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Abstract— This work addresses Range-Only SLAM (RO-
SLAM) as the Bayesian inference problem of sequentially
tracking a vehicle while estimating the location of a set of
beacons without any prior information. The only assumptions
are the availability of odometry and a range sensor able of
identifying the different beacons. We propose exploiting the con-
ditional independence between each beacon distribution within
a Rao-Blackwellized Particle Filter (RBPF) for maintaining
independent Sum of Gaussians (SOGs) for each map element.
It is shown then that a proper probabilistic observation model
can be derived for online operation with no need for delayed
initializations unlike other approaches. We provide a rigorous
statistical comparison of this proposal with previous work of
the authors where a Monte-Carlo approximation was employed
instead for the conditional densities. As verified experimentally,
this new proposal represents a significant improvement in
accuracy, computation time, and robustness against outliers.

I. INTRODUCTION

The problem of Simultaneous Localization and Mapping
(SLAM) has been a topic with a very intense research in
the last years. Virtually all of the reported approaches rely
on probabilistic Bayesian filtering [13], since in any realistic
scenario we only have noisy measurements and imperfect
actions.

Regarding the kind of sensors employed for SLAM, a lot
of attention has been payed to precise laser scanners, stereo
cameras (both providing bearing and range estimates) and
monocular cameras (providing bearing-only information).
For a survey of works in the field please refer to [2], [21].
However, relatively few works have addressed the problem of
building maps with sensors providing range-only (RO) data,
in despite of their important applications such as submarine
autonomous vehicles [18] or ground vehicles in industrial
environments [9].

There are two fundamental characteristics that render RO-
SLAM specially challenging: the existence of outliers due
to the sensor nature (typically sonar or radio pulses), and
more importantly the high ambiguity of the measurements.
To illustrate this later issue, consider the example in Fig. 1,
where a robot measures the distance to the indicated beacon
from three different positions along a straight path. For each
position it is shown the ring-shape area of the estimated
position of the beacon that is consistent with the mea-
surement (concretely, the figure represents the probabilistic
inverse sensor model, but further details are irrelevant at this
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point). Therefore, two problems with these sensors are: (i) the
large portion of the environment where a beacon could be,
given just one observation, and (ii) the very likely possibility
of multiple plausible hypotheses (as shown in the figure).
These issues become more severe when building 3D maps, a
requisite when beacons are placed at different heights. Thus,
RO-SLAM may become a problem even more challenging
than bearing-only SLAM ([6], [16]) where the landmark
estimates typically converge to a single mode. On the other
hand, an advantage of RO-SLAM is the non-existence of the
data association problem, since the usage of active beacons
allows most sensors to establish unique correspondences
between sensed ranges and particular beacons.

Regarding previous proposals for RO-SLAM, in [20] it
is reported a geometric method for adding new beacons to
a map using delayed initialization, but a partially known
map is required at the beginning. Range-only localization
is also addressed in [12] and [15] under the classic EKF-
based implementation of SLAM. The authors propose an
approximation of the sensor model inspired by the circular-
shaped distributions obtained for range sensors. They also
address map building but assuming a prior knowledge about
the beacon locations. Sub-sea RO-SLAM is demonstrated in
[18] with good results, even with the lack of a reliable ego-
motion estimation (e.g. from odometry). The main difference
with the present work is the usage of a least-square error
minimization procedure instead of a probabilistic filter where
several robot path hypotheses are considered simultaneously.
The work in [19] achieves RO-SLAM through a different
strategy: firstly, an initial estimation of the position of each
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Fig. 1. One peculiarity of Range-Only SLAM is that map estimations may
converge to multi-modal densities. In this example, the symmetry in the
observations made by a robot over a straight path leads to two regions with
a high probability of containing the sensed beacon.
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beacon is computed using a voting scheme over a 2D grid (a
interesting contribution of that work is a preliminary robust
filtering of outliers using a graph cut approach). Once the
initial estimation converges, a standard EKF deals with the
SLAM problem. A similar scheme is adopted in [7], where
the authors also explore the possibility of inter-beacon range
measurements to improve map building.

In one of our previous works [4] we introduced a
probabilistic formulation of RO-SLAM based on a Rao-
Blackwellized Particle Filter (RBPF), a solution with the
advantage of decoupling the conditional distributions of each
beacon in the map for each path particle. This entails freedom
in the design of each of these distributions in such a way that
at some given instant several already well-localized beacons
may coexist in the map with more recently added beacons
that have higher uncertainty. One advantage of our solution
is that a robot can employ all the available information
to perform localization without waiting until the beacon
distributions converge as in other proposals. Additionally,
new beacons can be inserted at any time in the filter, which
is unfeasible under EKF-based solutions to SLAM.

The contributions of this paper over previous works are: (i)
a new inverse sensor model for initializing map distributions
as weighted Sums of Gaussians (SOGs), (ii) the explanation
of how to update those Gaussians and their weights using
a multi-hypothesis EKF, and (iii) the derivation of the
corresponding observation model required for the RBPF. The
present approach has the advantage of a reduced computation
burden due to the limited number of Gaussians required
for a proper representation, while still providing an accurate
approximation of the strongly non-Gaussian and frequently
multi-modal distributions found in RO-SLAM.

We also provide statistical analysis from simulations
demonstrating that our new approach can cope with highly
noisy sensors and reduces in one order of magnitude the
average errors of the MC approximation, at a fraction of its
computation time.

II. PROBLEM STATEMENT

Following the standard notation in the SLAM literature
[22], we denote the robot path as the sequence of poses in
time xt = {x1, x2, ..., xt}, while robot actions (odometry)
and observations (range measurements) for each time step t
will be represented by ut and zt, respectively.

The RBPF approach to estimating the joint SLAM poste-
rior p(xt,m|ut, zt) consists on approximating the marginal
distribution of the robot path xt using importance sampling,
then computing the map as a set of conditional distributions
given each path hypothesis. That is, if we denote the i’th par-
ticle as xt,[i] and its corresponding importance weight as ω

[i]
t ,

we are assuming the following Monte-Carlo approximation
of the path:

p(xt|ut, zt) ≈
M∑

i=1

ω
[i]
t δxt,[i](xt) (1)

The motivation for choosing a RBPF approach is that it
allows factoring the distribution of the map associated to
each particle as:

p
(
m|xt, zt, ut

)
=

∏

l

p
(
ml|xt, zt

l

)
(2)

being ml the different individual beacon positions in the
map m. The factorization in (2) follows from the conditional
independence of each beacon in the map given the robot
path, hence for each of them we can employ the kind of
representation most convenient at each time step without
affecting either the given path or other beacons. Section III is
devoted to the computation and update of these map densities
within the main RBPF.

For completeness we summarize next the sequential algo-
rithm to be executed at each time step. Assume that the set of
particles for the previous time step xt−1,[i] are approximately
distributed according to the real posterior. In the case of the
first time step all the particles can be arbitrarily initialized to
the origin. At each iteration, new particles are drawn using
the robot motion model (in our case, derived from odometry
readings), that is, x

[i]
t ∼ p(xt|x[i]

t−1, ut). Next, the importance
weights are updated as:

ω
[i]
t ∝ ω

[i]
t−1p

(
zt|xt,[i], zt−1

)
(3)

with the probabilistic observation model p
(
zt|xt,[i], zt−1

)
being derived in section III-D. If necessary, the particles may
be resampled to preserve their diversity. This is typically
performed whenever the effective sample size falls below a
given threshold [17]. After updating the estimate of the robot
path, the corresponding conditional distributions of the map
must be also updated to account for the new range readings,
as discussed next.

III. DERIVATION OF THE SOLUTION

In a RBPF, each robot path hypothesis is associ-
ated with the corresponding conditional map distribution
p(ml|xt,[i], zt) for each beacon l. Note that in the follow-
ing we drop the l subscript for clarity, since subsequent
derivations apply equally and independently to any number
of beacons in the map.

Incorporating new information (the new robot pose xt and
the observation zt) into the map belief m of one beacon is
carried out applying the Bayes rule, as follows:

p(m|xt, zt)︸ ︷︷ ︸
Posterior

Bayes∝

p(m|xt−1, zt−1)p(xt, zt|m,xt−1, zt−1)
= p(m|xt−1, zt−1) p(xt|m,xt−1, zt−1)︸ ︷︷ ︸

Constant

p(zt|m,xt, zt−1)

∝ p(m|xt−1, zt−1)︸ ︷︷ ︸
Prior

p(zt|m,xt, zt−1)︸ ︷︷ ︸
Inverse sensor model

(4)
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Fig. 2. The variables involved in the generation of the Gaussian modes
within each SOG. Azimuth and elevation angles from the sensor position
(the coordinate origin in the figure) are represented by α and β, respectively.
The covariance matrix is computed by mapping the uncertainties in the radial
(v1) and tangent (v2, v3) directions using the appropriate transformation
matrix. Refer to section III-A for further details.

where the definition of conditional probability has been
applied in the third line, and the marked term is constant over
all the RBPF particles since neither the last action ut nor the
last observation zt appear. Put in words, the posterior belief
is obtained by multiplying the previous belief by the inverse
sensor model, which determines the likelihood of finding the
beacon at any position m given the observed range value zt

and assuming xt as some fixed hypothesis for the robot pose.
Next subsections discuss how to implement the above general
equation.

A. Inserting a new beacon

When a beacon is firstly observed at some given instant
of time t (not necessarily the first time step), the prior belief
in (4) is undefined. Thus, if there is no a priori information
at all about the spatial disposition of beacons it is plausible
to assume a uniform prior. There is however one interesting
exception with important practical consequences. In the case
of a ground vehicle building a 3D map, if we know in ad-
vance that all the beacons have been placed at a height above
(or below) the robot (the typical situation in an industrial
environment), the prior becomes a uniform distribution over
half of the space (and zero in the complementary part). This
is important since, as shown in the experimental results, a
vehicle moving on a flat scenario can build a 3D map only
up to a symmetry with respect to the robot plane: it cannot
be disambiguated whether a given beacon is above or below
the robot.

Once defined the prior belief as a uniform, it follows
from (4) that the initial map distribution becomes simply the
inverse sensor model p(zt|m,xt, zt−1) (or its evaluation over
half of the 3D space in the special case commented above).

Assuming a range sensor model with additive Gaussian noise
of variance σ2

s , the probabilistic model is:

p(zt|m,xt, zt−1) ∝ exp

(
−1

2
|xt −m|2

σ2
s

)
(5)

The evaluation of this model gives the typical ring shapes
as those in Fig. 1. The problem is that this density cannot be
filtered iteratively in any analytical form, thus in RO-SLAM
we must rely on approximations. In this work we propose to
adopt a Sum of Gaussians (SOG) approximation, such as:

p(zt|m,xt, zt−1) ≈
N∑

k=1

υk
tN (m; m̂k

t ,Σk
t ) (6)

being υk
t the weight of each Gaussian mode, and m̂k

t and
Σk

t its mean and covariance matrix, respectively.
With the aim of approximating (5) for a range measure-

ment zt = r, we have to generate a number of Gaussians
equally spaced over a sphere centered at the sensor position
and with radius r, following the procedure described next.
Each of the SOG modes is placed at a direction stated by
a discrete set of azimuth (−π < α ≤ π) and elevation
(−π/2 < β ≤ π/2) angles – refer to Fig. 2 for a schematic
representation. Let ∆ denote the angular increments between
consecutive Gaussians along either α or β. Since the model
approximation will become poorer for larger distances be-
tween Gaussians, let dm represent the maximum distance
allowed between adjacent Gaussians in the regular grid over
the sphere.

The angular increment ∆ can be computed as ∆ = 2π/B,
being B the integer number of modes along any great circle
of the sphere, determined as:

B = 2
⌈

πr

dm

⌉
(7)

where the 2 is out of the ceiling operator to force an even
number of modes and assure symmetry.

At this point we have computed the discrete sequences of
angles αi and βj for i = 1, .., B and j = 1.., B

2 that define
a regular grid over the sphere. Thus, the mean of each SOG
mode is given simply by:

m̂ij
t =




x0 + r cosαi cosβj

y0 + r sinαi cos βj

z0 + r sin βj


 (8)

Here (x0 y0 z0)T stands for the absolute coordinates of the
robot range sensor, which are known since we are assuming
a robot pose hypothesis x

[i]
t . To compute the covariance Σij

t ,
let define three unit orthogonal vectors with origin the mean
of the Gaussian. For convenience, the first vector v1 will
be always pointing radially, hence the others (v2 and v3)
are tangential to the sphere, as illustrated in Fig. 2. Such
a vectorial base is well-defined for any sphere of non-zero
radius. Note that the uncertainty in the radial direction (the
“thickness” of the sphere) is determined by the noise σs in
the sensor model (5). Furthermore, since we desire radial



symmetry by design, the uncertainty σt in both tangential
directions should be equal and proportional to the separation
between Gaussians, that is, σt = r∆K, with K being a
proportionality factor. The covariance can be now computed
as:

Σij
t =

(
v1 v2 v3

)



σ2
s 0 0
0 σ2

t 0
0 0 σ2

t







vT
1

vT
2

vT
3


 (9)

Finally, the weights υij
t of all the newly generated Gaus-

sians are equal since all of them are equally probable. It is
worth noting that the above process can be applied to 2D
maps by fixing β to 0 and discarding one of the tangent
vectors.

The constant K deserves further comment, since it deter-
mines the quality of the approximation to the real inverse
sensor model. To illustrate graphically the effects of this
constant, please refer to Fig. 4(a)–(b) where a SOG is
generated for K = 0.5 and K = 0.3. Simple visual
inspection reveals that the second case leads to a worse
approximation of the actual “ring” density. We have com-
puted the Kullback-Leibler divergence (KLD) [14] as a well
grounded measure of similarity between the approximate and
the actual densities for different ranges r from 1 to 10 meters,
and for different values of K. The results, in Fig. 4(c), reveal
that good approximations can be obtained, but unfortunately
the optimal K varies with the sensed range r. However,
values of K near 0.4 always lead to reduced KLD values,
hence that is the value employed for the rest of experiments
in this work.

B. Updating the SOG

Once the beacon has been inserted in the map, subsequent
range measurements zt update the belief through (4), which
in this particular case of the prior density defined as a SOG
can be efficiently implemented as a multi-hypothesis EKF.
Basically, the mean and covariance are updated using the
standard EKF formulas [11] (omitted here for brevity), while
the weights are updated by evaluating the actual reading zt

into the Gaussian of the observation predicted by each SOG
mode [1]:

υk
t ∝ υk

t−1N
(
zt;hk

t , σk
t

2
)

(10)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-3

10
-2

10
-1

10
0

KL divergence

K
(c)(b)

(a)

K=0.5

K=0.3

Fig. 4. (a)–(b) Inverse sensor model for a sensed range of r = 1 meter
computed from our SOG approximation and two different values of the
constant K, which determines the standard deviation of Gaussian nodes
in tangential directions. (c) The Kullback-Leibler divergence (KLD) of our
SOG approximation as a function of K and for r between 1 and 10.

where the mean hk
t = h(x[i]

t , m̂k
t ) is computed using the

sensor model h(·), and the variance σk
t
2 includes the sensor

noise σs and the projection of the beacon uncertainty:

σk
t

2
= HΣk

t HT + σ2
s (11)

being H the Jacobian of the sensor model. Note the pro-
portionality in (10), due to the fact that all the weights are
normalized to sum the unity at each iteration.

An important insight in this approach is that, eventually,
most of the Gaussians in a SOG will have negligible weights
as they become inconsistent with the complete sequence of
observations. Since the contribution of these modes to the
overall density will be negligible as well, we can simply
remove them from the SOG, hence our approach automati-
cally adapts its computational burden to the real uncertainty
present at each instant of time, as will be shown later on
with real experiments (this is analogous to approaches that
scale the number of samples in particle filters [10]).

C. An illustrative example

To illustrate and clarify all the ideas discussed up to this
point, consider the example depicted in Fig. 3, where a well-
localized robot estimates the position of just one beacon (i.e.
there is only mapping, no localization). At the initial instant
t1, the SOG is created as the robot observes the beacon for
the first time, following the procedure described in section

Beacon PDF

Robot path

Two symmetrical
modes

A single Gaussian
t1 t2 t3 t4

Fig. 3. An example of how our approach iteratively estimates the location of one beacon. It is shown how the Gaussian modes with lowest weight in
the SOG are discarded with time, and how symmetrical results are obtained for straight paths. In t4 it can be seen how this symmetry quickly disappears
when the robot deviates from the straight path.



III-A (in this case reduced to 2D for clarity in the represen-
tation). Next, as the robot moves along a straight path, the
mean and covariances of all the Gaussians are modified by
subsequent observations, as can be appreciated at instant t2.
At this point many modes already have negligible weights,
hence they have been removed from the filter. Later on, at
time t3, the beacon has converged to two symmetrical modes
with respect to the robot path. However, the symmetry is
broken when the robot moves apart from its previous straight
path, as it can be seen in t4, where the beacon has been
successfully localized without ambiguities.

D. The observation model

Taking into account our approximation of each map distri-
bution as a SOG (6), we can expand the observation model
required in (3) to update the weights of the RBPF, as follows:

p
(
zt|xt,[i], zt−1

)

=
∫

p
(
zt|x[i]

t ,m
)

p
(
m|xt−1,[i], zt−1

)
dm

=
N∑

k=1

υk
t−1N

(
zt; hk

t , σk
t

2
)

(12)

where each normal distribution represents the predicted ob-
servation for one mode within the SOG. The parameters of
these Gaussians have been already described in (10)–(11).

IV. EXPERIMENTS

To validate our approach we have performed extensive
simulations in order to (i) characterize its performance
against different levels of input noise, and (ii) to compare
it with our previous work [4]. Additionally, we present the
construction of a 3D map from data gathered by a real robot.
A video illustrating the following results and the source code
are available online in [3] 1.

1Since this work is unpublished, please use the direct link
http://babel.isa.uma.es/mrpt/index.php/Paper:RO-SLAM with SOG

A. Performance characterization

We have carried out three series of simulations in order to
characterize statistically the accuracy in the maps generated
by our approach. The first experiment characterizes the
average localization error for beacons in the final map as a
function of the sensor noise σs. The results are represented
in Fig. 6(a) through the mean errors and their corresponding
67% confidence interval. To obtain statistically significant
results we have executed our approach 50 times for each
parameter value, each time with 20 randomly placed bea-
cons. Average errors as a function of odometry noise and
the number of particles in the RBPF have been computed
similarly and the results are plotted in Fig. 6(b)–(c). Errors in
odometry are represented as the ratio between the standard
deviation of the Gaussian noise and the actual increment
between consecutive robot poses.

The interpretation of these statistical results is that, as
expected, lower levels of noise or more particles lead to
lower average errors. Our method can cope with heavily
corrupted range observations (e.g. σs up to 1m in a 20×20m
map) exhibiting map errors approximately proportional to
the sensor noise (see Fig. 6(a)). However, smaller errors in
odometry – above 5% in our experimental setup, see Fig. 6(b)
– lead to a faster raise in the map errors. The reason is the
usage of the robot motion model (based on odometry) as
the proposal density in the RBPF. More optimal choices [5],
[8] would give increased robustness at the cost of a larger
computational burden.

B. Comparison to Monte-Carlo approximation

Next we compare our method, based on a SOG represen-
tation of the map conditional densities, to a previous work
[4] where a MC approximation was employed instead. In
order to provide a fair comparison between both methods,
we have analyzed the average errors in the maps for similar
computational burdens and the average execution times for
similar map errors. The results are summarized in Fig. 5(a)
and (b), respectively. For similar computation times, the
MC approach obtained an average error of 0.28m while for
our new proposal this error reduces to 0.03m. Furthermore,
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Fig. 5. A comparison of the present approach (SOG) and the method in [4] (MC). (a) Average beacon error (m) for similar computation time in both
approaches. (b) Average computation time per particle (ms) for similar final beacon errors. (c) Beacon errors for a simulated sensor heavily corrupted with
noise and outliers.
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Fig. 7. Results from data gathered by a real robot equipped with a UWB transceiver. (a) Errors in each beacon estimate with respect to the ground truth.
(b)–(c) A bird-view and a 3D representation of the final state of the filter, respectively. The map shown is that one associated to the particle with the
highest probability. (d)–(e) Overall number of Gaussians in the most likely map and computation time, respectively, for each iteration of the algorithm.

in the second situation (similar map errors) the average
execution times are 3.9 and 32.4 ms per particle for the SOG
and MC solutions, respectively. Therefore, the new proposal
outperforms [4] by one order of magnitude in both efficiency
and accuracy.

We have also analyzed the tolerance of both methods to the
presence of outliers in the range data. In our approach, unusu-
ally large errors in the sensed range are specially problematic
if they occur the first time a beacon is observed, since we
rely on this first range to initialize the map distribution. With
this idea in mind, we have setup an experiment simulating
a highly noisy sensor, σs = 1m, whose ratio of outliers is
30% the first time a beacon is observed and 5% for the rest
of observations. Outliers have been simulated by adding to
the ranges a uniform noise between 1 and 10 meters. The
average map error histograms for 50 repetitions are shown in
Fig. 5(c). In this case, a mean error of 1.12m is obtained for
the MC approximation, while the present approach achieves
a significant reduction up to 0.32m. The better results of
the SOG representation arise from the better adaptability
of Gaussian modes to newer observations (i.e. they can be
“displaced”), even recovering from a heavily corrupted initial
distribution.

C. A 3D map from a real dataset

Finally, we have applied our approach to a sequence of
UWB range measurements [9] within an indoor environment.
The experimental setup consists of a Pioneer mobile robot
with a UWB transceiver onboard, while other three UWB
devices act as static radio beacons. The position of the three
beacons has been measured manually to provide the ground
truth required to evaluate the results. In this case we have
employed the a priori knowledge that beacons are above the
robot to limit the map prior distribution to one half of the
3D space, as discussed in section III-A.

TABLE I
SUMMARY OF ERRORS FOR THE 3D MAP BUILT FROM UWB DATA

Beacon coordinate Ground truth (m) Estimate (m) Error (m)
x 0 -0.059 0.059

#1 y 0 -0.278 0.278
z 0.912 1.17 0.257
x -0.320 -0.392 0.072

#2 y 4.332 4.419 0.087
z 1.374 1.214 0.159
x 3.403 3.513 0.109

#3 y 2.802 2.740 0.062
z 2.175 2.108 0.067

After completing one loop along the room, the estimates
for all three beacons have converged to unimodal distribu-
tions, as shown in Fig. 7(b)–(c). In despite of the noisy sensor
(σs = 0.10m), it can be observed in Fig. 7(a) how the errors
in the location of each beacon quickly vanish as the robot
moves just a few meters. The better estimation of the beacon
#3 (refer to Fig. 7(c)) is a consequence of its higher height
relative to the robot, which makes range observations more
discriminant. The errors between the final beacon estimates
(the means) and the ground truth are summarized in Table I.

Finally, observe in Fig. 7(d)–(e) how the computational
burden of the algorithm decreases with time as the map
estimate becomes more precise and fewer Gaussians are
required to represent the maps densities. Unlike in our
previous approach [4], a reduced number of Gaussians will
not lead to degeneracy of the filter as in a MC approximation.
At the point of maximum complexity, just after initializing
three beacons, the computation time is of 6ms per particle,
thus our method is efficient enough to perform online on a
real robot.
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Fig. 6. Statistical results from simulations sweeping different parameters:
(a) the sensor noise (σs), (b) odometry errors, and (c) the number of particles
in the RBPF. Results present average errors for beacon locations among 67%
confidence intervals.

V. DISCUSSION

In this work we have presented a novel representation
for the map conditional densities associated to the particles
of a RBPF, which is based on a SOG. This approach has
revealed well-suited to the particular problems that arise in
RO-SLAM, being significantly more efficient and accurate
than other alternatives based on MC approximations. We
have verified experimentally the robustness of the method
against readings heavily corrupted with noise and outliers,
as well as its ability to build 3D maps from a real dataset
gathered using UWB radio transceivers. Future research will
address the problem of the dependency on odometry as well
as analyzing better alternatives to the proposal density in the
RBPF.
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