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ABSTRACT
Building a model of gas concentrations has important indus-
trial and environmental applications, and mobile robots on
their own or in cooperation with stationary sensors play an
important role in this task. Since an exact analytical de-
scription of turbulent flow remains an intractable problem,
we propose an approximate approach which not only esti-
mates the concentrations but also their variances for each
location. Our point of view is that of sequential Bayesian
estimation given a lattice of 2D cells treated as hidden vari-
ables. We first discuss how a simple Kalman filter pro-
vides a solution to the estimation problem. To overcome
the quadratic computational complexity with the mapped
area exhibited by a straighforward application of Kalman
filtering, we introduce a sparse implementation which runs
in constant time. Experimental results for a real robot vali-
date the proposed method.
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1. INTRODUCTION
Modeling the gas distribution of an environment implies

deriving a truthful representation of the observed gas dis-
tribution from a set of spatially and temporally distributed
measurements of relevant variables, foremost gas concentra-
tion, but also wind, pressure, and temperature, for example.
Building gas distribution models (GDM) is a challenging
task, mainly because in many realistic scenarios gas is dis-
persed by turbulent advection, which creates packets of gas
that follow chaotic trajectories [16].
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Figure 1: A picture of the e-nose mounted on the
mobile robot employed in the experiments.

While an exact description of turbulent flow remains an
intractable problem, it is possible to approach the problem
by aiming at a representation of the average gas distribution.
A gas distribution model should therefore represent an esti-
mate of the time-averaged concentration and the statistics
of the expected fluctuations. In this sense, a gas distribution
model is truthful if it explains new observations well and al-
lows to identify hidden parameters such as the location of
the source of gas, for example.

Instead of trying to solve the physical equations govern-
ing gas distribution, we create a statistical model of the ob-
served gas distribution from the sparse set of measurements,
treating gas sensor readings as random variables. Under the
assumption of a static gas distribution and given a sufficient
number of measurements, such a description will provide a
truthful representation.

Gas distribution modeling constitutes an ideal applica-
tion area for mobile robots since they can carry out the re-
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quired repetitive measurement procedure without suffering
from fatigue, can provide a higher (and adaptive) resolution
of the distribution model than a stationary sensor network
and offer the required accurate localization, the capabilities
to create the gas distribution model on-line and to decide
based on this model which locations need to be observed
next. Mobile robots equipped with gas sensors, as our robot
shown in Fig. 1, have a great potential for pollution monitor-
ing in public areas [1] or inspection of hazardous industrial
facilities.
In this work we introduce a probabilistic method to learn

a gas distribution model of planar environments given a se-
quence of localized gas sensor readings, that is, we assume
that robot localization is either solved or decoupled from
gas mapping as in [11], a common practice in the mobile
robotics olfaction literature. The space is divided into a
two-dimensional lattice where cells are treated as hidden
variables to be estimated through sequential Bayesian es-
timation. As discussed later on, the simple sensor model we
propose allows the derivation of an efficient implementation
of a Kalman Filter, such that updates can be performed in
constant time. The estimated model, also referred as the
map of gas concentrations, keeps a density distribution of
the expected concentration at each cell, including its uncer-
tainty. We present experimental results with a mobile robot
equipped with an electronic nose that validate our proposal.
This paper is organized as follows. We first discuss related

works in Section 2, then we introduce the map model in
Section 3 and derive the probabilistic method in Section 4.
Finally, experimental results for a dataset gathered by a real
mobile robot are discussed.

2. RELATED RESEARCH
This section gives an overview of the work in the area of

gas distribution mapping with a particular focus on methods
that have been developed for mobile robots.
According to the assumptions about the nature of the

gas distribution, these methods can be classified as model-
based approaches or statistical approaches. Model-based ap-
proaches as in Ishida et al. [7] infer the parameters of an
analytical gas distribution model from the measurements.
They crucially depend on the underlying model. As dis-
cussed above, the application of complex numerical models
based on fluid dynamics simulations is not feasible in prac-
tical situations. Simpler analytical models, on the other
hand, often rest on rather unrealistic assumptions and are
of course only applicable for situations in which the model
assumptions hold.
Among the statistical approaches, histogrammethods take

the spatial correlation of concentration measurements into
account because of the implicit extrapolation on the mea-
surements by the quantization into histogram bins. Hayes
et al. [6] suggest a two-dimensional histogram where the bins
contain the accumulated number of “odor hits” received in
the corresponding area. Odor hits are counted whenever the
response level of a gas sensor exceeds a defined threshold.
In addition to the dependency of the gas distribution map
on the selected threshold, a problem with using only binary
information from the gas sensors is that much useful infor-
mation about fine gradations in the average concentration
is discarded. A further disadvantage of histogram methods
for gas distribution modeling is their dependency on the bin
size and that they require perfectly even coverage of the

inspected area.
Kernel extrapolation gas distribution mapping, which can

be seen as an extension of histogram methods, was intro-
duced by Lilienthal and Duckett [9]. Spatial integration is
carried out by convolving sensor readings and modeling the
information content of the point measurements with a Gaus-
sian kernel. The Kernel extrapolation method was extended
for the case of multiple odor sources [14] and it was demon-
strated how a post-processing step, in which the obtained
map is interpreted by an analytical physical model, allows
to locate the gas source with a higher certainty and accu-
racy [13]. It was further shown on the basis of the Kernel
extrapolation method how gas distribution mapping meth-
ods can be embedded into a Blackwellized particle filter ap-
proach to account for the uncertainty about the position of
the robot [11].

All the methods mentioned so far model the average or
the peak gas concentration but not the concentration fluc-
tuations, or variance. The probabilistic model introduced
in this paper estimates both parameters for each location
(concretely, for each cell of the grid). Estimating the pre-
dictive variance is important for techniques that suggest new
measurement locations based on the current model (sensor
planning), for evaluating the model quality in terms of the
data likelihood and for integrating the predictions into prob-
abilistic localization methods [2]. Additionally, the Bayesian
estimation of the variance proposed in this paper allows tak-
ing into consideration a transition model of the system, pro-
viding a promising tool to model certain instances of the
GDM problem in the presence of wind.

Another method which predicts the mean concentration
and its uncertainty using Gaussian process mixture models
(“GPMM”) was presented by Stachnis et al. [17]. The pro-
posed method treats gas distribution modeling as a regres-
sion problem. In contrast to the approach introduced here,
the model is represented directly using the training data.
Since it requires the inversion of matrices growing with the
number of training samples n, the computational complexity
for learning the GPMM is O(n3), while the sparse Kalman
filter implementation introduced later on achieves a constant
update time per observed measurement.

More recently, Lilienthal et al. [12] proposed the Kernel
DM+V algorithm to estimate in addition to the distribu-
tion mean, the predictive variance per grid cell. They car-
ried out two parallel estimation process, one for the mean
and another for the variance, with the aim to adapt to the
real variability of gas readings. The method proposed in
this paper is based on a Bayesian interpretation, providing
the covariance of the mean gas concentration as an estimate
of the variance at each grid cell. As mentioned above, a
remarkable advantage of the Kalman Filter-based mapping
with respect to previous proposals is its potential for inte-
grating in the gas mapping process a transition model that
accounts for environmental information such as wind. This
transition model for the gas concentration map is not ad-
dressed here and remains as future work.

3. A STOCHASTIC MODEL FOR GDM
As in most previous works, we simplify the problem of

estimating the gas concentration in an environment by es-
timating a two-dimensional map. A map m is modeled as
a random field where mxy are scalar variables representing
the gas concentration at coordinates (x, y).
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Figure 2: (a) The 2D map is represented by a lattice where each cell keeps the estimate of gas concentration
by means of a Gaussian density, represented here in the vertical axis. (b) We also estimate the covariance
between cells and their neighbors. This plot shows the initial value of this covariance, representing the
assumption that closer cells have more similar concentrations.

In this work we propose a very simple probabilistic model
for gas measurements: an observation zt taken by the robot
at time t is simply the actual value of the gas concentration
at that point of space (denoted here as mc), corrupted by
additive Gaussian noise of variance σ2

n, that is:

zt = mc + nt , nt ∼ N
(
0, σ2

n

)
(1)

The model is backed up by the physical principle of gas
sensors which indeed are limited by a few square millimeters
of sensing surface. Nevertheless, in practice the slow reaction
time of sensors leads to an“averaging” effect over time. This
effect can be reduced by forcing the robot to move very
slowly or by using an specific e-nose configuration [5,15].
Going back to the map model, and given analytical so-

lutions are intractable, we divide the space into a regular
lattice of cells. Since our aim is a probabilistic model of
gas concentrations, the probability density function (pdf) of
the concentration will be estimated at each cell within this
gas concentration grid (GCG). In principle, this map model
resembles occupancy grid (OG) maps [3] used for sonar or
laser mapping. However, two fundamental properties set
GCGs apart from OGs:

• In an OG, each cell is uniquely characterized by the
discrete property of occupancy, thus each cell is mod-
elled through a Bernoulli distribution. In contrast, the
property we are modeling in a gas map is concentra-
tion, a continuous variable. Thus, we propose to model
the density of cells as Gaussians.

• Many common sensors provide information about a
much larger portion of space in comparison to gas sen-
sors. This is the reason why assuming independence
between cells is a common and plausible approach to
building OGs [3] (a notable exception is [18]): several
cells are observed simultaneously, while a gas sensor
takes just one reading of a point. Motivated by this
observation, the present approach does not assume in-
dependence between cells which would lead to an se-
vere lack of information about locations the robot has

not visited yet. Moreover, assuming certain correla-
tions between neighbor cells has a clear foundation in
the way gasses spread through an environment, thus
the assumption of cell dependency arises naturally in
gas mapping.

To summarize our model, we represent the map of gas con-
centrations, m, as a multidimensional Gaussian distribution,

m ∼ N (µ,Σ) (2)

where the mean vector µ = {µi}Ni=1 keeps the average con-
centration for each of the N cells, and the N × N matrix
Σ is the full covariance matrix. Thus, each cell mxy is indi-
vidually modelled by N

(
µxy, σ

2
xy

)
, as depicted in Fig. 2(a),

in addition to the covariances with the other cells. For con-
venience, mean values are normalized gas concentrations in
the range [0, 1].

The initialization of the covariance matrix Σ is the only
point in our method where a physical model of gas distri-
bution enters. Inspired by the kernel-based gas mapping
algorithm [10], closer cells are assigned higher correlations
which is modeled by an isotropic 2D gaussian as depicted
in Fig. 2(b). The initial variance of each cell is set to a
value larger than the range of normalized concentrations,
e.g. σ2

xy = 3, such as the Gaussian approximates a uniform
distribution for each unobserved cell.

The notation used in the rest of the paper deserves further
discussion. Referring to cells by their 2-d coordinates (e.g.
µxy) is useful for visualizing the spatial arrangement of cells.
Nevertheless, when dealing with the state vector-covariance
matrix representation it becomes more convenient to denote
individual cells by a single index, e.g. µc, thus the variance
of a given cell c is denoted by σ2

c and cross-covariances by
σi,j .

4. DERIVATION
In this section we first introduce Bayesian estimation of

gas concentration grids using Kalman filtering, then we de-
scribe how a sparse representation of covariances leads to a
dramatic improvement in efficiency resulting in a constant
time complexity (i.e. independent of the map size).
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right. Note that only half of the covariances (σi,j iff i ≤ j) must be kept due to the symmetry of Σt.

4.1 Kalman filtering
Let µt and Σt denote the mean and covariance matrix of

the map estimate at time step t. Kalman filtering (KF) [8]
allows us to incrementally update this estimate given new
evidences, or observations zt. Without loss of generality, we
assume that only one gas sensor is read at each time. In the
case of robots with several sensors, the following equations
are just applied more than once sequentially.
Since the sensor model proposed in this work is linear, see

Eq. (1), the original KF algorithm suffices to our problem.
Here the updated mean vector is computed as:

µt = µt−1 +Kt (zt −Htµt−1) (3)

where Ht is the 1×N matrix of the observation model. In
our problem, this matrix has a special configuration which
will lead to important simplifications:

Ht = (0 · · · 1 · · · 0) (4)

Ht[k] =

{
1 , k = c (the current cell)
0 , k ̸= c

that is, all entries but one are zero due to the simple sensor
model in Eq. (1) which states that the sensor measures the
gas concentration at the current cell c. It follows then that
the Kalman gain, Kt in Eq. (3), becomes:

Kt = Σt−1H
⊤
t

(
HtΣt−1H

⊤
t + σ2

n

)−1

(5)

= Σt−1H
⊤
t

(
σ2
c + σ2

n

)−1

=

 σ1,c

...
σN,c

(
σ2
c + σ2

n

)−1

which leads to the following update rules for each i’th cell’s
mean and cross-covariances:

µ′
i = µi + (zt − µc)

σi,c

σ2
c + σ2

n

(6)

σ′
i,j = σi,j −

σi,c σc,j

σ2
c + σ2

n

(7)

where for clarity prime variables refer to time t and un-
primed variables to time t − 1. This formulation provides
us with an exact solution to gas mapping given our sen-
sor model. However, its computation demands O(N) and

O(N2) operations for the mean and the covariance matrix,
respectively, being N the number of cells. This computa-
tional burden is better revealed by noting that the number
of cells N grows linearly with the mapped area, thus the
method has an overall complexity of O(A2) for A being the
mapped area. Storage is another drawback since keeping all
the covariances also demands quadratic space with respect to
the map area. Therefore, the method above can be directly
applied only to small maps. We develop in the following
an optimized version of the algorithm which dramatically
reduces the computational and storage complexities.

4.2 Sparse implementation
While in landmark-based SLAM sparse filters are well-

known and exploit real independencies between far-off land-
marks [19], in a gas grid any cell has some degree of corre-
lation with its neighbor, vanishing quickly with distance as
illustrated in Fig. 2(b).

Our proposed implementation of Kalman filtering for GDM
hence relies on the truncation of covariances between any cell
and those ones out of a window centered at the current cell,
as depicted in Fig. 3. The window size, W , determines the
range of cells affected by a gas reading at some given loca-
tion. Thus, for each new measurement, the mean of all cells
is updated using (6) and only some covariances are updated
through (7).

The advantages of this sparse representation are twofold.
Firstly, the complexity of each update is reduced fromO(N2)
(determined by the update of covariances) to O(W 4), which
represents a great improvement given that N is typically
several orders of magnitude larger than W . Note also that
the complexity becomes independent of the actual mapped
area. Secondly, storage requirements for the covariances also
greatly decrease from O(N2) to O(N · W 2). One possible
arrangement is the “compressed” covariance layout pictured
in Fig. 3. As an example, a full covariance matrix for a
real gas gridmap is shown in Fig. 4(a). It can be clearly
observed how all elements but those in a diagonal band are
zero, hence they do not contribute useful information to the
filter. In the compressed matrix in Fig. 4(b), only the band
diagonal elements are kept, thus all the information is pre-
served while requiring a fraction of the memory. The exact
gain in memory depends on the map size and the value of
W , but the improvement grows with the size of maps.
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Figure 4: (a) A covariance matrix for a gas gridmap,
where it becomes obvious that most of the correla-
tions occur between very close cells, thus virtually
all the information is kept in a band diagonal (darker
colors mean stronger correlations). (b) The com-
pressed covariance matrix proposed in this work,
where one row exists for each cell and contains the
relevant covariances only.

5. EXPERIMENTAL RESULTS
To validate our proposal, we have carried out the following

experiments1. A mobile robot equipped with an “electronic
nose” (e-nose) (see Fig. 1) was guided through an office room
with an alcohol source (a cup) placed on the floor in the
middle of the room. All doors and windows in the room were

1A video is also available at YouTube in
http://www.youtube.com/watch?v=2wQJ6kbp7U0

kept shut during the experiment to prevent strong air flows.
Inside the e-nose, four different Figaro sensors [4] provide us
in parallel the gas concentration of different chemicals.

Both the robot path and the occupancy grid map ob-
tained as the robot performed SLAM to localize itself are
represented in Fig. 5(a). The gas readings collected as the
robot moves are plotted in Fig. 5(b). After applying the
straighforward implementation of Kalman filtering (with the
full N ×N covariance matrix), we obtain an estimated map
where the peak roughly coincides with the actual location
of the gas source. The mean and standard deviation of each
cell in the gas grid can be seen in Fig. 5(c)-(d), respectively.
The level of uncertainty associated to each cell quickly in-
creases with the distance to the actual robot path, as can
be seen in Fig. 5(d).

As could be expected, the mean of cells is modified far
beyond the robot path, thus the approach is successful in
interpolating the gas readings to locations not visited by the
robot. The parameter σd, which controls the influence area
of measurements, has been set to 30cm in this experiment – a
value comparable to those in Kernel-based GDM. This value
of σd has been determined by optimizing the observations
likelihood for the present dataset, although values approx-
imately in the range 25 − 50cm leads to sensible maps. It
must be noted that the optimal parameters are determined
manually for each dataset, thus a more concise analysis of
optimal configurations across several environments remains
being a future work.

Regarding the sparse implementation described in section
4.2, we have observed that there exists a minimum win-
dow size (W ) which leads to an acceptable approximation
of the full covariance implementation, though for greater
W values the approximated maps converge very quickly to
the exact one at a fraction of the computational cost. To
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Figure 5: Experimental results for gas readings gathered by a real mobile robot. (a) The robot path and the
occupancy grid of the office where the experiment took place. (b) The gas readings over time. (c)-(d) The
mean and standard deviation, respectively, of each cell in the gas concentration grid built with our method.
(e)-(f) The errors between the exact KF solution and the sparse filter for increasing sizes of the window W ,
and (g) the corresponding computation times.
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quantify the improvement we have applied the sparse KF
with a range of different W values. The results are sum-
marized in Fig. 5(e)-(f), where the average errors in both
the mean and the variance of cells, respectively, are plotted
against increasing sizes of the window for values in the range
14 ≤ W ≤ 26. An accurate approximation is obtained for
values of W ≥ 20, approximately, while the time required
to build the entire map remains around 20 seconds – refer
to Fig. 5(g) – in contrast to the consideration of the full co-
variance matrix which requires more than 130 seconds. It
must be noted that the robot took an overall time of 768 sec-
onds to collect the dataset, thus both methods are capable
of real-time mapping.
Naturally, these performance results are related to the cell

size, set in this experiment to c = 10cm. In general, a finer
grid will provide more accurate results, at the expense of
a greater computational time. This burden is derived from
the need to enlarge the window size W to compensate the
smaller size of cells. As a rule of thumb from the results in
Fig. 5(e)-(f), the window size should be K ' 7σd/c. Hence
the convenience of keeping the grid as coarse as possible.
Typically, good results can be obtained with cell sizes c in
the range 5− 50cm.

6. CONCLUSIONS
In this paper we have revisited the problem of map build-

ing for the case of gas concentrations.We have approached
the problem from a Bayesian perspective and employed an
optimized version of Kalman filtering to generate a model
of the gas distribution in a planar environment. The main
contribution of this work is the introduction of a fast, prob-
abilistic algorithm which considers uncertainty in gas maps,
and provides the mathematical background for integrating
in the gas mapping process a transition model that accounts
for environmental information such as wind. This transition
model is not addressed here and remains as future work. The
method has been validated with a real dataset and despite
the noisy measurements, the obtained map correctly reflects
a peak in the concentration at the approximate location of
the source. Due to its probabilistic nature, the proposed ap-
proach is compatible with localization and SLAM methods
relying, uniquely or partly, on gas sensors. Future works will
explore these possibilities.

7. ACKNOWLEDGMENTS
This work was partly supported by the Regional Govern-

ment of Andalucia under research contract P08-TEP-4016.

8. REFERENCES
[1] DustBot - Networked and Cooperating Robots for

Urban Hygiene.
http://www.dustbot.org.

[2] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte
Carlo localization for mobile robots. In Proceedings of
the IEEE International Conference on Robotics and
Automation, volume 2, 1999.

[3] A. Elfes. Using occupancy grids for mobile robot
perception and navigation. Computer, 22(6):46–57,
1989.

[4] Figaro. Figaro corporate website:
http://www.figarosensor.com/.

[5] J. Gonzalez-Jimenez, J. G. Monroy, and J. L. Blanco.
The multi-chamber electronic nose, an improved
olfaction sensor for mobile robotics. Sensors,
11(6):6145–6164, 2011.

[6] A. Hayes, A. Martinoli, and R. Goodman. Distributed
Odor Source Localization. IEEE Sensors Journal,
Special Issue on Electronic Nose Technologies,
2(3):260–273, 2002. June.

[7] H. Ishida, T. Nakamoto, and T. Moriizumi. Remote
Sensing of Gas/Odor Source Location and
Concentration Distribution Using Mobile System.
Sensors and Actuators B, 49:52–57, 1998.

[8] R. Kalman. A new approach to linear filtering and
prediction problems. Journal of Basic Engineering,
82(1):35–45, 1960.

[9] A. Lilienthal and T. Duckett. Building Gas
Concentration Gridmaps with a Mobile Robot.
Robotics and Autonomous Systems, 48(1):3–16,
August 2004.

[10] A. J. Lilienthal and T. Duckett. Building gas
concentration gridmaps with a mobile robot. Robotics
and Autonomous Systems, 48(1):3–16, August 31 2004.

[11] A. J. Lilienthal, A. Loutfi, J. L. Blanco, C. Galindo,
and J. Gonzalez. A rao-blackwellisation approach to
gdm-slam. integrating slam and gas distribution
mapping. In Proceedings of the European Conference
on Mobile Robots (ECMR), pages 126–131, September
19–21 2007.

[12] A. J. Lilienthal, M. Reggente, M. Trincavelli, J. L.
Blanco, and J. Gonzalez. A statistical approach to gas
distribution modelling with mobile robots, the kernel
dm+v algorithm. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 570–576, October 11 –
October 15 2009.

[13] A. J. Lilienthal, F. Streichert, and A. Zell.
Model-based Shape Analysis of Gas Concentration
Gridmaps for Improved Gas Source Localisation.
pages 3575 – 3580, Barcelona, Spain, 2005.

[14] A. Loutfi, S. Coradeschi, A. J. Lilienthal, and
J. Gonzalez. Gas Distribution Mapping of Multiple
Odour Sources using a Mobile Robot. Robotica, June 4
2008. Published online by Cambridge University Press.

[15] J. G. Monroy, J. Gonzalez-Jimenez, and J. L. Blanco.
Overcoming the slow recovery of mox gas sensors
through a system modeling approach. Sensors,
Manuscript submitted for publication.

[16] B. Shraiman and E. Siggia. Scalar Turbulence. Nature,
405:639–646, 8 June 2000. Review Article.

[17] C. Stachniss, C. Plagemann, A. Lilienthal, and
W. Burgard. Gas Distribution Modeling Using Sparse
Gaussian Process Mixture Models. In Robotics:
Science and Systems (RSS), Zurich, Switzerland, June
2008.

[18] S. Thrun. Learning Occupancy Grid Maps with
Forward Sensor Models. Autonomous Robots,
15(2):111–127, 2003.

[19] M. Walter, R. Eustice, and J. Leonard. Exactly Sparse
Extended Information Filters for Feature-based
SLAM. International Journal of Robotic Research,
26(4):335–359, 2007.

222


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

