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ABSTRACT: 
 
Digital Elevation Models (DEMs) are considered as one of the most relevant geospatial data to carry out land-cover and land-use 
classification. This work deals with the application of a mathematical framework based on a Gaussian Markov Random Field 
(GMRF) to interpolate grid DEMs from scattered elevation data. The performance of the GMRF interpolation model was tested on a 
set of LiDAR data (0.87 points/m2) provided by the Spanish Government (PNOA Programme) over a complex working area mainly 
covered by greenhouses in Almería, Spain. The original LiDAR data was decimated by randomly removing different fractions of the 
original points (from 10% to up to 99% of points removed). In every case, the remaining points (scattered observed points) were 
used to obtain a 1 m grid spacing GMRF-interpolated Digital Surface Model (DSM) whose accuracy was assessed by means of the 
set of previously extracted checkpoints. The GMRF accuracy results were compared with those provided by the widely known 
Triangulation with Linear Interpolation (TLI). Finally, the GMRF method was applied to a real-world case consisting of filling the 
LiDAR-derived DSM gaps after manually filtering out non-ground points to obtain a Digital Terrain Model (DTM). Regarding 
accuracy, both GMRF and TLI produced visually pleasing and similar results in terms of vertical accuracy. As an added bonus, the 
GMRF mathematical framework makes possible to both retrieve the estimated uncertainty for every interpolated elevation point (the 
DEM uncertainty) and include break lines or terrain discontinuities between adjacent cells to produce higher quality DTMs.  
 
 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION 

Statistical spatial analysis encompasses an expanding range of 
methods, being spatial interpolation of unknown elevations, 
referenced to a common vertical datum, one of the most widely 
studied because of its ability to produce highly demanded 
cartographic products such as Digital Terrain or Surface Models 
(DTM or DSM respectively; DEMs in general) (e.g. Aguilar et 
al. 2005). Thus, what is really behind all spatial interpolation 
methods turns out to be the concept of spatial autocorrelation, 
which gives us an idea of the degree to which a set of features 
tends to be clustered together or evenly dispersed over the 
Earth’s surface. Note that the assumption of the existence of 
spatial independence would create a chaotic basis for natural 
phenomena in Digital Earth modelling because most real world 
patterns take something between a random and clustered form 
(Negreiros et al., 2009). This is also the principle of grid DEM 
interpolation that will support the theoretical basis of this work. 

The raw scattered elevations needed to build useful grid DEMs 
can be provided by different data collection methods, though 
nowadays photogrammetrically-derived and LiDAR-derived 
DEMs are among the best known and most widely employed.  

During the last decade, photogrammetrically-derived DEMs 
have received a boost with the adaptable stereo imaging 
capability of the newest civilian VHR satellites that allows 
generating strong stereo geometry with adequate base-to-height 
ratio (Aguilar et al., 2014).  Furthermore, their agile pointing 

ability enables the generation of same-date in-track stereo 
images, reducing radiometric image variations and so improving 
the success rate in any matching process.  

On the other hand, airborne light detection and ranging 
(LiDAR) has gradually become a common tool for gathering 
high density and accurate scattered points on surface targets 
(Renslow, 2012). Compared to photogrammetric method, high 
vertical accuracies and dense point clouds are achieved 
regardless of external light condition. In addition, airborne 
LiDAR systems can penetrate through vegetation and record the 
underlying terrain by distinguishing between the different 
reflections.  

In any case, and once the earth points have been collected, it is 
necessary to carry out a filtering process to label, at least, 
ground points and non-ground points in order to produce high 
quality DTMs (Aguilar et al., 2010). This step is not required 
when it comes to producing DSMs, but it is usual to count on 
the two kinds of surface models just to compute the so-called 
normalize DSM (nDSM = DSM - DTM), which can be very 
useful as an additional input layer to extract man-made features 
in land cover classification.  

Once the bare-earth points have been identified through ground 
filtering, the next step is to apply an interpolation method to 
create a grid DTM/DSM. In the case of DTM, many grid posts 
may be recorded without heights (especially in areas with 
predominance of man-made features), so arising areas of data 
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voids. Such absences in data demand an interpolation procedure 
be carried out to infill the voids. In this sense, this work deals 
with the application of a mathematical framework based on 
Gaussian Markov Random Field (GMRF) to interpolate grid 
DEMs from scattered elevation data.  

2. GMRF MATHEMATICAL FRAMEWORK 

2.1 Modelling spatial elevations as grid DEMs based on a 
Markov Random Field  

The proposed approach aims at estimating the maximum a 
posteriori estimation of grid elevations (m) that make up a 
DEM, including their uncertainty, given a number of scattered 
observed elevations (z) and their corresponding sample data 
vertical uncertainty (σs). In this way, a map m = {mi} (i = 1 to 
N) is modelled as a Markov random field (MRF) where mi are 
grid DEM estimated elevations locally supported by the 
observed elevations inside the ith gridmap cell with easting and 
northing coordinates (xi, yi). Notice that MRF is a tool widely 
used in estimation problems on grids such as image processing, 
where statistical models are applied to determine the intensity of 
image pixels (Winkler, 2003).  

The joint probability distribution p(m,z) to be maximised can be 
factored as the product of the potential functions φ(·) (φ(·) > 0) 
for the set of all its maximal cliques (Cm) (Bishop, 2007): 
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being P the partition function (a proportionality constant), C 
represents the different cliques and nc the set of values (m,z) for 
the corresponding clique. Since potential functions are strictly 
positives, it is possible to express them as exponential 
functions:   
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where the term E can be interpreted as an energy function. For 
convenience, the maximization process is implemented in 
practice as the minimization of the negative logarithm of the 
product above.  

Now it is convenient to build up a graphical model from which 
to derive the optimization equations (Dellaert and Kaess, 2006). 
In this graphical model, each potential function is translated 
into a factor F that deals with the dependencies between the 
variables of the MRF model (Figure 1). The model depicts two 
kinds of nodes and factors: i) grid DEM elevations to be 
estimated (m), with their corresponding prior factors which, 
being independent of observations, provide any a priori 
knowledge on how the elevations are spatially distributed, and 
ii) observed elevations (known data z), which represent true 
terrain points to help constraint the m elevation of the gridmap 
cell where z data is located. According to the two different set 
of factors, the joint probability distribution becomes: 
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2.2 Observation factors 

It is assumed that all the factors involved in the aforementioned 
graphical model can be properly modelled by means of a 
Gaussian distribution, so the final developed model becomes a 
Gaussian MRF (GMRF), all energy terms in eq. (2) 
conveniently become quadratic forms, such that the 
maximization of eq. (1) becomes a well-known, weighted least-
squares minimization problem. 

Regarding observation factors, they try to model the relation 
between every observed elevation and the true elevation of the 
gridmap cell where the observed elevation is located. Let us 
suppose that each observed elevation zk, with k = 1..M, presents 
a sample data error or uncertainty. This random error is 
approached by a Gaussian distribution N (0 , σ2

s), being 
important to highlight that σs may take different values for any 
zk depending on local terrain complexity, point density, land 
cover, pulse penetration, etc. (Hodgson and Bresnahan, 2004; 
Aguilar et al., 2010; Su and Bork, 2006; Montealegre et al., 
2015a). A simple probabilistic approach provides the 
mathematical framework (conditional pdf) for each observation 
factor in the graphical model through the following expression: 
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where, given mik, it is assumed a conditional independence 
between zk and the rest of the grid points.  

Thus the resulting energy function associated to the observation 
factors is given by: 
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Figure 1. Factor graph corresponding to 4-neighbourhood 

scheme for a grid point at row i and column j. Two types of 
nodes: estimated elevation at grid points (m) and observed 

elevations (z). They affect central cell estimate depending on 
prior factors (Fp) and observation factors (Fo) respectively.     

2.3 Prior factors 

These prior factors deal with the correlation between elevations 
of neighbouring grid points, penalising the z-differences (4-
neighbourhood scheme) in this case: 

),0()b no|( where 2
 ji,,  , pjijiji Ndpmmd σ=−=       (6) 
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Where every prior factor di,j follows a Gaussian distribution of 
mean 0 and variance  σ2

p. σp can be understood as a tolerance 
parameter (expressed in units of length, e.g. meters) related to 
the relaxation or constriction between elevations in adjacent 
grid points. In summary, the lower the tolerance parameter, the 
higher the smoothing of GMRF interpolated surface and vice 
versa.   

Note that the term bi,j tries to model the presence of break lines 
(in the jargon of Digital Terrain Models or DTMs) or very high 
discontinuities in terrain morphology by employing a binary 
distribution P(bi,j)∈ [0,1] where 1 and 0 means the presence or 
absence of discontinuity respectively. We can then apply the 
law of total probability for the two only options: 

)ji,b )P(noji,b no |,()ji,)P(bji,b |,(),( jidpjidpjidp +=        (7) 

The probability distribution p(di,j) can be properly approached 
through the following expression: 
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therefore the energy function associated to the prior factors can 
be written as: 
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Where L is the number of pairwise neighbouring grid points (4-
neigbourhood scheme) located at row i and column j for the 
clique k. In this preliminary study, it has been applied P(di,j) = 
0, i.e. break lines have not been considered, although their 
inclusion will be investigated in further works.   

2.4 Maximum a Posteriori Estimation (MAP) 

The goal is to maximise the posterior p(m|z1:M), where z 
(varying from 1 to M) are the elevations of the M observed 
points, to obtain a MAP estimate m) of the GMRF generated 
grid DEM. By taking the negative logarithm over such posterior 
(equation 3), the resulting energy function becomes the least-
squares form of a GRMF inference problem (Madsen et al., 
2004), which can be written as: 
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Rearranging the terms of E(n) as a sum of quadratic errors r 
weighted by an information matrix A, conducts to the following 
expression: 
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Where errors have been defined through a prediction function in 
the form r = f(m) – y, being y a vector of known data. It is worth 
highlighting that, given the assumed statistical independence 
between variables and elevation error, A (L+M square matrix) 
turns out to be a diagonal matrix where its first L entries 

correspond to the prior factors or correlation between adjacent 
grid DEM cells (Apk = 1/σ2

p). The rest of M diagonal entries 
stores the weights of every observed elevation (Aok = 1/σ2

s).  

The minimum of the expression in equation 11 can be solved, 
for example, by means of the Gauss-Newton method (Dennis 
and Schnable, 1987): 

   ( ) ))(( ymfAtJmHmAJtJ −−=∆=∆               (12) 

Being J = dr/dm the Jacobian of the error function r, JtAJ the 
Hessian matrix (H), –JtA(f(m)-y) the Gradient (g) and ∆m the 
unknown elevations of the GMRF interpolated grid DEM. 
Because all the factors are linear with the grid m, ∆m =m) can 
be solved without iterating.  

The existence of two blocks in the Jacobian matrix, with an 
upper block devoted to prior factors and lower one to 
observation factors, makes convenient to decompose H into the 
sum of two components (H = Hp + Ho).  

The first matrix, Hp, contains the following nonzero entries: 

i) Off-diagonal elements: 
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ii)  Diagonal elements: 
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Being k the number of neighbours of grid DEM cell i. 

The second matrix, Ho, is diagonal and only depends on 
observed elevations: 
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Where k is the index of the observed elevations inside the grid 
DEM cell i. 

Finally, the gradient vector g = JtAr (Nx1 row-vector being N 
the number of grid DEM cells) is computed from the next 
expression: 
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For all the k observed elevations taken at grid DEM cell i and 
all the j grid DEM cells adjacent to the grid point i.   

3. METHODS 

3.1 Study site 

This investigation was carried out in Almería, southern Spain, 
which has become the site of the greatest concentration of 
greenhouses in the world, known as the “Sea of Plastic” (Figure 
2).  

The study site comprises a rectangle area of about 100 ha 
centred on the ETRS89 UTM 30N coordinates of 524950 m 
easting and 4072650 m northing (Figure 3), showing an 
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elevation range between 152.6 m and 214.8 m above mean sea 
level (Spanish orthometric heights EGM08-REDNAP). The 
mean elevation took a value of 186.9 m, with a moderate north-
south mean slope of around 4.3%. However, and from a 
morphological point of view, the clear predominance of 
greenhouse land cover, meaning a high frequency of elevation 
break lines, makes difficult to obtain accurate DSM and DTM 
products. In fact, it is a landscape that can be qualified as highly 
altered by off-terrain elevations (micro-relief). Regarding 
natural terrain, two dry ravines can be made out running down 
from North to South along both sides of the working area 
(Figure 3).      

 
Figure 2. Location of the study area (ETRS89 UTM 30N) 

 

 
Figure 3. Study site presented as a coloured LiDAR point cloud. 

Note that some irrigation pools are shown in white (no data)  

 
3.2 Dataset 

The LiDAR data used in this work were provided by the PNOA 
(National Plan of Aerial Orthophotography of Spain) and 
captured on 23th September 2015 by means of a Leica ALS60 
discrete return sensor with up to four returns measured per 
pulse and an average flight height of 2700 m. The nominal 
average point density of the LiDAR campaign was 0.7 
points/m2, although the finally registered point density of test 
area, taking into account overlapping, turned out to be 0.97 
points/m2 (all returns). Data were delivered as a RGB coloured 
point cloud in LAS binary file (Figure 3), format v. 1.2, 
containing easting and northing coordinates (UTM ETRS89 
30N) and orthometric elevations (geoid EGM08-REDNAP as 
reference). It is worth noting that only single point returns were 
employed in this work to avoid a number of artefacts observed 
in mesh covered and torn greenhouses presenting somehow 
disturbing double returns. In this sense, the final point density 
of the LiDAR dataset was 0.87 points/m2. 

A GPS RTK field survey was carried out during February 2016 
to obtain the accurate 3D coordinates of up to 151 points evenly 
distributed around the working area. This field survey allowed 
computing the standard deviation of LiDAR points vertical 
error, including both open terrain and non-open terrain points 
(Aguilar and Mills, 2008), taking a value of 1.20 m. This high 
value was related to the fact that non-open terrain points 
(mainly located at edges of greenhouses and little buildings 
roofs or irrigation pools) were subjected to unusual vertical 
errors due to the planimetric error of LiDAR points and their 
situation just on vertical walls (break lines). When only open 
terrain GPS points were taking into account, the corresponding 
standard deviation of LiDAR vertical error lowered up to 0.14 
m, which meant a vertical accuracy higher than the 0.2 m 
nominal vertical error of PNOA LiDAR data (Montealegre et 
al., 2015b).         
     
3.3 DSM accuracy assessment 

The original LiDAR point cloud was decimated by randomly 
removing different fractions of the original points (from 10% to 
up to 99% of original points removed). In every case, the 
remaining scattered points (observed or map points) were used 
to obtain both 1 m grid spacing GMRF and TLI interpolated 
DSMs whose vertical accuracy (RMSEz and mean, maximum 
and minimum vertical error) was assessed on the set of 
previously extracted checkpoints by obtaining the z-differences 
(Zcheckpoint – ZDSM)  (Aguilar et al., 2006). Every ZDSM 
corresponding to the easting and northing coordinates of the 
check points was calculated by applying bilinear interpolation 
from the GMRF or TLI computed 1 m grid spacing DSM.  
 
Regarding observed elevations error (σs) in terrain mapping, a 
well-known characteristic is its relationship with terrain slope, 
especially in the case of DSM generation by means of laser 
scanning, where planimetric error may be relatively high and 
also may be directly translated to vertical error on sloping 
surfaces (Aguilar et al., 2010). Bearing in mind that LiDAR 
point density is also a critical influencing factor, every observed 
elevation was assigned an uncertainty (standard deviation) 
given by the empirical equation proposed by Karel and Kraus 
(2006):      
 

100tan50
6

/α.
ns

σ 






 +=                        (17) 

 
Where σs is the observed elevation uncertainty (m), n the point 
density (points/m2) and tanα the local slope (dimensionless). 
  
The whole procedure described above and the mathematical 
framework of GMRF method was programmed in C++ and has 
been released as open source code. 
 

4. RESULTS AND DISCUSSION 

4.1 Sensitivity analysis for the tolerance parameter (σp) 

A sensitivity analysis was performed to assess the degree of 
influence of the so-called tolerance parameter or relaxation 
factor (σp) in the grid DSM vertical accuracy. This parameter 
may be compared to the smoothing factor of interpolation based 
on radial basis functions (Carlson and Foley, 1991; Mitasova 
and Mitas, 1993), being then depending on the terrain 
complexity or slope allowed between neighbouring points 
(Aguilar et al., 2005). For example, a low σp value or tolerance 
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might not be suitable for sharp changes in elevation over short 
distances, such as steep cliffs or man-made features (e.g. along 
greenhouse or building walls in this case). In such situations, 
the resulting DSM would look like over-smoothed, being 
convenient to diminish the stiffness of the interpolated surface 
by increasing the tolerance parameter. This concept is somehow 
analogous to the interpolation by means of radial basis function 
approach based on thin plate splines, where the stiffness of the 
plate can be lowered by including first derivatives to the smooth 
seminorm, so tuning the character of the interpolation surface 
from thin plate to membrane (Mitas and Mitasova, 1988). 
 
A priori, and from the explanation above, it can be deduced that 
σp optimum value would be related to relief features that are 
closely connected with terrain variability and roughness such as, 
for instance, average terrain slope, standard deviation of unitary 
vectors perpendicular to the topographic surface, standard 
deviation of the difference in height between adjacent samples 
(Aguilar et al., 2006) or mean profile curvature (Mitasova and 
Hofierka, 1993). 

The DSM vertical accuracy assessment results as a function of 
different σp values are depicted in Table 1. Neither the dataset 
containing the 10% of the original LiDAR points (10.74 m 
EGS) nor the dataset with only 1% of the total points (EGS = 
33.97 m) show significant differences when varying σp input 
values, both in terms of rmsez and mean error. Although the 
results should be qualified as quite preliminary, because they 
have to be contrasted on a greater number of terrain 
morphologies, it could be hypothesized that a reasonable range 
of values for σp can be tested without significantly affecting the 
final results. In this way, a σp value of 1 m was employed in this 
work.  

Observed points: 10% of 
the original dataset(1) 

Observed points: 1% of the 
original dataset(2) 

σp (m) rmsez 
(m) 

mean 
error (m) 

σp (m) rmsez 
(m) 

mean 
error (m) 

0.2 0.803 0.008 0.2 1.274 0.011 
0.6 0.765 0.013 0.6 1.186 0.002 
1 0.765 0.002 1 1.148 0.011 

1.4 0.761 0.007 1.4 1.146 0.029 
1.8 0.758 0.008 1.8 1.141 -0.0018 
2.2 0.760 0.003 2.2 1.143 0.010 
2.6 0.761 0.002 2.6 1.158 -0.001 
3 0.762 0.008 3 1.140 0.000 
4 0.761 0.004 4 1.153 0.008 
10 0.761 0.007 10 1.162 0.031 

Table 1. Vertical accuracy of GMRF-computed DSMs (1 m grid 
spacing) depending on the tolerance parameter (σp). (1) EGS = 
10.74 m. (2) EGS = 33.97 m. EGS = Equivalent Grid Spacing     

 
4.2 Comparison between GMRF and TLI methods 

The method TLI consists of converting randomly spaced data 
points into regularly gridded data points using contiguous and 
non-overlapping Delaunay triangles, whose vertices are the own 
scattered data points, and computing every z over the grid from 
the local plane containing the corresponding triangular facet 
(Aguilar et al., 2006). It is a simple, computationally efficient 
and parameter-free method that has proved to performance quite 
well on different morphologies and environments (Aguilar et 
al., 2006; Guo et al., 2010; Montealegre et al., 2015a). TLI 
method is also de facto standard method used by US Federal 
Emergency Management Agency to create LiDAR-derived 

DEMs because of its simplicity and effectiveness (FEMA, 
2010).   

The qualitative results provided by the GMRF interpolation 
method may be deemed as visually pleasing and reasonably 
independent on the initial number of observed LiDAR points 
(Figure 4). The same can be said about the results provided by 
the Triangulation with Linear Interpolation (TLI) method (data 
not shown), although if point density was much lower than the 
output cell size, some triangles of the TIN model may be 
unpleasantly made out in the output DEM/DSM. 

 
 

Figure 4. 3D shaded view of GMRF DSM (1 m grid spacing). 
Top: ratio of observed points 90% (high density); σp = 1 m. 

Bottom: ratio of observed points 10% (low density); σp = 4 m 

 
Figure 5. Vertical profile crossing one of the two dry ravines 

located at the working area. At the bottom, yellow points belong 
to the GMRF DSM while blue points are original LiDAR points   

 
In Figure 5 can be appreciated the goodness of terrain 
morphology description achieved from applying the GMRF 
interpolation method (1 m grid spacing DSM and σp = 1 m) 
from a random sample comprising 10% of the original LiDAR 
points. In fact, the GMRF-based cross-section over the dry 
ravine seems to be rather similar to the profile obtained from the 
original LiDAR points, although GMRF computed DSM looks 
like clearly smoother.         

With regards to the quantitative results in terms of vertical 
accuracy, Tables 2 and 3 depict some vertical accuracy statistics 
for several ratios of observed or map points with respect to the 
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total amount of original LiDAR points, ratio that is also 
tabulated as the Equivalent Grid Spacing (EGS) for a better 
understanding. Both GMRF and TLI methods did not present 
systematic errors even working on low point densities (EGS 
around 10.7 m), with absolute mean error always below 1 cm. 
Regarding random errors, root mean square error (rmse) 
behaved similar for the two methods tested, keeping quite stable 
against varying the ratio of observed points till reaching the 
value of 1%, just when rmse rose sharply exceeding the value of 
1 m. It is worth underlining that the values of rmse shown in 
Tables 2 and 3 kept below the standard deviation of 1.2 m 
measured on both open and non-open terrain check points 
during the GPS RTK field survey described in the section 3.2.  

            
Ratio of 
observed 

points 

rmsez 
(m) 

Mean 
error 
(m) 

Max. 
error 
(m) 

Min. 
error 
(m) 

EGS 
(m) 

90% 0.656 0.004 8.83 -10.26 1.13 
80% 0.666 0.007 27.01 -8,73 1.20 
70% 0.666 0.006 27.07 -10.75 1.28 
60% 0.668 0.004 19.99 -14.12 1.38 
50% 0.669 0.004 19.90 -13.02 1.52 
40% 0.678 0.006 27.10 -14.06 1.69 
30% 0.688 0.006 27.09 -14.04 1.96 
20% 0.709 0.005 27.14 -9.36 2.40 
10% 0.765 0.002 27.00 -15.22 3.39 
1% 1.148 0.010 26.96 -15.99 10.74 

Table 2. Vertical accuracy of GMRF-computed DSMs (1 m grid 
spacing) depending on the ratio of observed points relative to 

the total. σp = 1 m in all cases. EGS = Equivalent Grid Spacing 
 
 

Ratio of 
observed 

points 

rmsez 
(m) 

Mean 
error 
(m) 

Max. 
error 
(m) 

Min. 
error 
(m) 

EGS 
(m) 

90% 0.670 0.002 16.06 -10.83 1.13 
80% 0.681 0.005 27.09 -8.03 1.20 
70% 0.680 0.003 27.16 -10.66 1.28 
60% 0.683 0.002 19.94 -14.11 1.38 
50% 0.688 0.000 19.84 -12.87 1.52 
40% 0.697 0.002 27.11 -13.97 1.69 
30% 0.710 0.000 27.05 -13.74 1.96 
20% 0.730 0.000 27.19 -15.66 2.40 
10% 0.786 -0.003 26.96 -15.10 3.39 
1% 1.113 0.003 27.39 -15.45 10.74 

Table 3. Vertical accuracy of TLI-computed DSMs (1 m grid 
spacing) depending on the ratio of observed points relative to 

the total. EGS = Equivalent Grid Spacing     
 
In Figures 6 and 7 can be found the plotted histograms of z-
differences between the check points and the GMRF and TLI 
computed elevations after applying the widely known 3σ rule to 
remove outliers (Daniel and Tennant, 2001). From the 
corresponding Gaussian distribution overlaid on both figures, it 
can be detected a clear leptokurtic and unbiased distribution of 
residuals for the two methods tested which is rather usual in 
landscapes with clear predominance of non-open terrain LiDAR 
points (Aguilar and Mills, 2008). This scenario means that 
despite applying 3σ rule, most of theoretical outliers still remain 
likely because of dealing with a grid DSM which is modelling 
an excessively complex landscape and morphology with 
abundance of break lines mainly originated by man-made 
features.         

 

 
Figure 6. Histogram of vertical error (Zcheckpoint – ZDSM) 

corresponding to the 1 m grid spacing GMRF DSM. Ratio of 
observed points = 10% (low density) and σp = 1 m 

 
Figure 7. Histogram of vertical error (Zcheckpoint – ZDSM) 

corresponding to the 1 m grid spacing TLI DSM. Ratio of 
observed points = 10% 

 
4.3 Mapping DSM vertical uncertainty 

Without a doubt, one of the main strengths of the proposed 
method would lie in the possibility of mapping the uncertainty 
associated to every interpolated point. In fact, this is a 
complementary output pursued by any interpolation model, 
being a recursive demand tackled in different studies (Kraus et 
al., 2006; Aguilar et al., 2010; Liu et al., 2015). Yet, maybe 
only Kriging has demonstrated to counts on the mathematical 
framework to properly carry out this task (Cressi, 1988), 
although requiring a lot of decision-making and being 
computationally intensive.  

The GMRF method outlined in this work also allows obtaining 
the uncertainty of the estimation at each grid DEM/DSM cell. It 
can be simply accomplished by computing the diagonal 
elements of H-1 (inverse of Hessian matrix in equation 12), 
given that H-1(i,i) is found to be the variance of grid DEM cell i 
(σ2

i). The resulting uncertainty map, in terms of standard 
deviation of  estimated grid elevations, is depicted in Figure 8 
as a GMRF DSM (2 m grid spacing and σp = 1 m) computed 
from only 864 LiDAR points randomly sampled (0.1% of the 
original LiDAR points). According to expected, and from a 
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qualitative point of view, the grid points closest to the observed 
points were those presenting the lowest uncertainty (blue 
colour). Areas without observed points (blank areas) showed 
more uncertainty, especially those located at the edges of the 
map (red colour) where the uncertainty slope gradient was 
higher, reaching values above 1 m. This edge effect was 
provoked because of the absence of observed points on the 
other side, thus producing a sudden increase in the estimated 
error of the computed grid elevation.    

 
Figure 8. Map depicting the grid DSM vertical uncertainty 
(estimated values classified according to the map legend).  

 
4.4 GMRF-computed DTM from only ground points 

Since the raw LiDAR data contain a large number of points 
returned from various surface objects, such as buildings, 
bridges, electrical wires and trees, these non-ground/object 
points should be separated, the so-called LiDAR data filtering, 
prior to Digital Terrain Model (DTM) construction (Cheng et 
al., 2013). Continuing with this idea, the proposed GMRF 
method was applied to a real-world case consisting of filling the 
LiDAR-derived DSM gaps after filtering out non-ground points, 
mainly situated on greenhouse roofs, to obtain a DTM.  
LAStools open source software, through its tools lasground, 
was utilised to automatically label each LiDAR point as ground 
or not (more information in http://rapidlasso.com/lastools/). 
Lasground implements the algorithm proposed by Axelsson 
(Axelsson, 2000) based on a progressive triangular irregular 
network (TIN) densification. The ground points classified by 
lasground were visually checked and manually edited to 
improve as much as possible the final classification, taking into 
account the high proportion of greenhouse land cover over the 
working area and, conversely, the highly sparse and low density 
sample of ground points available. In Figure 9 are shown the 
LiDAR points labelled as ground (in red) overlaid on the 
original point cloud, highlighting the abundance of ground gaps 
(mainly greenhouses) to be interpolated in order to obtain a 
continues surface for modelling the underlying terrain 
topography. 

Finally, Figure 10 depicts a 3D shade view of the GMRF 
interpolated DTM (1 m grid spacing). This DTM was produced 
from 227084 previously classified ground points and tested 
over 1141 check points randomly sampled and put aside from 
the set of the original ground points (0.5% of the ground points 
available) to undertake a true validation. Besides providing a 
visually high quality DTM (Figure 10), the quantitative vertical 

accuracy assessment carried out on the GMRF interpolated 
DTM yielded good results, getting a rmsez of 28 cm and a mean 
error of 0.3 cm, which can be considered as reasonable figures 
in the case of open terrain LiDAR points.          

 
Figure 9. Lidar points (in red colour) automatically classified as 
“Ground” by applying LAStools software and manual edition 

 

 
Figure 10. 3D shaded view of the 1 m grid spacing GMRF 
DTM computed from only LiDAR ground points. σp = 1 m 

 
5. CONCLUSIONS 

The results provided by the proposed Gaussian Markov 
Random Field (GMRF) interpolation method may be deemed as 
very promising, producing visually pleasing and accurate digital 
surface or terrain models. The widely known interpolation 
method based on triangulation with linear interpolation (TLI), a 
common and accepted interpolation algorithm because of its 
simplicity and effectiveness working on LiDAR data, yielded 
similar qualitative and quantitative results. Both methods do not 
require to specify the local support or kernel (searching radius 
or maximum number of neighbours intervening in the 
interpolation of each grid point), which can be qualified as very 
advantageous, above all when dealing with low density ground 
points areas (forests, cities and, in general, landscapes with high 
presence of man-made features) for producing DTMs. However, 
and unlike the TLI method, the mathematical framework 
implemented through GMRF algorithm makes possible to easily 
retrieve the maximum a posteriori estimation of every 
interpolated elevation point from its graphical model, so 
allowing an easy way to map the spatial distribution of DEM 
uncertainty.  
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