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Abstract— This paper presents ERODE, an efficient outlier
detector with a quality similar to that of standard RANSAC but
at a fraction of its computational cost. In contrast to RANSAC-
based methods which follow a hypothesis-and-verify approach,
ERODE employs instead the whole set of observations together
with a robust kernel to perform robustified least-squares min-
imization. Our proposal has important practical applications
among computer vision problems, which we demonstrate with
stereovisual odometry experiments with both simulated and real
data.

I. INTRODUCTION
A common issue found in computer vision problems is

the presence of noise and outliers that corrupt data and
features gathered from images, representing a challenge to
the accuracy and reliability of the intended applications. In
general, however, the effects of random noise tend to cancel
out when using least-squares estimation or other filtering
techniques. In contrast, the presence of outliers (defined as
observations that appear to deviate markedly from other
members of the sample in which it occurs [1]) means a
more serious problem and, in fact, may lead an application
to completely inaccurate results. Hence the development of
robust techniques for minimizing their impact has become
essential.

In this sense, a wide range of robust estimators have
been proposed in the technical literature, being the RANSAC
method, originally published by Fischler and Bolles [2],
probably the most widely employed in Computer Vision.
RANSAC is a hypothesis-and-verify algorithm that itera-
tively generates a tentative solution from a randomly selected
minimal subset of data and searches for consensus among
the rest of the data, generating consensus sets (CS). The
solution with highest support from all the hypotheses is taken
as the final estimation of the model. Although being highly
robust, RANSAC becomes computationally unfeasible when
the percentage of outliers in the data increases significantly,
since the number of hypotheses to be tested also grows, often
preventing its usage in real time.

Hypothesis-and-verify methods are not the only solutions
to properly cope with outliers. Methods that define robust
distributions [3] to model the presence of errors in the data
make also possible to estimate the camera motion from all
the data, regardless of the presence of outliers. Furthermore,
although they can achieve a good estimation of the camera
motion without explicitly distinguishing between inliers and
outliers, it is straightforward to use them to perform fast
outlier detection and, after their removal, to refine the final
estimation. To the best of our knowledge, this approach has
not been explored and applied to visual odometry.

Following this approach, in this paper we propose an
efficient and robust outlier detector (ERODE) aimed at
rejecting outliers in the feature associations employed in
stereovisual odometry. Unlike previous proposals, it neither
follows a hypothesis-and-verify approach, nor relies on prior
information about the points and achieves results compara-
ble to those by RANSAC. Its fundamental advantage, in
comparison to RANSAC, is a significant reduction in the
processing time (about one order of magnitude), while still
performing almost as good in rejecting outliers for a wide
range of outliers ratios. The main weakness of our proposal
is the need for a decent initial estimation for the unknown
model, thus it cannot replace RANSAC in all applications
but definitively is a much better alternative wherever such
a gross estimate is available. In visual odometry, using the
previous camera location as starting point for the new pose
is good enough for our method, as will be demonstrated with
experiments on both real and simulated datasets.

II. RELATED WORK

Several works have tried to outperform the accuracy or
overcome the drawbacks of RANSAC in Computer Vi-
sion. Thus, Torr and Zisserman presented in [4] a pair of
approaches called MSAC and MLESAC which introduce
some modifications in the RANSAC method to reinforce its
robustness, and applied them to estimate some multiple view
relations between images related by rigid motions. Briefly,
the former changes the way that RANSAC determines the
quality of a certain CS from simply its cardinality (i.e.
the number of inliers) to a measurement of how well the
inliers fit the model. The latter goes one step further and
uses the negative log-likelihood of the mixed distribution of
the errors (including the outliers) as a score of the CS and
simultaneously estimates the percentage of outliers present
in the observation. Nevertheless, these approaches do not
reduce the computational time of the RANSAC algorithm.

Focusing on the computational burden, a set of methods
has been developed which adds a preemptive approach to
RANSAC. Chum and Matas presented R-RANSAC [5],
probably the first preemptive attempt to reduce RANSAC
computational complexity, that decreases the amount of
matches to test when evaluating a hypothesis by selecting
a random subset of them. The same authors also presented
PROSAC [6], that orders the putative matches according
to their scores and selects the minimal consensus set from
a subset of them to instantiate the hypotheses. With this
modification, they report a decrease of up to two orders of
magnitude in processing time.
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A similar approach that uses MLESAC as a basis, followed
Tordoff and Murray when presented Guided-MLESAC [7],
an improved version that reports a reduction of its compu-
tational time by an order of magnitude when applied to the
estimation of camera motions. They employ the score of a
match (in the paper, the normalized cross correlation of their
grey-level patches) to derive its prior probability of being an
inlier and to guide the selection of the features which form
the initial minimal CS for a hypothesis. Hence, those matches
with higher score are more probable to be selected to build
an initial CS.

Finally, David Nister presented another preemptive
RANSAC-based method [8] that estimates both structure
and motion in multiple views in real time. This approach
follows a breadth-first preemption scheme consisting of the
generation of a set of hypothesis and their iterative scoring
as introducing observations into the consensus set. In each
iteration, only a decreasing number of the highest scored
hypotheses are evaluated until the winner is found.

Apart from the series of works by Nister [9], [10] which
relies on preemption, little importance has been given to the
rest of schemes in vision-based motion estimation applica-
tions, even though they have shown to be sound improve-
ments of RANSAC. Instead, standard RANSAC have been
extensively employed [11], [12], [13], [14].

III. ROBUST STEREOVISUAL ODOMETRY

This section depicts the stereovisual odometry application
and introduces the notation employed throughout the paper.

A. Stereovisual odometry

The term stereovisual odometry stands for the process
of estimating the change in pose that a stereo camera
undergoes between two consecutive time steps by exclusively
employing the information from stereo images. Let xk =[
tkx, t

k
y , t

k
z , α

k, βk, γk
]T

be a column vector representation of
the change in pose between time steps k and k+1 so that tkx,
tky and tkz indicates the change in position (i.e. translation) of
the cameras and αk, βk and γk stand for the Euler rotation
angles (i.e. the orientation). In this work, xk will sometimes
be referred as the model and, for the sake of simplicity, the
subscript regarding the time step will be dropped wherever
it is unnecessary.

The general solution to the problem of estimating the
model x with a stereo camera follows this procedure:

1) Feature detection. Use an interest point detector (Har-
ris corner detector [15], SIFT [16], etc.) to extract
features in a pair of images Ik grabbed with the stereo
pair (the subscript stands for the k-th time step).

2) Stereo matching. Match the features in the left image
with their correspondent in the right one, aided by
the epipolar restriction and using some measurement
of the similarity between the features (normalized
cross-correlation, sum of absolutes differences, SIFT
descriptors, etc.).

3) Repeat steps (1) and (2) for the pair of images Ik+1.

4) Data association. Search in images Ik+1 for the
correspondences of the matches in Ik within a certain
window (of size w × w) around the position of the
features in Ik. An interest point will be considered
correct only if it is found in all the four images. In
this work we define an individual observation (z̄i) as
the set of the coordinates of a certain feature in Ik+1:

z̄i =
[
uk+1
l , vk+1

l , uk+1
r , vk+1

r

]
with the subscripts l and r indicating the image (left or
right, respectively) where the coordinates u, v (image
column and row, respectively) correspond. The set of
individual observations for a certain time step forms
the observation (z̄ = {z̄i}).

5) Choose an initial estimation x0 of the full 6D motion of
the stereo camera which, among with the observation,
will constitute the input data to the process of com-
puting the camera motion. Under the mild assumption
of a small change in pose between frames, an all-
zeros initial estimation

(
x0 = [0, 0, 0, 0, 0, 0]

)
will be

sufficient.
6) Motion estimation. Triangulate the matches in Ik

into the 3D space and back-project them on Ik+1

according to the current estimation of the motion. The
function which relates the current model x to the
coordinates of the features in Ik+1 is known as the
prediction function pz(x) and such coordinates form
the prediction (pz(x) = z = {zi}).

7) Iteratively improve the motion estimation x and repeat
from step (5) until the mismatch between the predic-
tions and observations converges to a minimum. Such
mismatch is usually measured as the Mahalanobis dis-
tance between the predicted and the observed positions
of the detected features in the images.

The iterative minimization of steps (5)–(6) can be achieved
with a Maximum Likelihood Estimator (MLE) which, essen-
tially, selects the model xk

∗ for which the total probability
of the observed data becomes the highest. If the data are only
corrupted by zero-mean Gaussian noise, the MLE coincides
with a nonlinear least-squares estimator which minimizes a
cost function like:

F (x) =
∑
i

1

2
∆zTi Wi∆zi (1)

where x is the vector of model parameters, ∆zi = zi − z̄i
stands for the error between the prediction of the i-th feature
and its observation, and Wi is an appropriate weighting
matrix, proportional to the inverse covariance of the normally
distributed noise. Assuming identical error distributions for
all detected features in both x and y directions leads to the
simplification Wi = I,∀i.

B. Gauss-Newton nonlinear least-squares minimization

The aim of the minimization process is to find a suitable
model x that produces the minimum combined error for
all the observed features. In general, cost functions present
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nonlinearities that prevent obtaining a closed-form solution,
thus a truncated Taylor series expansion of the function is it-
eratively minimized instead, relinearizing the approximation
around the current model estimation until convergence. At
each iteration we look for a small change ∂x in the model
for updating its estimation like xi+1 = xi + ∂x. It can be
demonstrated [17] that the optimal step arises by solving:

H∂x = −g (2)

Here, H stands for the Hessian matrix and g is the gradient
vector of the cost function F (x). However if we consider
(1) to be the cost function and under the assumption that the
prediction errors ∆zi are small, we find:

H ≈ JTWJ (3)
g = JTW∆z (4)

with J = dpz

dx being the Jacobian of the prediction model
and ∆z = {∆zi}, hence converting (2) into(

JTWJ
)
∂x = −JTW∆z (5)

which expresses the relation between the update ∂x of the
estimated model in terms of the error ∆z (often referred as
the residual) and the prediction function pz.

C. Outlier rejection: the RANSAC estimator

Due to inaccuracies in the interest points detectors and
mismatches in the data association process, the presence of
outliers is inevitable and they should be removed from the
input data in order to accurately estimate the camera motion.
The most widely employed method to overcome this issue
is RANSAC.

RANSAC performs by randomly selecting a minimal
set of individual observations from the input data (three
observations for stereovisual odometry) which leads the
Gauss-Newton least-squares minimization process until an
estimation of the model, called the hypothesis, is computed.
Subsequently, the residuals of the rest of the data are com-
puted subject to the hypothesized model and, according to a
defined threshold, the data are classified in inliers or outliers,
being the set of inliers referred as the consensus set (CS) and
its cardinality as the support for the hypothesis.

This process is repeated a certain number of times and
the hypothesis with the highest support is selected as the
best estimation (xk

∗) for the model.
The number of hypotheses (nh) that RANSAC needs to

explore in order to find an outlier-free consensus set with a
certain level of confidence follows this expression:

nh ≥
⌈
log (1− q)
log (1− εm)

⌉
(6)

with ε being the estimated percentage of inliers in the
data and q the probability of obtaining an outlier-free CS.
For instance, with m = 3 as in stereovisual odometry,
to achieve a 95% of probability of getting an outlier-free
consensus set, the value of nh spans from 2 to 2995 for
an inlier percentage of 5% to 90%, respectively. However,
these number of hypotheses have often been considered to

be overoptimistic and, in practice, they must be increased
to cope with degenerate configurations in the data. This
issue renders the capability of RANSAC of dealing with data
contaminated with a large ratio of outliers when used in real-
time applications.

IV. OUR PROPOSAL: ERODE

In this work we propose a novel, efficient method for
stereovisual odometry based on robust kernels to perform
fast and reliable outlier rejection even under conditions of
large ratio of outliers. The core of our approach is the usage
of a robust radial distribution to model the errors in the data,
including both the noise and the outliers.

Outliers produce errors in the data which do not follow
a Gaussian distribution and, therefore, their presence un-
avoidably leads to unreliable results of the MLE due to
the fact that the probability of finding gross errors under
a Gaussian assumption is extremely low (the tails of a
Gaussian rapidly diminish). Here is where a realistic model
of the error distribution plays a crucial role for the MLE to
be useful, since unmodeled outliers are sufficient to render
standard least-squares estimators useless. Mixture of both
Gaussians and uniform distributions, or more sophisticated
ones as Cauchy or Huber distributions [18], are examples
of models for both inliers and outliers (hence defined as
total distributions). All of these distributions, among with
the Gaussian itself, are also known as radial distributions
and have negative log likelihood of the form:

F (x) =
∑
i

1

2
ρi

(
∆zTi Wi∆zi

)
(7)

where ρi(s) can be any increasing function that fulfills
ρi(0) = 0 and ρ′i(0) = 1. Note that (1) is a particular case
of this expression with ρi(s) = s whilst more robust cost
functions are sublinear in s, often tending to a constant value
at∞. It is important to highlight that the usage of robust error
distributions would make unncessary to follow hypothesis-
and-verify approaches as they are practically inmune to the
presence of outliers. Nevertheless, although the influence of
outliers in the cost function is almost negligible, in practice,
better results are achieved if they are detected and removed.

In this work we consider to employ a pseudo-Huber
distribution [19] to model the errors and to lead a robustified
Gauss-Newton least-squares minimization process which will
split the input data set in inliers and outliers. The negative
log-likelihood of the probability density function of the
pseudo-Huber distribution forms the cost function to be
minimized

FR(x) =
∑
i

1

2

[
2b2
(√

1 +
( si
b2

)
− 1

)]
(8)

with si = ∆zTi Wi∆zi and b being a parameter which tunes
the shape of the function.

Figure 1(a) shows the comparison between the cost func-
tions of the standard least-squares approach and the pseudo-
Huber version with b = 2. Note that, for the robustified
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Fig. 1. (a) Cost functions and (b) the first derivative of ρi for a Gaussian
(blue-solid) and a pseudo-Huber (red-dashed) distribution.

version, as the error increases (abscissa axis) the contribu-
tion of the observation to the cost function (ordinate axis)
decreases compared to the standard least-squares case.

It is important to note that using a different cost function
than (1) produces a modification in the above mentioned
Gauss-Newton expressions. In concrete, we need to introduce
the first derivative of ρi by weighting the gradient vector of
the cost function with the vector ρ̄′ = {ρ′i} so that outliers
contribute more slightly to it

g = ρ̄′JTW∆z (9)

thus leading to a modified version of equation (5):(
JTWJ

)
∂x = −ρ̄′JTW∆z (10)

where, for the pseudo-Huber distribution, we have

ρ′i =
dρi
ds

=
1√

1 + s
b2

(11)

The effects of this modification are shown in Figure 1(b)
where it can be noted that the value of ρ′i decreases as the
residual grows, so that, when multiplied by the residual itself
in (10), the contribution of large errors to the gradient vector
is attenuated.

This approach implies that all the input data are considered
in the minimization process but, on the other hand, there is
no need to try different hypotheses of the model. With this
method, the estimation process naturally converges towards
the true solution and, after a few iterations, the outliers
appear clearly visible in the vector of residuals so that we can
remove them and, subsequently, refine the estimated solution
to achieve higher accuracy.

A. Computational performance

Here we address the computational burden of both
RANSAC and our proposed method when estimating the
motion of the stereo camera. In this section, the superscripts
a and b will be used to refer to the RANSAC method and
ERODE, respectively.

Let M be the number of elements that form the input
data for a certain time step, being min of them inliers.
RANSAC explores nh hypotheses and, for each one of them,
it picks up m elements from the data and performs a com-
plete minimization process which iteratively computes both
the prediction and the Jacobian of the prediction function,
spending pp and pJ seconds per element, respectively. The
number of iterations it performs until convergence will be
denoted by nai . Then, RANSAC evaluates the rest of the data
(M − m elements) against the estimated motion, spending
just pp seconds per element as the Jacobian is not computed
here. After the nh iterations, the largest CS is assumed to be
the set of inliers and the computed solution considered the
best possible. Finally, it is a common practice to subsequently
start a new minimization process with only the set of inliers,
and take the best solution so far as the initial estimation,
in order to refine the final result. Let naf be the number of
iterations this refinement minimization would take. Thus, the
computation time that RANSAC would spend to yield the
final estimate of a particular motion of the camera would be

ca = nh [naim (pp + pJ) + (M −m) pp]+nafmin (pp + pJ)

On the other hand, ERODE performs nbi iterations of the
minimization process with the whole set of input data and,
subsequently, the elements whose residual fall over a certain
threshold are considered to be outliers. Finally, a refinement
minimization process is started with only the inliers, reaching
convergence in nf iterations. Thus, the computational burden
for this approach can be expressed as

cb = nbiM (pp + pJ) + nbfmin (pp + pJ)

In order to quantitatively evaluate the performance, let
pp = pJ = 1 be the computational time of each operation,
m = 3, as stated for a stereovisual odometry application; let
also the ratio of outliers (pcto) to vary between 0.2 and 0.8
so that min = (1− pcto)M , and the rest of the parameters
to take the realistic values nai = naf = nbi = nbf = 4 and
M = 300. Figure 2 shows the theoretical computational time
for both methods as the percentage of outliers grows.
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Fig. 2. Computational time for RANSAC (blue-solid) and ERODE (red-
dashed) as the ratio of ouliers grows from 0.2 to 0.8.
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V. EXPERIMENTS

This section presents two experiments which test the
performance of our approach for computing stereovisual
odometry. The first experiment simulates a typical scenario
with a robot traversing an office-like environment while de-
tecting interest points in stereo images while the second one
uses the stereo video sequences published in the Karlsruhe
outdoor dataset [20], gathered with a moving vehicle.

In these experiments we have performed a Gauss-Newton
minimization process for both ERODE and RANSAC, re-
gardless there exist other approaches (such as Horn’s method
[21]) that can be employed to estimate the change in pose
of a stereo camera between two time steps. The usage of a
maximum likelihood estimator here relies on the purpose of
addressing the problem from a more generic approach that
can be employed, for instance, for monocular cameras.

A. Simulated dataset

The usage of a simulated dataset to test our approach is
motivated by both the availability of a ground truth and the
capability of properly control the amount of outliers within
the data.

This dataset have been created with the freely available
Recursive World Toolkit1 which provides a recursive lan-
guage to define a 3D virtual world as a set of landmarks and
to simulate a projective camera moving in it.

First, we set up a simple experiment where the camera just
moved forward for about 15 cm, with no rotation. In order
to cover different random sets of outliers, this experiment
was repeated 100 times for each ratio of outliers. The error
with respect to the ground truth was measured separately for
the translation and the rotation where, in the latter, the Euler
angles corresponding to the motion were converted to a 3-d
rotation vector [22]:

[α, β, γ]→ [w1, w2, w3] (12)

Thus, the two components of the error may be computed by
the Euclidean distance between the real value and estimated
one.

The average error (with 2σ confidence bars) for the
translation and the rotation with respect to the outlier ratio
for this experiment are shown in Figure 3. Note the similarity
in the accuracy between RANSAC and our proposal.

Finally, a more complete experiment involving the full
motion of the camera was also carried out. In this case, the
stereo camera traversed a 50×90 meters virtual environment
following a path of about 300-meters long. As the camera
moved, the 3D landmarks were projected to the images at
each time step, and their image coordinates (corrupted by
zero-mean Gaussian noise with σ = 0.5 pixels) stored in a
text file.

The presence of outliers was simulated by adding uni-
formly distributed noise in the interval [−w/2, w/2] (with w
being the size of the search window mentioned in III-A) to
a randomly selected subset of points. The amount of outliers

1http://code.google.com/p/recursive-world-toolkit/
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Fig. 3. Comparison of the errors in (a) translation and (b) rotation for
standard RANSAC (blue-solid) and ERODE (red-dashed) with a forward
movement with an outlier ratio ranging from 0.05 to 0.75. 2σ confidence
bars are also displayed.
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Fig. 4. Estimated paths with 50% of outliers for RANSAC (blue-solid)
and ERODE (red-dashed). The ground truth is plotted in black.

at each time step was set according to a pre-defined ratio,
which ranged from 0.05 to 0.75.

Figure 4 shows the estimated paths for RANSAC (blue-
solid), ERODE (red-dashed) and the ground truth (black-
dotted) for the case of 50% of outliers, respectively, which
was taken as representative. As can be seen, ERODE yields
similar results to RANSAC even when the ratio of outliers
is high.

In order to evaluate the computational performance for
this simulated dataset, we have measured the time spent by
both RANSAC and ERODE methods as the ratio of outliers
grows from 0.2 to 0.8, yielding Figure 6. Note as it fits the
theoretical plot shown in Figure 2.

Finally, another indicative of the goodness of an outlier
rejection method is the Receiver Operating Characteristic
(ROC) curve (see Figure 7 for ERODE’s ROC curve) and, in
particular, the area under the curve (AUC). The ROC curve
plots the sensitivity (ratio between the true positives and the
total positives) against one minus the specificity (the fraction
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Fig. 5. (a) Computation time for each time step during the experiment when using RANSAC (blue-solid) and ERODE (red-dashed). The overall average
times per time step are also shown as solid horizontal lines. (b) Camera paths as estimated with RANSAC (blue) and ERODE (red). The ground truth is
plotted in black.
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Fig. 6. Computational time for RANSAC (blue-solid) and ERODE (red-
dashed) as the ratio of ouliers grows from 0.2 to 0.8 with the simulated
dataset.

of false positives out of the total negatives). In general, a
method whose AUC value is over 0.96 is considered to have
high discriminatory ability and, in our experiments, ERODE
achieved an AUC value of 0.9957, getting considerably close
to the ideal RANSAC’s AUC value of 1.

B. Outdoor dataset

For a more realistic experiment, we implemented our algo-
rithm inside the LibViso22 vision library by Andreas Geiger.
This library offers solutions to the problem of estimating
visual odometry for both monocular and stereo cameras, and
also provides a collection of datasets to test its performance.
The selected dataset for this experiment was taken with a
pair of cameras mounted on a car following an about 270
meters trajectory within a city. The images had a size of

2http://www.cvlibs.net/software/libviso2.html
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Fig. 7. ROC curve for ERODE in an experiment with 50% of outliers

1344 × 391 pixels (see Figure 8 for an example) while the
stereo pair presented a baseline of 0.572 meters.

Fig. 8. Example of the images in the outdoor dataset.

Since, in this experiment, the ratio of outliers within
the data is not known beforehand, a conservative number
of hypotheses for the RANSAC approach must be set in
order to minimize the probability of not finding a outlier-
free consensus set. In the original code the value for this
parameter was set to ensure with 99% of probability that a
proper CS is selected even in the presence of about 65% of
outliers.

In order to compare the results and the time burden of
our approach, we have measured the time that the orig-
inal RANSAC-based code spent in the estimation of the
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camera motion between two consecutive time steps and,
subsequently, after replacing such code by our approach as
described in section IV, we measured it again, yielding the
results presented in Figure 5(a).

The estimated paths for both approaches are compared in
Figure 5(b), showing their similar performance in terms of
accuracy, while a comparative video illustrating the develop-
ment of the experiment can be accessed on-line3. Please, note
that ERODE considerably reduces the effect of outliers to the
final result but such effect cannot completely be cancelled
since they are still present in the minization process, hence
the small deviation that ERODE incurrs with respect to
RANSAC.

VI. CONCLUSIONS

RANSAC-based robust estimators and other hypothesis-
and-verify approaches have been extensively employed in
computer vision applications, and, in particular, in visual
odometry solutions. Although proven to be highly robust,
they suffer from a very high computational burden when the
outlier ratio is significant. Here we propose a new approach
based on robust functions which avoids the sampling nature
of the above-mentioned methods an instead, employs all
the input data to detect the outliers, and efficiently perform
stereovisual odometry.

The results show similar accuracy than the RANSAC
approach but reducing its computational cost in about one
order of magnitude. Experiments in both simulated and real
datasets support this contribution.
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