.

5 CONCLUSIONS

The new mrpt navigation ROS package has been
presented and compared with respect to the well-
known navigation ROS package through a se-
ries of experiments in real-world conditions with
a medium-size robot. Both navigation systems af-
fect the robot behavior differently. The trajectory
traced for the robot in reactive navigation is sim-

Figure 6: Trajectory obtained for the proposed reactive navigator ROS package. Note that the entire
navigation is the result of one single target sent to the navigator at the beginning of the experiment.

ilar to the global plan path calculation, keeping
some distance from the obstacles. Instead of this
similarity, the traveled path in the planning nav-
igation has not been accurate to the calculated
trajectory.

As for velocities, it is observed that the linear ve-
locity which maintains the robot during reactive
navigation is more constant than planning navi-
gation as well as the continuous movement of the
robot. Comparing the angular velocity it is also
denoted that is smoother in reactive navigation
than planning navigation and the small peaks that
occur do not affect the robot trajectory. Finally,
comparing the test run time, reactive navigation
reaches the goal twice faster than planning navi-
gation.

Findings from the results obtained were that plan-
ning navigation, despite reaching an optimum
path to goal, strongly depend on a local naviga-
tor system that can follow the path accurately.
Moreover, reactive navigation provides accurate
and continuous navigation system but lacks a pre-
determined optimal path on a map. Reactive nav-
igation does not ensure obtaining the shortest or
most appropriate path to the goal, thus it should
be better used in combination with a top-level
planner.

Acknowledgments

This work has been funded by the National
R+D+i Plan Project DPI2014-56364-C2-1-R of
the Spanish Ministry of Economy and Competi-
tiveness and ERDF funds.

References

[1] J.-L. Blanco, J. González-Jiménez, and
J.-A. Fernández-Madrigal, “Extending ob-
stacle avoidance methods through multi-
ple parameter-space transformations,” Au-
tonomous Robots, vol. 24, no. 1, pp. 29–48,
2008.

[2] J. L. Blanco et al., “Mobile robot program-
ming toolkit (mrpt).”

[3] A. Harris and J. M. Conrad, “Survey of
popular robotics simulators, frameworks, and
toolkits,” in Southeastcon, 2011 Proceedings
of IEEE, pp. 243–249, IEEE, 2011.

[4] J. Minguez and L. Montano, “Abstracting ve-
hicle shape and kinematics constraints from
obstacle avoidance methods,” Autonomous
Robots, vol. 20, no. 1, pp. 43–59, 2006.

[5] Lozano-Pérez., “A simple motion-planning
algorithm for general robot manipulators,”
IEEE Journal of Robotics and Automation,
vol. 3, no. 3, pp. 224–238, 1987.

[6] K. O. Arras, J. Persson, N. Tomatis, and
R. Siegwart, “Real-time obstacle avoidance
for polygonal robots with a reduced dynamic
windwow,” IEEE International conference on
robotics and automation, vol. 1, pp. 678–685,
2002.

[7] W. Feiten, R. Bauer, and G. Lawitzky, “Ro-
bust obstacle avoidance in unknown and
cramped environments,” IEEE International
conference on robotics and automation, vol. 3,
pp. 2412–2417, 1994.

[8] G. Ramirez and S. Zeghloul, “Collision-
free path planning for non-holonomic mo-
bile robots using a new obstacle representa-
tion in the velocity space,” Robotica, vol. 19,
pp. 543–555, 2001.

[9] C. Schlegel, “Fast local obstacle avoidance
under kinematics and dynamic constraints
for a mobile robot,” IEEE/RSJ International
conference on intelligent robots and systems,
vol. 1, pp. 594–599, 1998.

[10] R. Simmons, “The curvature-velocity method
for local obstacle avoidance,” IEEE Inter-
national conference on robotics and automa-
tions, vol. 4, pp. 3375–3382, 1996.

[11] Y. Koren and J. Borenstein, “Potential field
methods and their inherent limitation for mo-
bile robot navigation,” IEEE International
conference on robotics and automation, vol. 1,
pp. 1398–1405, 1991.

[12] J. Minguez and L. Montano, “Nearness di-
agram navigation: Collision avoidance in
troublesome scenarios,” IEEE Transactions
on robotics and automation, vol. 20, no. 1,
pp. 45–59, 2004.

[13] D. Fox, “Kld-sampling: Adaptive particle fil-
ters,” in Advances in neural information pro-
cessing systems, pp. 713–720, 2001.

	INTRODUCTION
	BACKGROUND
	Trajectory Parameterized Space
	Parameterized Trajectory Generator

	THE MRPT ROS NAVIGATION PACKAGE
	EXPERIMENTAL RESULTS
	Motion planning navigation
	MRPT Reactive navigation
	Localization

	CONCLUSIONS

