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Abstract

This article addresses the problem of mobile robot localization using Ultra-Wide-Band (UWB) range measurements.
UWB is a radio technology widely used for communications that recently is receiving increasing attention also for
positioning applications. In these cases, the position of a mobile transceiver is determined from the distances to a
set of fixed, well-localized beacons. Though this is a well-known problem in the scientific literature (the trilateration
problem), the peculiarities of UWB range measurements (basically, distance errors and multipath effects) demand
a different treatment to other similar solutions as for example those based on laser. This work presents a thorough
experimental characterization of UWB ranges within a variety of environments and situations. From these experiments
we derive a probabilistic model which is then used by a particle filter to combine different readings from UWB beacons
as well as the vehicle odometry. To account for the possible offset error due to multipath effects, the state tracked
by the particle filter includes the offset of each beacon in addition to the planar robot pose (x, y, φ), both estimated
sequentially. We show navigation results for a robot moving in indoor scenarios covered by three UWB beacons that
validate our proposal.
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1. Introduction

In indoor environments, a mobile robot needs
to localize itself accurately because of the limited
workspace. For this purpose, artificial landmarks
can be placed at known locations and measure-
ments of angular or range data to these targets can
be provided by on-board laser, vision, ultrasonic, or
radio sensors. Laser sensors for automated guided
vehicles are commonly used in warehouses with re-
flectors mounted on the walls [31]. They can achieve
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centimeter accuracy, but they require line of sight,
which can be blocked by dynamic obstacles. Cam-
eras can also be used to detect special landmarks,
such as infrared targets attached to the ceiling [32].
In this case, it is necessary to deploy a great number
of landmarks since visual recognition only works
for distances of a few meters. Moreover, ultrasonic
sensors have been applied as artificial landmarks by
measuring the time of flight of sound pulses [34].
However, ultrasonic receivers and transmitters re-
quire an additional radio link for synchronization.
In the last years, the wireless communication in-
frastructure of offices has been also employed for
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positioning purposes. The received signal strength
of the radio signal transmitted by nodes of the
Ethernet [24] or the ZigBee [4] networks is used.
Nevertheless, they can only provide accuracy above
meter at best.

Ultra-Wide-Band (UWB) radio technology,which
has been mainly used for communication [5], is re-
cently being also considered as a promising solution
for vehicle positioning. In particular, its capabil-
ity for data transmission, range accurate estimation
and material penetration make this technology suit-
able for indoor robotic applications. A typical setup
for UWB-based positioning consists of a number of
fixed transceivers, or beacons, placed at known lo-
cations in the environment and a mobile transceiver
on-board the vehicle. Assuming that the known bea-
con positions are error-free, the position of a mo-
bile robot can be estimated by triangulation with
an accuracy only related to that of the range mea-
surements. This approach for positioning solves the
global localization problem, which refers to the lo-
calization of the robot without considering any prior
information about its previous positions and move-
ments in the environment. Regardless the number
of measurements available for triangulation, using
only range information will not provide any clue
about the orientation of the robot which is an es-
sential requirement for most applications. Two pos-
sible solutions exist for overcoming this limitation:
a) to place two receivers on-board the robot sepa-
rated as far as possible or, b) to use complementary
proprioceptive sensors such as encoders, gyros, ac-
celerometers, etc., which give us information about
the vehicle motion. In this paper we have adopted
this second alternative by combining UWB range
data and odometry readings. This approach, quite
common in mobile robotics, also presents the im-
portant advantages of providing robustness to the
positioning system and of enabling the track of the
vehicle pose (position and orientation) between tri-
angulation instants, typically with a higher period
than odometry readings.

A suitable approach for coping with such a sensor
fusion is a probabilistic Bayesian inference frame-
work. A well-known and widely-used method within
this framework is Kalman Filtering (KF), which re-
lies on two strong assumptions: on the one hand,
both the robot motion and the observation mod-
els are linear, and on the other hand, their errors
and the initial estimated probability distributions
are Gaussians [22]. The first assumption is, to a
certain extent, relaxed in variants such as the Ex-
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Fig. 1. Probabilistic observation likelihood for UWB range
measurements in 2D for two beacons. Observe the circular
Gaussian-shaped ring around each beacon. The estimated
position of the vehicle is within the two intersected regions
(a multi-modal distribution). Notice that, in general, the
problem will be stated in 3D, using spheres instead of circles.

tended Kalman Filter (EKF) [20] or the Unscented
Kalman Filter (UKF) [21], though they still main-
tain the assumption that the errors in the two mod-
els are Gaussian. This requirement becomes a seri-
ous drawback when considering range-only observa-
tions, like in UWB technology: not only the sensor
model is non-linear, but multi-modal distributions
may be present in a variety of situations. In Figure 1
we illustrate this fact in 2D with two beacons where
we usually find two peaks at the intersections of the
two rings, thus giving a bimodal distribution that
cannot be properly modeled as a Gaussian.

In this paper we address UWB-based positioning
through a Monte-Carlo Bayesian filter, also known
as Particle Filter (PF). PFs overcome the com-
mented limitations by representing the estimated
pose of the robot as a set of samples rather than
any parametric density. Therefore, a PF can cope
with non-linear models and with complex, and even
multimodal distributions.

In recent literature, some works have addressed
vehicle positioning based on UWB. In [23] the au-
thors propose an algorithm for locating UWB trans-
mitters by using a multiple-antenna array. In [27]
a UWB-based communication system with localiza-
tion and tracking capabilities for outdoor applica-
tions is presented. They use a set of fixed nodes
to estimate the position of a set of wearable UWB
devices within a controlled environment. In [13] a
sled is driven through an industrial-like environ-
ment in both Line-of-Sight (LOS) and Non-Line-of-
Sight (NLOS) situations while estimating its posi-
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tion through UWB range measurements. A low-cost
UWB local positioning system based on a Time-
Difference-Of-Arrival is presented in [30] . A work
closer to ours is [19], which describes a localization
system combining UWB range measurements and
inertial information into a particle filtering frame-
work.

The work presented in this paper extends previous
works in these two main points:

(i) We provide a comprehensive probabilistic
characterization of UWB range measurements
experimentally obtained for different condi-
tions and scenarios. A variety of experiments
have been conducted to derive a probabilistic
model of the UWB range measurements pro-
vided by the PulsOn Kit commercialized by
TimeDomain [6]. In spite of the theoretical
high penetrability of the UWB signal, in the
experiments in cluttered scenarios we have ob-
served inaccuracies, spurious measurements,
and the effects of multipath (multiple echoes
of the transmitted signals when bounding off
obstacles). This behavior makes strongly rec-
ommendable the utilization of probabilistic
approaches.

(ii) We integrate such a probabilistic characteriza-
tion within a PF framework for robust vehicle
localization. While in most PF-based robot
localization approaches the system state com-
prises only the position and orientation of the
robot [33], in this paper we follow [19] to aug-
ment the system state in order to cope with
signal multipath and spurious range measure-
ments provided by the UWB beacons. This
augmented state particle filter (ASPF) pro-
vides a plus of robustness and an improved
performance in comparison to conventional
approaches as demonstrated in our experi-
ments. In comparison to [19], we provide more
extensive characterization of the algorithm
for a range of parameters and with three real
beacons. Furthermore, in our formulation we
introduce a correction of UWB systematic
bias directly into the observation model.

The rest of the paper is organized as follows. The
next section presents an experimental characteriza-
tion of the particular UWB devices used in our work
and proposes a probabilistic model to capture their
behavior under different conditions. In section 3, a
particle filter approach that copes with the combina-
tion of UWB range measurements and odometry is
described. Results of its performance are described

for two representative scenarios in section 4. Finally,
some conclusions and future works are outlined.

2. Characterization of UWB Range

Measurements

This section firstly gives an overview of the main
characteristics of the UWB technology. Then, sec-
tions 2.2-2.3 describe a series of experiments aimed
to characterize UWB range data in LOS and NLOS
configurations, respectively, capturing its perfor-
mance when varying the scenario and the relative
position of the UWB transceivers.

2.1. UWB Overview

UWB is a wireless technology used in the last
decades to transmit digital data for military pur-
poses, and more recently also used for civil commu-
nications [5]. In contrast to traditional radio tech-
niques based on sinusoidal carriers, UWB works by
transmitting a radio signal over a wide swath of fre-
quencies (in the band between 3.1 and 10.6 GHz), by
means of short pulses. Since the duration of pulses
is in the order of nanoseconds and they are usu-
ally spread over a wide spectrum, the energy of
each transmitted pulse is very low (typically a power
spectral density of -41.5 dBm/MHz). Hence, UWB
can be considered as a safe system for wireless trans-
mission and can coexist, theoretically without inter-
ference, with other radio communication technolo-
gies. Two main advantages for localization are de-
rived from these characteristics [11,18,19,36]:
– Accurate positioning: Due to the short duration

of the transmitted pulses, UWB technology offers
inexpensive and accurate positioning with a reso-
lution of centimeters. There are several methods
to, theoretically, estimate the position of a mov-
ing transceiver based, for instance, on the Time
of Arrival, Direction-Of-Arrival, Signal-Strength,
etc. (see [16]).

– Materials penetration: The characteristics of the
UWB signal transmission provide this technology
with a high material penetrability, making it suit-
able for indoor applications. Theoretically, UWB
is not affected by multipath problems [12,36], al-
though in practice it is not completely free from
that problem, as analyzed further on.
In spite of the remarkable features of UWB, it ex-

hibits some drawbacks when used for vehicle local-
ization in indoor, cluttered environments. Among
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Fig. 2. A PulsOn transceiver. Four of these devices have been
employed for the experiments described in this article.

them is the unpredictable behavior of the transmit-
ted signal when passing through different materi-
als. Although UWB signals have a good penetrabil-
ity they weaken when traversing obstacles, thus in
practice they are prone to multipath effects which
make the problem of range estimation complex and
inaccurate.

In the following sections we characterize UWB
ranging under two situations: (i) LOS, that is, when
no obstacle obstructs the line of sight between
emitter and receiver, and (ii) NLOS, when a non-
penetrable obstacle (e.g., a metal panel) is between
the antennas. We study in both situations the effect
of varying the distance between the antennas in
different types of scenarios (corridors, open areas,
cluttered rooms, etc.).

It is important to remark that we do not cope
here with either the physics of the UWB signal or
the channel characterization. We are interested only
in a probabilistic characterization of the errors of
UWB-range measurements under different condi-
tions. Although several works addressing the physics
of UWB can be found in the literature (see for ex-
ample [1,14,15,17,35]), the probabilistic characteri-
zation of the range measurements is a less explored
topic ([2,8]).

Further sections are devoted to the experimental
analysis of the range measurements provided by Pul-
sOn kits, commercialized by TimeDomain [6] (see
Figure 2).

UWB1

UWB2

Fig. 3. Scenario considered for UWB range characterization
in LOS. Experiments have been conducted in this 3 me-
ters-wide corridor, varying the distances between antennas
from 1 to 10 m.

2.2. Characterization of UWB ranges in LOS

The experiments described in this section aim to
characterize UWB range errors in LOS when vary-
ing both the distance between the devices and the
characteristics of the environment.

A first experiment was conducted in a corridor
varying the distance between transceivers from 1 to
10m in steps of 1m (manually measured using a laser
ranger). The experimental setup is pictured in Fig-
ure 3. At each step we have computed the system-
atic error, or bias, as the difference between the av-
erage of 5000 measured ranges from the PulsOn de-
vices and the true distance, measured with a laser
ranger. From the resulting average biases, plotted in
Figure 4(a), we have observed that an exponential
function fits well the evolution of the bias, thus we
will adopt such function to model the UWB bias in
our sensor.

To illustrate the evolution of the standard de-
viation of the ranges w.r.t. distance, Figure 4(c)
shows some of the range histograms, their estimated
means, standard deviations and respective fitted
Gaussians. It is remarkable that the standard devi-
ation is practically constant over all the distances
– the differences are under 5mm, as summarized in
Figure 4(b).

To sum up, from our observations we can model
UWB ranges probabilistically as comprised of the
following parts:

duwb = dtrue + f(d) + n, n ∼ N(0, σ2) (1)

where duwb is the distance given by the UWB de-
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Fig. 4. UWB range characterization in a LOS configuration. (a) Evolution of the bias with the distance between the devices.
Both the average of real ranges and the exponential fit are represented. (b) The corresponding standard deviations for each
distance, which fall within the narrow range [0.0095,0.0134], being 0.0039m their maximum difference. (c) Histograms of the
raw ranges measured at 1,2,5 and 10 metres, respectively, with Gaussian fittings. These symmetrical fittings are appropriate
due to the lack of significant tails.

vice, f(d) models the distance-variable systematic
error (bias), and n is the random noise associated
to the measurement, modeled as a zero-mean Gaus-
sian with variance σ2. Below we provide numerical
values for these parameters. It is important to first
remark that, in spite of considering a LOS config-
uration, multipath effects may be present due to
the particular characteristics of the UWB technol-
ogy and the properties of each environment: UWB
signals spread in all directions, reflecting in impen-
etrable materials (like metal or ceramic tiles) and
weakening when passing through others like walls or
doors, thus constructive interferences may cause er-
rors when calculating the time of flight. Therefore,
there is not absolute confidence in a measured range
to come from the direct path between the antennas.

Obviously, different multipath effects may appear
in each scenario. To properly capture these effects,
we have repeated the previous range characteriza-
tion in other four environments: a narrower corridor,
an open area, a cluttered room and an empty room.
Some resulting range histograms appear in Figure 5.

Since we aim to a model applicable to any environ-
ment, significant results are obtained by the combi-
nation, from all the scenarios, of histograms for each
distance. Some of these final histograms appear at
the right-hand side of the figure.

By computing the average bias and standard de-
viations, plotted in Figures 6(a)–(b) respectively, we
finally come to an overall standard deviation value
of σ = 0.0119m and an exponential fit of the bias
described by:

f(d) = 0.1
(
1.01 − e−0.17d

)
(2)

which is also represented in Figure 6(a) among the
individual values used to derive this fit. Observe as
well in Figure 6(b) how our assumption of a con-
stant standard deviation fits well with the actual
measurements.

2.3. Characterization of UWB range in NLOS

In this section we study the multipath effects in
UWB ranges. To assure that the measured ranges
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Fig. 5. LOS range characterization in five different environments. The histograms obtained for each scenario (only shown here
those for 1, 5, and 10 meters of distance between antennas) are combined in order to characterize the average bias.
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Fig. 7. Set-up considered for measuring UWB ranges under multipath effects. The shortest and longest reflections of the signals
within this environment have been calculated geometrically, obtaining 10.17m and 10.45m, respectively.

are affected by multipath, we set up the configura-
tion shown in Figure 7 where, in a narrow corridor,
a metal panel was placed between two UWB an-
tennas separated 10m. The dimensions of the panel
were carefully chosen to ensure that signals had to
reflect on the walls before arriving at the receiver. In
this scenario the shortest non-direct path between
the antennas was geometrically calculated, giving

10.17m, while the longest one, considering only one
reflection on the wall, was 10.45m. It is reasonable to
assume that having more than one reflection weak-
ens the energy signal too much to be detected as the
main correlated pattern [6], so we can discard the
possibility of having multipath caused by more than
one bounce.

Figure 8(a) depicts the measured ranges when

1m.

10.2 10.3 10.4 10.5

5m.

10.2 10.25 10.3 10.35

9m.

10.2 10.3 10.4 10.5

(a)

(m
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(b) (c)

Fig. 8. Characterization of UWB ranges affected by NLOS: a metallic plane blocks the direct sight between two antennas,
10m apart from each other. Note that the average ranges in the experiment are in the interval [10.17, 10.45]. The multimodal
histograms indicate the presence of different paths, especially for the cases in which the panel is close to one of the antennas
(1m and 9 m.).

p (st|u1:t, z1:t)∝ p (zt| st, u1:t, z1:t−1) p (st|u1:t, z1:t−1) (3)

= p (zt| st)
︸ ︷︷ ︸

Observation model

∫

p (st| st−1, ut)
︸ ︷︷ ︸

Transition model

p (st−1|u1:t−1, z1:t−1) dst−1
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moving the metal panel between the antennas, what
forces reflections to occur at different locations. As
expected, the measured ranges fall within the inter-
val [10.17, 10.45]. The histograms for some selected
distances, shown in Figure 8(c), illustrate that there
exists a more likely path followed by the signal in
each case, revealed by a clear peak, but others are
also possible, and thus, the measurements may be
distributed over the whole interval.

The histogram in Figure 8(b) combines the
recorded range distances for all the positions of the
metal panel between the antennas. Notice that in
a real situation there is no available information
about the location of obstacles and thus, about the
most probable path followed by the signals.

Therefore, the model proposed in Eq. (1) is not
able to account for the random nature of multipath
in NLOS configurations. Our solution to cope with
multipath hence consists of extending the state vec-
tor of our particle filter in order to infer from obser-
vations how likely is that multipath exists for each
particular beacon. Next section is devoted to a de-
tailed description of this model.

3. Localization through Particle Filtering

3.1. Problem Statement

Methods for sequential Bayesian filtering provide
a grounded probabilistic framework for tracking the
state of a system which is observable only through
indirect and noisy measurements. These techniques
maintain a probability distribution that captures
the knowledge about the state of the system at a
given instant of time. This distribution changes over
time following the transition model of the system
and is updated with each observation by means of
a probabilistic sensor model. While filters in closed
form exist for Gaussian distributions and systems
without nonlinearities ([20,22]), we employ here a
particle filter (PF) ([9,28]) due to some important
advantages within the scope of the present problem.
Firstly, a PF can cope with arbitrary distributions,
which enables performing global localization of the
vehicle at start-up or maintaining multi-modal dis-
tributions to deal with ambiguities. Secondly, the
probabilistic observation model of UWB sensors is
strongly nonlinear and leads to distributions that
could be hardly approximated by using Gaussians
only.

We derive next the equations of our PF for ro-

bust UWB localization. Our purpose is to localize
the robot within a planar environment provided a
set of N beacons which have known 3D positions
{Bk}N

k=1. Let st, ut, and zt denote the system state,
the robot actions, and the observations for any given
time step t, respectively. Although we are interested
in the robot pose (which we will denote as xt), the
system state also contains a set of random distance
offsets {bk

t }
N
k=1 from the mobile UWB transceiver to

each beacon, which model the effects of multipath in
NLOS conditions as discussed in section 2.3. That
is, the state of the filter st is:

st =
{
xt, b

1
t , ..., b

N
t

}
(4)

As discussed elsewhere [19], the inclusion of these
offsets into the system model provides a great im-
provement in terms of robustness against the ef-
fects of multipath for this kind of radio technology.
Now, by assuming that the system state st evolves
as a Markov chain, we can write down our estima-
tion problem into the well-known sequential form in
Eq. (3). To implement this recursive equation as a
PF we start with a set of M samples in the state

space {s
[i]
t−1}

M
i=1, called particles, which are approxi-

mately distributed according to the distribution for
the previous time step t − 1 (a uniform distribu-
tion can be assumed initially if there is no infor-
mation about the robot pose). According to impor-

tance sampling [9], a weight ω
[i]
t−1 is also associated

to each particle to compensate potential mismatches
between the density of samples at a given area of
the state space and the actual (unknown) density.
Following the most common algorithm for particle
filtering, Sequential Importance Sampling with Re-

sampling (SIR) [29], the set of particles for the next
time step t is generated by means of the following
steps:
– Generate the new particles by drawing sam-

ples from a certain proposal distribution,
q(st|st−1, ut, zt).

– Update the weight ω
[i]
t−1 for all the new samples

based on the value of the observation likelihood
of each particle.

– Perform a resampling step in order to prevent the
loss of particle diversity if a measure of quality of
the particles, the effective sample size [25], falls
below a given limit.
One of the most popular choices for the proposal

distribution is the system transition model, that is,
q(st|st−1, ut, zt) = p(st|st−1, ut). In this case, up-
dating the importance weights becomes:
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ω
[i]
t ∝ ω

[i]
t−1p

(

zt| s
[i]
t

)

(5)

that is, scaling the previous weights by the observa-

tion likelihood evaluated at each particle s
[i]
t . In the

next subsection we discuss in detail how to compute
this term, which is in charge of fusing the sensory
data from the different UWB beacons.

Regarding the system transition model, there are
two separate processes involved, one for each part of
the augmented state vector st: the robot pose and
the beacon offsets. We examine them separately.

For the common case that the robot actions ut are
given by incremental odometry readings, the pre-
dicted robot pose xt is obtained by adding the odom-
etry to the previous pose xt−1 and by corrupting
it with a certain noise. This models the fact that
odometry measurements can be inaccurate due to,
for example, slippage or uncalibrated parameters.
Further details about odometry models can be found
elsewhere [10,33].

With regard to the transition model of the bea-
cons’ offsets, our approach is backed-up by the
following observation: the apparent offset of UWB
ranges due to multipath typically remains constant
until new obstacles enter or leave the LOS between
the beacon and the mobile receiver. Since accurate
models for these effects would be extremely hard to
obtain, we propose the following approximate solu-
tion. At each time step, and for each beacon k, the
random offset bk

t does not suffer any change, that

is, b
k,[i]
t = b

k,[i]
t−1 with a probability 1 − Pc, where

the probability of change is given by the parame-
ter Pc ∈ [0, 1], which depends on the structure of
the environment. In case of changing an offset, its
increment is modelled as a uniform distribution,
with the constraint that the resulting value cannot
be negative. The maximum value of this uniform
distribution should be chosen accordingly to the
specific scenario where the robot will operate. For
example, in the experiments discussed later on we
have set this limit to roughly the larger dimension
of the scenario. In this way, if the sensed ranges be-
come larger than this limit we will be sure than they
are invalid measurements, and will have a negligible
effect in the particle filter, since the mismatch will
be roughly the same for all the particles.

At this point we have described the basis of parti-
cle filtering using the system transition model as the
proposal distribution q(·). We must remark that this
choice leads to a highly efficient implementation, al-
though other proposal functions may be considered

for a sufficiently large number of beacons. From our
real experiments and simulations we have verified
that our choice for the proposal distribution is well-
suited to a practical number of UWB beacons, e.g.
up to 10 beacons at sight at each instant of time.

We have also employed the optimal sampling ap-
proach described in [3] as an alternative to the above
discussed method, and the results reveal a simi-
lar computational cost. Nevertheless, in the optimal
sampling method the number of samples can be re-
duced by two or more orders of magnitude, hence it
presents a clear advantage in memory storage (only
a few particles must be kept). This advantage may
become determinant as the number of beacons in a
map grows. In this paper we do not further investi-
gate this issue since in the experiments we deal with
only three UWB beacons.

3.2. Probabilistic Observation Model

As it can be observed in Eq. (5), particle weights
are updated through the observation likelihood

function p(zt|s
[i]
t ). The intuitive idea behind this

process is to assign high weights to those hypothe-
ses that best explain the sensor readings, discarding
in the resampling steps those particles that per-
form poorly. Without loss of generality we consider
that the observation zt contains simultaneous range
readings for all the N beacon at each time step t.
Formally, let the observation variable be the set:

zt =
{
z1

t , ..., zN
t

}
(6)

Since it is plausible to admit that the random er-
rors in each of these individual measurements are
independent, the observation likelihood can be fac-
tored as:

p (zt|st) =

N∏

k=1

p
(
zk

t |st

)
(7)

Based on our experimental characterization, we
model the range values as having an unknown offset
bk (which models the deviation of the measure due to
multipath effects) plus a bias and an additive Gaus-
sian noise characterized by f(·) and σ2, respectively,
as described in Eq. (1). Recall that f(·) models the
sensor bias, that is, the systematic error that the
UWB sensor always introduces in the sensed range,

whereas the offset due to multipath, b
[i],k
t , must be

estimated jointly to the robot pose. Then we can
write down the desired likelihood function (for each

9
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of the actual range between the antennas, plus the systematic error introduced by the sensors (bias) and the offset due to
multipath. (b) An example of the joint observation likelihood for UWB range readings from three different beacons, where the
excess range makes the real robot location to be assigned a negligible likelihood, whereas high values are assigned to wrong
positions. (c) After correcting the ranges by subtracting the bias and the offset, we obtain a clearly defined maximum value
of the likelihood at the right location.

range measurement zk
t ) as a Gaussian centered at

the expected range, computed by adding the sensor
bias f(·) and the particle’s offset to the distance be-

tween the particle and the beacon, denoted by r
[i],k
t :

p
(

zk
t |s

[i]
t

)

= N(zk
t ; r

[i],k
t + f(r

[i],k
t ) + b

[i],k
t

︸ ︷︷ ︸

Expected range

, σ2) (8)

To illustrate the model underlying this expression,
consider the schematic representation in Figure 9(a)
where the range given by a UWB device is consid-
ered to be larger than the actual distance between
the beacon and the robot. This excess of range is a
result of two effects: (i) the systematic bias that the
sensor always introduces, and (ii) offsets due to mul-
tipath. Note that the first effect will always occur,
hence it is introduced in the likelihood expression
above in a fixed form by mean of the corresponding
function f(·). In contrast, the offset is unknown and

hence the hypothesis kept by each particle (b
[i],k
t ) is

used to compensate this effect in the likelihood ex-
pression. We can visualize the effects of this range
correction by evaluating the observation likelihood
for a set of beacons, as shown in Figure 9(b). Observe
how locations far from the actual robot pose are as-
signed the highest likelihood values, which means
that the particle filter would diverge and lose track of
the robot localization. In contrast, when the ranges
are corrected as in Figure 9(c), the real location of
the robot is assigned a maximum likelihood, hence
the filter would converge towards the right robot po-
sition.

It is important to point out that, despite UWB
ranges do not provide a direct observation of the
robot heading, an estimate of the full robot pose is
delivered by our filter thanks to the information pro-
vided by the odometry. Nevertheless, in the event
that the robot was equipped with two or more UWB
devices on-board, a straightforward extension to the
particle filter discussed in this section would pro-
vide instantaneous observations of the robot head-
ing, thus improving the filter estimates.

Finally, we must account for not all the measure-
ments in Eq. (6) to be available simultaneously (as
in the real experiments described later on). In these
cases the likelihood for the absent readings can be
set to any arbitrary constant value. Looking at the
general Bayesian filter equations in Eq. (3) it is clear
that any constant value, i.e. arbitrary but equal for
all the particles, does not modify the estimated prob-
ability distribution.

4. Experimental Results

This section presents the results of two represen-
tative experiments in which the robot, endowed with
a mobile UWB transceiver, estimates its pose within
different environments using three fixed UWB bea-
cons. The first experiment (Section 4.1) is aimed at
proving the validity of our experimental character-
ization of UWB range measurements in LOS. The
second experiment (Section 4.2) tests the suitability
of our augmented-state approach to capture multi-
path and offset-affected readings during pose esti-
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Fig. 10. Mobile robot localization in a LOS environment. (a) The considered environment, an empty 13m × 10m room that
ensures the LOS between the antennas along the experiment. (b) Gridmap of the scenario, the position of the three UWB
beacons and the ground-truth path followed by the robot.

mation 1 . It is important to remark that the sce-
narios chosen for these experiments are different to
those considered in Section 2 for the sensor charac-
terization.

4.1. Robot Localization in LOS Environments

Several experiments have been conducted in en-
vironments where the LOS between the robot on-
board UWB device and the fixed beacons is assured
at any time. We describe here the results of one of
such experiments carried out within a 11.5m× 10m

empty room where three fixed UWB beacons were
placed at known positions (see Figure 10). The
mobile robot, equipped with a PulsOn UWB de-
vice [6] configured as “master” (receiver) and a
laser scanner, is manually guided while recording
UWB ranges, laser scans, and odometry informa-
tion. These raw data are then processed offline for
computing the robot pose. Although the proposed
particle filter method is able to run in real time on
a conventional computer 2 , offline computation is
adopted in this case for averaging different experi-

1 Related multimedia material and source code are available
online at http://babel.isa.uma.es/mrpt/uwbpf/
2 Each iteration with 15000 particles takes 0.1s in a Pentium
Core2 Duo @2.2Ghz.

ments (recall that PF is based on random sampling)
and for comparing our approach to a pose-only
state particle filter using exactly the same data.

The information from the laser scanner is used to
compute a highly accurate estimation of the robot
pose, which will be considered as the actual robot
pose, i.e. the ground-truth. This is accomplished by
matching scans against a map previously created
also using the scanner laser. This scan matching
method is based on an accurate ICP technique,
whose results have a precision of roughly ±2 cm
and ±1 degrees [26].

In this experiment the robot takes 90 seconds in a
path of 30.7 meters. Figure 11 shows a comparison
between the real path of the robot (ground-truth)
and that estimated by two particle filters: one with
our proposed augmented state and the other with a
standard pose only-state. The sensor model in both
cases is given by Eq. (8). Charts depict the average
results of both implementations executed 250 times
and considering 15000 particles.

As expected, in this scenario where multipath ef-
fects are not present, both particle filters yield sim-
ilar results with position errors under 5cm. More
precisely, the average error for the pose-only state
approach is 4.66cm and for the augmented-state is
4.47cm. This provides us an experimental validation
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Fig. 11. Errors in the estimation of the robot path for both a pose-only state PF and our augmented-state approach. Notice
that since there are no multipath effects, both errors are almost identical, and in average under 5 cm.

of the suitability of the proposed UWB range char-
acterization for LOS configurations.

4.2. Robot Localization under NLOS Conditions

The aim of this second experiment is to test the
suitability of our augmented-state PF (ASPF) ap-
proach for coping with multipath effects and the as-
sociated offsets in the measured ranges.

To this aim, we have conducted an experiment in
a 12 × 10m hall during 6 minutes approx. in which
the robot is guided through an eight-shaped path of
108m (average speed of 0.3 m/s) around two metallic
circular fences, as shown in Figure 13. Due to the
particular characteristics of this environment and
the location of the three beacons, multipath effects
and temporary lost of signals occur at some specific
spots, marked as A-F in Figure 13(b).
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Fig. 12. The average positioning (x, y) error for different Pc

parameter values. These results have been obtained execut-
ing our ASPF method 150 times for each Pc value. Confi-
dence intervals of ±2σ are represented by the shaded area.

As in the previous experiment, the ground-truth
path was obtained from the laser scans and we have
executed the two implementations of the PF, the
pose only and the augmented-state versions, with
15000 particles each. For this sample population, the
ASPF algorithm can perform in real-time since each
iteration takes about 0.1s in a Pentium Core2 Duo
@ 2.2Ghz. This roughly amounts to five times faster
than real-time.

The probability of a beacon offset to change, Pc, is
set to 0.05 in this experiment. This means that 1 out
of 20 particles will change the offset of one beacon
due to multipath at each time step. We have veri-
fied that, as long as the number of particles is large
enough, such a value produces good results for a di-
versity of scenarios, though the method is not signif-
icantly sensitive to the chosen value of Pc. To prove
this, we have computed the average positioning er-
ror of our ASPF method for different Pc values. The
results, in Figure 12, reveal that for very low proba-
bilities (notice that for Pc = 0 our method degener-
ates into the non-augmented PF) and for very high
values (close to 1), the filter diverges giving overall
errors of several meters.

Regarding the number of particles, it may seem
that 15000 is an exceedingly large number of samples
for performing pose tracking, as indeed is the case for
more common robot localization using laser rangers
[7]. The reason behind the need of such a large sam-
ple population in our approach is the “curse of di-
mensionality” which PFs suffer: in principle, the
number of required samples increases exponentially
with the number of dimensions in the problem. In
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this experiment, we have 6 dimensions, three for the
robot pose plus one for each of the beacon’s offset.

To illustrate the accuracy of our method, refer to
Figure 14(a) where the positioning error is plotted
for both PF methods. To understand this graph, we
must also take into account the evolution of the real
offsets of the beacons over time, represented in Fig-
ure 14(b)–(d) as dashed plots, which are computed
from the sensor position on the robot and the ground
truth path from laser scan matching. It is clear that
the offsets estimated by our ASPF, the solid plots in
those figures, closely follow the real offsets most of
the time. This is the reason why our ASPF method
drastically reduces the localization errors by more
than one order of magnitude at those instants, as
can be seen in Figure 14(a).

It is remarkable that most of the offset errors are
contributed by beacon #1, and most of them occur
at some specific spots of the environment, marked
as A–F in the robot path. We must highlight an in-

teresting behavior of our ASPF for the case denoted
as D in Figure 14(b)–(d). In this case, the real offset
change occurs in beacon #3, but due to the random
nature of the transition model, the filter finds that
a combination of offsets in beacons #1 and #2 also
generates a situation compatible with observations.
Although this leads to a slight (and temporary) in-
crease in the positioning error, the filter quickly cor-
rects itself. A solution to avoid events like this is to
increase the number of samples.

An analysis of whether the ground-truth falls
within the confidence interval given by the PFs
provides us a good indication of their reliability.
We show these confidence intervals separately for
x, y and φ in Figure 15 for both PF methods. From
the graphs it is clear that the error remains within
a ±3σ confidence interval most of the time for the
ASPF, while in the pose-only PF errors often sur-
pass several times this limit. Notice that the high
orientation errors at the beginning of the experi-
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Fig. 15. The errors in positioning (x and y) and robot heading (φ) from both PF methods. We also represent the corresponding
±3σ confidence intervals as shaded areas. It is clear that the augmented-state method discussed in this work outperforms the
accuracy of the pose-only PF.

ment follows from the fact that no valid estimate of
the heading can be obtained until the robot starts
to move.

For the pose-only PF, the overall positioning er-
rors (x, y) are of 1.75m, while the mean heading er-
ror is 16deg. For the ASPF, these errors reduce to
0.20m and 10deg, respectively. Therefore, we can
conclude that the ASPD correctly tracks the robot
position and heading during most of the experiment
with a relatively small error, in despite of having
just incremental and inaccurate information from
the vehicle’s odometry. As previously commented,
the heading estimate could be greatly improved by
installing two UWB receivers on-board.

5. Conclusions and Future Work

This paper has approached the problem of robot
positioning using UWB technology under the point
of view of sequential Bayesian inference and in the
form of particle filtering. An experimental charac-
terization of UWB ranges has been presented within
a variety of environments and situations, testing its
suitability for estimating the pose of a mobile robot.

The proposed characterization covers both the
cases in which UWB transceivers are in line of sight
(no multipath effects are present) and those cases
where multipath effects appear. To cope with mul-
tipath, a variation of the common PF approach for
robot localization is adopted, which consists of aug-
menting the system vector with random variables
that capture the unforeseen behavior of UWB ranges
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when signals reflect. Several experiments have been
conducted on real robotic platforms revealing the
suitability of the proposed UWB range characteri-
zation and of the considered PF approach.

Our work requires further research to allow its
practical integration into industrial environments,
for example by enabling the automatic determina-
tion of the beacon locations, hence avoiding the la-
borious and error-prone process of surveying them
manually.
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