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Abstract – GPS receivers are satellite-based devices widely used 
for vehicle localization that, given their limitations, are not 
suitable for performing within indoor or dense urban 
environments. On the other hand, Ultra-Wide Band (UWB), a 
technology used for efficient wireless communication, has 
recently being used for vehicle localization in indoor 
environments with promising results. This paper focuses on the 
combination of both technologies for accurate positioning of 
vehicles in a mixed scenario (both indoor and outdoor 
situations), which is typical in some industrial applications. Our 
approach is based on combining sensor information in a Monte 
Carlo Localization algorithm (also known as Particle Filter), 
which has revealed its suitability for probabilistically coping 
with a variety of sensory data. The performance of our approach 
has been satisfactorily tested on a real robot, endowed with a 
UWB master antenna and a GPS receiver, within an indoor-
outdoor scenario where three UWB slave antennas were placed 
in the indoor area.1 
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I. INTRODUCTION 

The problem of vehicle self-localization within industrial 
scenarios is usually tackled by exploiting the particular 
characteristics of the application at hand. Different 
approaches are usually considered according to the required 
accuracy, the available sensors and their cost, the type of the 
scenario, i.e. indoor or outdoor, etc. The latter is, apart from 
other considerations, the one that has major influence when 
deciding appropriate solutions to the problem of vehicle 
localization. 

Indoor applications usually require a precise estimation of 
the vehicle pose since the workspace is smaller and contains a 
diversity of objects to manage and obstacles to avoid. An 

                                                                            
1 This work was supported in part by the European project CRAFT-COOP-
CT-2005-017668, and the Spanish research contract DPI2005-01391. 

example in industrial applications is trucks aimed to load and 
carry goods within a warehouse. In general, in these scenarios 
triangulation systems based on lasers are commonly used, but 
they present problems when dynamic obstacles or the own 
environment configuration block the line-of-sigh of the 
beacons. A promising solution for that are radio signals like 
UWB because of its penetration capability. 

 On the other hand, outdoor applications usually require 
less precision, i.e. a vehicle moving through a road or some 
wide space, whose localization can be provided by global 
positioning systems (GPS). 

In a variety of applications, vehicles have to perform 
within a mixed indoor-outdoor scenario, and therefore, the 
combination of approaches relying on both technologies 
(UWB and GPS) should be considered (see figure 1). A 
simple solution may consist of switching between different 
algorithms based on each technology according to whether 
the vehicle is in- or outside. However, in the transition areas 
(for example, when the vehicle is entering a warehouse), data 
from the both sources may coexist, though the signal quality 
from each source may not be good enough for precisely 
assessing the vehicle pose independently one from another. In 
these situations, the combination of both sensor data should 
be managed coherently and exploited to improve vehicle 
localization. 

 
Figure 1. GPS provides the global position of the vehicle and can be modeled 
through a probability density function with a given standard deviation. UWB 
beacons (two in the figure) yield range measurements with a certain error that 
can be also probabilistically modeled. The most probable position of the 
vehicle can be obtained by means of the probabilistic combination of all 
sensor readings. 
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In this paper we focus on mixed indoor-outdoor vehicle 
localization through a probabilistic combination of sensor 
data acquired from different sources: UWB and GPS. More 
precisely we propose a Monte Carlo localization algorithm, 
also called Particle Filter [19], that represents the estimations 
of the possible poses of the vehicle by means of a set of 
weighted samples (particles). The main advantage of this 
approach is its ability to combine measures from different 
sensors considering appropriately their probabilistic behavior. 
In a nutshell, this is done by assigning to each particle a 
weight proportional to the probability of receiving the 
available sensor readings from the pose they represent. The 
higher the particle weight is, the higher is the confident 
(belief) that the pose represented by the particle becomes the 
real pose of the vehicle. 

Other interesting properties of particle filters are: 
- They are suitable to work with almost arbitrary sensor 

characteristics, motion dynamics, and noise 
distributions, even non-linearities, as long as some 
likelihood model of their uncertainty can be given. 

- They can maintain simultaneously different 
hypotheses about the pose of the vehicle. This ability 
permits the localization system to track a vehicle 
within complex and self-similar scenarios like parking 
areas [5]. 

- Since particle filters sample the space of possible 
locations up to a given sampling density, their 
computational cost can be easily bound, and they are 
easy to implement [1]. 

In this paper we consider a set of UWB beacons for indoor 
localization, GPS for outdoor, and readings from both sources 
within the overlapped areas. The proposed particle filter 
approach copes well with vehicle localization where UWB 
and GPS readings are available, either separately or jointly, as 
demonstrated in real experiments. 

The structure of the paper is as follows: section 2 gives an 
overview and a comparison of the UWB and GPS 
technologies for vehicle localization. Section 3 describes the 
mathematical formulation of Particle Filters and its use for 
fusing readings from different sensors. In section 4, results 
from real experiments conducted in a mixed environment are 
presented, proving the suitability of our approach. Finally, 
some conclusions and future work are outlined. 

 

II. UWB AND GPS SENSORS OVERVIEW  

A. UWB 

The Ultra-Wide Band (UWB) technology [15],[22] was 
initially developed by the US Department of Defense in the 
early 1960s, demonstrating its particular suitability for radar 
and highly secure transmission of information. Nevertheless, 
the first civil applications of this technology did not appear 
until 1994.  

Nowadays, UWB is a well-known technology for 
communications [4], but only a few works have exploited it 
for vehicle localization by deriving the distance between 
antennas through, for instance, the TOA of data packets 
(Time-Of-Arrival) [3]. 

The main characteristics and advantages of the UWB 
technology for vehicle localization (and also for 
communications) are [8]: 

-Transmission. Unlike carrier-based systems which work 
on a specific frequency, UWB works by transmitting a radio 
signal over a wide swath of frequencies (in the band between 
3.6 and 10.1 GHz). 

- Short pulses and low power consumption. Since the 
duration of pulses is of the order of nanoseconds, their 
spectrum is spread over a wide frequencies band, so the 
power spectral density of each transmitted pulse is very low 
(about -41.5 dBm/MHz). Hence, UWB can be considered as a 
safe system for wireless transmission and can coexist, 
theoretically without interference, with other radio 
communication technologies. 

-Materials penetration: The characteristics of the UWB 
signal transmission provide this technology with a high 
material penetrability making it suitable for indoor 
communications and vehicle localization. Although, they are 
not affected, in theory, by multipath problems [22], [17], are 
not completely free from that problem. 

-Accurate positioning: Due to the short duration of the 
transmitted pulses, UWB technology offers inexpensive and 
accurate positioning with centimeter resolution. Apart from 
the TOA method used in this work, other techniques can also 
be considered for pose estimation of antennas, such as 
Direction-Of-Arrival and Signal-Strength [6]. 

B. GPS 

Global Positioning System (GPS) has become a well-
known and widely accessible technology for absolute 
localization on the surface of Earth (geolocalization) [18], 
with applications in many different fields.  

Basically, GPS uses two radio channels in the microwave 
band centered at 1575.42Mhz and 1227.60Mhz. Considering 
the radio time-of-flight lateration it achieves an accuracy in 
localization around 1-5 meters in outdoor areas2 [7]. 

The main disadvantage of localization systems based only 
on GPS is that they need a good Line-of-Sight (LOS) to GPS 
satellites. This drawback is mainly due to the weakness of the 
GPS signal and their inability to penetrate through most of 
materials, which limits the use of GPS to outdoor and open 
scenarios. Moreover, GPS requires, at least, four satellites 
electronically visible, which is not always possible. 

                                                                            
2 The accuracy of GPS can be improved by means of differential GPS 

(DGPS) to achieve a resolution of centimeters. 
 



C. GPS vs. UWB 

Based on the general characteristics of both technologies 
aforementioned, they are not straightforward comparable but 
complementary. 

Nowadays, GPS is a cheap technology that offers a 
sufficiently accurate localization in outdoor and open areas, 
almost around the world, in terms of a global frame (latitude, 
longitude, altitude). On the other hand, UWB provides more 
reliable and precise results, in terms of relative localization 
with respect to a local frame, at the expense of covering the 
working area with costly antennas. This makes UWB 
technology only applicable to indoor and relatively small 
workspaces. 

Therefore, exploiting the best of both technologies may 
become the solution for a large variety of mixed indoor-
outdoor applications, like the one considered in this work. In 
the following, the proposed approach for combining GPS and 
UWB measures is detailed. 

 

III. PROBABILISTIC LOCALIZATION AND SENSOR FUSION 

A. Problem Statement 

Methods for sequential Bayesian filtering provide a 
grounded probabilistic framework for tracking the state of a 
system which is observable only through indirect and noisy 
measurements. These techniques maintain a probability 
distribution that captures the knowledge about the state of the 
system at a given instant of time. This distribution changes 
over time following the evolution model of the system and it 
is updated with each observation by means of probabilistic 
sensor models. While closed form filters exist for Gaussian 
distributions and systems without strong nonlinearities 
([10],[11]), we employ here a Particle Filter ([14],[1]), due to 
some important advantages within the scope of the present 
problem. Firstly, a particle filter can cope with arbitrary 
distributions, which enables performing global localization of 
the vehicle at start-up or maintaining multi-modal 
distributions in the presence of ambiguities. Secondly, the 
probabilistic observation model of UWB sensors is strongly 
nonlinear and leads to distributions that could be hardly 
approximated only by Gaussians. 

We derive next the equations of our particle filter for 
robust UWB-GPS localization. Our purpose is to localize the 
robot within a planar environment provided a set of N 
beacons with known 3D positions { } 1

N
k k =

Β . Let ts , tu , and tz  
denote the system state, the robot actions, and the 
observations for any given time step t, respectively. Although 
we are interested in the robot pose (which we will denote 
as tx ), the system state is augmented with the set of unknown 

biases { } 1

N
k k

b
=

of each UWB beacon, that is:  

 { }1, ,...,t t Ns x b b=  (1) 

As discussed elsewhere [9], this provides a great 
improvement in terms of robustness against the effects of 
multi-path for this kind of radio technology. Now, by noticing 
that the system state ts  evolves as a Markov chain we can 
write down our estimation problem into the well-known 
sequential form: 

 
( ) ( ) ( )
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p z s p s s u p s u z ds

− −

− − − − −

∝

= ∫  (2) 

To implement this recursive equation as a Particle Filter 

we start with a set of M samples in the state space { }[ ]
1 1

Mi
t i

s − =
, 

called particles,  which are approximately distributed 
according to the distribution for the previous time step 1t −  
(a uniform distribution can be assumed initially if there is not 
any information about the robot pose). According to 
importance sampling [1], a weight [ ]

1
i

tω −  is also associated to 
each particle to compensate potential mismatches between the 
density of samples at a given area of the state space and the 
actual (unknown) density. Following the most common 
algorithm for particle filtering, Sequential Importance 
Sampling with Resampling (SIR) [16], the set of particles for 
the next time step t is generated by means of the following 
steps: 

1. Generate the new particles by drawing samples from a 
certain proposal distribution, 1( | , , )t t t tq s s u z− . 

2. Update the weight [ ]
1

i
tω −  for all the new samples based on 

the value of the observation likelihood of each particle. 
3. Perform a resampling step in order to prevent the loss of 

particle diversity if a measure of quality of the particles, 
for instance, the effective sample size [12], falls below a 
given limit. 

One of the most popular choices for the proposal 
distribution is to draw samples from the system transition 
model, that is, 1 1( | , , ) ( | , )t t t t t t tq s s u z p s s u− −= . In this case, 
updating the importance weights simply becomes: 

 ( )[ ] [ ] [ ]
1

i i i
t t t tp z sω ω −∝  (3) 

that is, the product of the previous weight with the 
observation likelihood evaluated at each state hypothesis [ ]i

ts . 
In the next subsection we discuss in detail how to compute 
this term, which is in charge of fusing the sensorial data from 
the UWB beacons and the GPS. 

Regarding the system transition model, there are two 
separate processes involved, one for each part of the 
augmented state vector ts .  
• For the common case of robot actions tu , represented by 

incremental odometry readings, the robot pose tx  is 
updated by adding the pose change stated by the 
odometry to the previous pose and corrupting it with a 
certain noise. This models the fact that odometry 
measurements can be inaccurate due to, for example, 



slippage or uncalibrated parameters. For more details 
about these models please refer to [2] or [20]. 

• The apparent bias of UWB ranges due to multi-path 
typically remains constant until new obstacles enter or 
leave the path of the UWB signal. Since accurate models 
for these effects may be extremely hard to obtain, even 
having a detailed representation of all the elements in the 
environment, we employ here the following approximate 
evolution model [9]. At each time step, there is a 
probability [0,1]cP ∈  for the bias kb  not to change, that 
is, [ ] [ ]

, , 1
i i

k t k tb b −= . On the other hand, we consider a change 
in bias with a probability of 1 cP− . In those cases, the 
change in the bias is modeled as a uniform distribution, 
but accounting for the constraint that biases must be non-
negative. Interestingly, this condition can be easily 
incorporated into the particle filter, while a Gaussian 
filter could not cope with it. 

At this point we have described the basis of particle 
filtering using the system evolution model as proposal 
distribution ( )q ⋅ . We must remark that this choice leads to a 
highly efficient implementation, although other proposals [1] 
may be considered in the case of a sufficiently large number 
of sensors. From our real experiments and simulations we 
have verified that this choice for the proposal distribution is 
well suited to a practical number of UWB beacons, e.g. up to 
10 beacons at sight at each instant of time. 

B. Probabilistic Observation Models 

As exposed in (3), particle weights are updated through the 
observation likelihood function  ( )[ ]i

t tp z s . The intuitive idea 
behind this process is assigning higher weights to those 
hypotheses that best explain the sensor readings, discarding in 
the resampling steps those particles that perform poorly. 

Without loss of generality we consider that the observation 
tz  contains one GPS reading and a range reading for each 

UWB beacon at each time step t. Formally, we denote the 
observation variables by the set: 

 { },1 ,, ,...,GPS UWB UWB N
t t t tz z z z=  (4) 

Since it is plausible to consider that the random errors in 
each of these individual measurements are independent, the 
observation likelihood can be factorized as: 

 ( ) ( ) ( ),
1

| | |
N

GPS UWB
t t t t k t t

k

p z s p z s p z s
=

= ∏  (5) 

The GPS receivers can be appropriately modeled by a 2D 
Gaussian over the ground plane, that is: 

 ( ) ( )[ ] [ ]| N ; ,GPS i i GPS GPS
t t t t tp z s x z= Σ  (6) 

where the associated covariance GPS
tΣ  should be a function of 

the number of satellites observed at each instant of time. For 
example, for 8 satellites we set a standard deviation value of 2 
meters.  

Regarding the UWB sensors, we can model the range 
values as having an unknown bias plus a zero-mean additive 
Gaussian noise characterized by 2

UWBσ . Since the bias [ ]
,
i

k tb  has 
been estimated jointly to the system state, the sensor model 
must account for the Gaussian noise only: 

 ( ) ( )[ ] [ ] [ ] 2
, , , ,| N ; ,UWB i i i UWB

k t t k t k t k t UWBp z s r b z σ= +  (7) 

Here [ ]
,
i

k tr  stands for the expected 3D euclidean distance 
between the UWB antenna onboard of the vehicle and the k’th 
UWB beacon, localized at kB . Figure 2 illustrates the 
observation likelihood distributions obtained for each of the 
individual sensors and how they are fused. 

 

a) b)

c) d)

e) f)  
 
Figure 2. UWB and GPS likelihood probabilities and their combination. a) 
Distribution for 3 UWB beacons and the GPS. The marked rectangle 
determines the area of conjunction of all measures. b)-d) A detailed and 
separated view of each UWB distribution within the conjunction area. e) The 
GPS distribution. f) The resulting combination of all distributions, that yields 
the probability distribution of the vehicle localization. 

 
We must highlight that the GPS and the UWB sensors do 

not measure directly orientation of the robot. Although, in 
practice, odometry readings incorporated through the robot 
motion model in the filter are enough to provide an accurate 
estimation of the robot heading. In the case we need a more 
precise estimation of the robot absolute heading, the robot 
should be equipped with two or more UWB devices. The 
process for fusing their measurements would be the same as 
discussed above. 

Finally, we must account for not all the measurements in 
(4) to be available simultaneously (as in the real experiments 
described later on). In these cases the likelihood for the absent 
readings can be set to any arbitrary constant value. Looking at 
the general Bayesian filter equations (2), it is clear that any 
constant value, i.e. constant between different particles, does 
not modify the estimated probability distribution, which is 
normalized at each step.  

 



IV. EXPERIMENTS 

In order to test the proposed method for vehicle 
localization we have carried out real experiments within a 
mixed indoor-outdoor scenario, combining UWB and GPS 
readings. 

In our test scenario, the parking area and the main entrance 
of the Computer Science building of the University of Malaga 
(see figure 3), three UWB beacons were placed to cover the 
indoor part and most of the outdoors (although the UWB 
signals are weaker in the outdoor part). UWB-GPS 
combination takes place in that outdoor part. 

 Within this scenario, a mobile robot equipped with an 
UWB antenna (PulsOn210 [21]), a GPS receiver, and a laser 
scanner is commanded to track a circular path previously 
recorded. During navigation, data from UWB and GPS are 
available each 111ms and 1s, respectively, and the 
combination of both, when available, is used for estimating 
the robot pose. The real position of the robot (ground truth) is 
calculated by matching the laser measurements with a map of 
the environment previously created [13]. 

 

 

Figure 3. Our mobile robot navigating in a mixed scenario at the parking of 
the Computer Science building of the University of Malaga 

In this setup, we have compared three different situations: 
i) the robot only relies on the odometric system to follow the 
path, ii) the robot position is estimated through our filter 
particle approach by also considering UWB range 
measurements, and iii) the GPS information is also combined 
in the filter to improve robot localization when it is available.  

Figure 4 shows the results of our experiments. Figure 4a-b 
depict the path to be followed and one-loop trajectory tracked 
by the robot considering only UWB and UWB+GPS, 
respectively. Figure 4c depicts the localization error for each 
case during the whole experiment (around two loops). In this 
chart, the shadowed areas represent the parts of the 
experiment where GPS and UWB data is combined for 
improving the vehicle localization, while in the rest, only 
UWB measurements are available. 

Notice that in the zone covering from area A to B (indoor 
part) only UWB data is available yielding an acceptable 
localization error (20 cm. at maximum). The portion between 
B and C corresponds to the outdoor area (in fact, a large 
transition area), where GPS is available and weak 

measurements coming from the UWB beacons are 
sporadically present. Note that the localization error when 
considering UWB only is higher as the robot goes far from 
the beacons, being significantly reduced when UWB 
measurements are combined with GPS (see figure 5). 
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Figure 4. Estimated paths and localization errors. Plots (a) and (b) show the 
considered scenario where indoor areas are shown in dark and the fixed 
beacons are marked as circles. (a) Real (thick line) and tracked path 
employing odometry and UWB range measurements (dotted line). (b) Real 
(thick line) and tracked trajectory using odometry, UWB range measurements 
and GPS position estimations (dotted line). (c) Errors in the estimation of the 
robot position along two loops employing different sensory information: only 
odometry (black dotted line), odometry and UWB (thin line), and odometry, 
UWB and GPS (thick line). The shadowed areas represent parts of the 
navigation where GPS and UWB readings were combined. 

 
Also note that, despite the navigation between C and A 

going indoor, the error in the position estimation is 
unexpectedly high. This is because at that point the vehicle 
usually loses the connection with the farther UWB beacons 
for a certain time, being available only the range 



measurement of one beacon and the odometry. As soon as the 
other beacons are accessible at some time, the system re-
localizes the vehicle. It is important to remark, that albeit 
three beacons are, at least, necessary for estimating the 
vehicle pose by triangulation, our probabilistic approach 
maintains a reduced error during some periods of time when 
information from only two or even one of them are available. 
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Figure 5. Vehicle localization in a transition area where GPS and UWB 
signal from a beacon are available. a) Vehicle localization using only the 
UWB range and odometry. b) Pose estimation when also combining GPS 
measurement.  

 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we have implemented and evaluated a 
probabilistic framework for vehicle localization that combines 
different sensory sources. Our approach, based on particle 
filter, considers UWB, GPS and the combination of both 
technologies to reliably estimate the pose of a vehicle that 
moves both in indoor and outdoor scenarios. This permits a 
vehicle to robustly perform in a variety of situations, for 
example in some industrial environments. 

Results from real experiments have been presented 
proving the suitability of the proposed approach with a 
mobile robot. 

In the future we plan to combine more sensory sources, 
such as inertial navigational systems and visual landmarks, 
within a more complex scenario. 
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