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Abstract This article addresses the problem of robustly estimating the dynamic
state of a mechanism from a set of noisy sensor measurements. We start with
a rigorous treatment of the problem from the perspective of graphical models, a
popular formalism in the fields of statistical inference and machine learning. The
modeling power of such formalism is demonstrated by showing how the sequential
estimation of a mechanism state with an Extended Kalman Filter (EKF), often
used in previous works, becomes just one of the possible solutions. As an inter-
esting alternative, we derive the formulation of a Sequential Monte Carlo (SMC)
filter, also known as particle filter (PF), suitable for online tracking the state of
a rigid mechanism. We validate our ideas with both simulated and real datasets.
Moreover, we prove the usefulness of the particle filtering solution for real-work
applications due to its unmatched capability of automatically inferring the initial
states of the mechanism along with its ”assembly configuration” or ”branch” if
several ones are possible, a feature not matched by any previously-proposed state
observer in the multibody literature.

Keywords State observers · EKF · Particle filter · Uncertainty · Rigid Multibody
Systems · Virtual sensors

1 Introduction

With the introduction of inexpensive digital computers, the field of computational
mechanics witnessed an intense development of numerical methods for analyzing
multibody systems (MBS). Much effort has been devoted to devising dynamic
formulations and choices of coordinate systems that lead to precise solutions and
efficient computer implementations [1–8], since achieving real-time simulation of
multibody dynamics (MBD) becomes a must for applications such as Hardware-in-
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the-loop (HIL) testing or debugging controllers for mechanical designs that have
not yet been built.

Given that efficient simulation of moderate-size rigid MBS could be now con-
sidered a partly-solved issue [9–13], the multibody community has opened new
research lines that build upon the existence of simulators capable of real-time
operation. One of such lines is the topic of the present work, namely, MBS state

observers or estimators, where readings from a set of sensors are employed together
with a multibody model of the actual machine to infer its real dynamical state at
each instant of time. An important niche of applicability for state observers is the
implementation of controllers, where the state subject of control is not directly
measured but estimated instead.

Addressing MBS estimators under a probabilistic inference perspective, as done
in this work, is motivated by a series of reasons: (i) the need to cope with uncer-
tainty, (ii) the usage of virtual sensors and (iii) robustness. These goals are justified
in the following paragraphs.

First of all, any engineering application must deal with uncertainty. Inaccura-
cies during the fabrication and assembling of mechanical parts, imperfect modeling
of actuators, long-term weathering and unexpected external events should be all
taken into account, at least up to some extent. As an example, we could cite
NASA employing Monte Carlo methods in their Mars Science Laboratory land-
ing estimation [14]. Regarding the problem of predicting the effects of unknown
parameters in multibody systems, the straightforward approach consists of apply-
ing the Fokker-Planck diffusion equation, also known as the Kolmogorov forward
equation [15]. More convenient techniques based on generalized polynomial chaos
theory has been proposed in the series of works [16–18], which allow obtaining
accurate prediction of uncertainties in the dynamic response in both, time and
frequency domains.

While those methods are useful in predicting the expected behavior of a sys-
tem, reconstructing actual trajectories in either post-processing stages or online
for real-time control, requires estimators. Estimation of systems with uncertainty
differs from prediction in the inclusion of partial and noisy observations carry-
ing information about the system evolution over time that must be fused with
the predictions. To the best of authors knowledge, the application of estimators
to multibody dynamics only started in recent years [19–21]. We believe that the
rigorous probabilistic treatment proposed in this work based on graphical models
may be useful as a solid basis to further developing estimation techniques that
deal with uncertainty in mechanical systems.

Secondly, in vehicles, robotic manipulators and other mechanisms it often be-
comes expensive or cumbersome to obtain measurements of all the physical mag-
nitudes required to perform proper control or to monitor its operation. State ob-
servers provide the designer the possibility of using virtual sensors, that is, to
infer some measurements from readings of different sensors which may be more
economic than the replaced one or be easier to install and maintain. Examples of
magnitudes that are difficult to observe directly are the torque and forces at some
joints, and the tire-soil interaction forces in the analysis of vehicle dynamics.

Thirdly, probabilistic estimators as proposed in this work are able of robustly
fusing information from redundant or complementary sensors, leading to more ac-
curate and reliable systems. Additionally, to the best of the authors’ knowledge,
this work proposes for the first time a statistical framework for multibody esti-



MDS as Bayesian Networks: applications to robust state estimation of mechanisms 3

mators capable of distinguishing between a discrete set of ”branches” (refer to
Figure 3) or operation modes. Apart from the usage demonstrated in the pre-
sented experiments, where an estimator is capable of automatically determining
the branch of a four-bar linkage, the same framework could be employed to quickly
detect different prototypical failures or anomalies that are expected during a ma-
chine lifetime.

The rest of this article is structured as follows. Section 2 firstly introduces the
concept of graphical model and then proposes such a model for MBD. Next, the
recursive filtering equations of a Bayesian filter for a MBS are derived in Section 3,
while all its required probabilistic terms are explained in detail in Section 4. The
particular case of implementing the observer as a particle filter is addressed in
Section 5. Finally, some experiments are presented in Section 6 after which we end
with some conclusions.

2 A graphical model for multibody dynamics

In this section we firstly propose a graphical model for the dynamic simulation of
rigid MBS. Then, it will be employed in section 3 to rigorously derive the equations
of filtering state observers.

2.1 Uncertainty and graphs

As mentioned above, there exist several good reasons to address MBD under a
probabilistic point of view. However, working with probabilities in our case means
simultaneously handling probability density functions (PDFs) of a large number
of variables (degrees of freedom, sensor readings, forces, etc.), a task that only
becomes manageable if we establish a clear and structured model. Here is where
graphical models reveal indispensable.

The formalism of graphical models is a powerful tool which fuses concepts
from statistics and graph theory [22]. Although its origins can be traced back to
works by J.W.Gibbs on statistical mechanics (c.1902), the field witnessed a huge
development during the last decades. At present, graphical models have become
an essential interdisciplinary concept in a multitude of engineering areas [22–24].

A graphical model consists of a graph with nodes and edges, where nodes
represent random variables and edges encode relationships (i.e. conditional proba-
bilities) between them. There exist three main kinds of graphical models1, but in
this work we focus on directed acyclic graphical models, also known as Bayesian

networks (BNs). In such models, edges are directed and can be interpreted as
causal relationships, i.e. an edge a → b could be read “a causes b”. When the
involved variables evolve with time, as is our case in MBD, a different instance
of each variable exists for every time step t and we have a Dynamic Bayesian

Network (DBN).

Interestingly, the absence of edges between some of the nodes is the most
valuable information in a graph, since it allows us to simplify many probabilistic

1 The three types are: (i) directed acyclic graphs (or Bayesian Networks) [24], (ii) undirected
graphs (Markov random fields) [25] and (iii) factor graphs [26].
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Fig. 1: Example Bayesian model.

expressions. In particular, a graph can encode the conditional independence be-
tween two sets of variables a and b provided knowledge about another set c, which
is denoted as a ⊥⊥ b|c [27]. The exact rules to determine such independences can
be found elsewhere [22], but informally we can say that c “d-separates” a and b if
all the possible paths from a to b following the edges in the graph must go through
c. Note that the actual criterion takes into account the edge directions, but we
refer the details to the excellent existing literature [22].

It becomes instructive to explain the previous definition with the sample BN
shown in Figure 1, which encodes the relationships between a set of variables
{A,B, C,D,E}. Here, it follows from the graph that D and E are not indepen-
dent, in the statistical sense, since both share a common ancestor (C). However,
assuming a perfect knowledge about C, the two variables D and E become con-
ditional independent since C blocks all possible paths between them; hence, we
have D ⊥⊥ E|C. The utility of this knowledge is allowing us to simplify (factorize,
in statistical terminology) joint distributions such as p(D,E|C) = p(D|C)p(E|C).
The absence of a direct edge between D and E is what allows such a factorization.
By applying similar factorizations we can reduce the joint distribution of all five
variables in Figure 1 to a product of five simpler distributions:

p(A,B, C,D,E) = p(A)p(C)p(B|A)p(D|B,C)p(E|C) (1)

which is preferable for the dimensionality reduction of all the involved functions.
Three categories of problems can be addressed with graphical models [23]:

(i) learning the structure of the graph itself, (ii) learning the conditional distribu-
tions encoded by the edges, and (iii) performing inference. The latter, trying to
estimate the state of a mechanism from noisy and partial observations of the sys-
tem, is what motivates our interest on graphical models applied to computational
mechanics. The first two problems are not applicable in our context since we can
devise a physically-plausible model for both, the graph itself and the conditional
distributions, as shown immediately below.

2.2 A graph for MBD

Let the problem of MBD simulation be split into three sets of variables: (i) those
describing the dynamic state of the mechanism, (ii) observations or readings from
sensors and (iii) the set of all external forces. Following the common notation in



MDS as Bayesian Networks: applications to robust state estimation of mechanisms 5

Fig. 2: Dynamic Bayesian Model (DBN) for the discrete-time estimator of a MB
system in dependent coordinates. A DBN is a BN where the same pattern of
variables repeat for a sequence of time steps –here we depict t−1, t and t+1 only.
The mechanism branch B is the only variable that we assumed to remain static
over time, hence its lack of a time step subscript. Shaded and unshaded nodes
stand for variables considered in this work as hidden and observed, respectively,
while directed arcs represent a causality relationship. Variables that share exactly
the same connections have been grouped (dashed rectangles). Refer to the text for
details.

the literature, assume that the physical system is described by means of a set
of dependent coordinates q, which in turn can be determined from a minimum
number of independent coordinates z [2]. Thus, the first set of variables comprises
qt, q̇t and q̈t, corresponding to the position, velocity and acceleration vectors
of the mechanism for a discrete time step t = {1, 2, ...}, plus their counterparts
in independent coordinates zt, żt and z̈t. All sensor readings for one time step
t will be stacked together into a single vector ot. Our statistical model makes
no assumptions on the number or kind of sensors employed. Finally, forces will
be represented as a vector of generalized forces Qt of identical length than the
configuration qt.

One of the main contributions of this work is the proposal of the DBN model
shown in Figure 2 as a plausible statistical model for all those variables. As in
any dynamic model, variables are connected in a specific pattern that repeats
over and over again for each time step. Notice that we decided to cluster the in-
dependent configuration and velocity vectors together into an auxiliary variable
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(a) Branch B = 1 (b) Branch B = 2

Fig. 3: Given a four-bar linkage with its degree of freedom denoted as z (specified
via the angle highlighted in the figure), there exist two possible sets of dependent
(natural) coordinates q = [q1 q2 q3 q4]

T for each value of z = [z]. Figures (a)–(b)
illustrate the two possibilities, which we model as different values of a discrete
branch variable B = {1, 2}.

xT
t = {zTt , ż

T
t }, leaving the acceleration z̈t as an independent node. Our motiva-

tion is twofold: firstly, zt and żt always appear strongly coupled in the equations
of motion thus joining them into one node significantly reduces the number of
edges in the graph without loosing any information, i.e. no conditional indepen-
dence will be missed. Secondly, the equations of motion of MBD themselves reveal
that accelerations z̈t are functions of the external forces Qt and the current state
xT
t = {zTt , ż

T
t }, but are independent of all previous states and forces. Or, put in

probabilistic terms, z̈t is conditionally independent of all present and future vari-
ables excepting the current forces Qt and state xt. For this important information
to be encoded in the DBN we need to define an independent node for accelerations.

A word is in order about how our model deals with mechanisms with more than
one possible branch. Notice how, in Figure 2, the set of dependent coordinates q is
a function of independent coordinates z but also of an additional discrete variable
B (named after ”branch”). This latter variable models the additional information
that is required to unequivocally map independent into dependent coordinates, as
illustrated with a four-bar mechanism in the example of Figure 3. Although the
mechanism configuration is known in advance for many practical cases, we will
assume in the following, for the sake of generality, that it is also an unknown.
Therefore, it becomes the responsibility of the probabilistic estimator to distin-
guish between the different possibilities. To the best of our knowledge, no other
previous work has attempted the formulation of such a seamless estimation process
for MBS. Naturally, problems where the assembly configuration is perfectly known
in advance can leave the variable B out of the estimator’s vector of unknowns.

Since changing the active branch B during operation is an unrealistic event
in practice, we will assume in the following that B is constant during the entire
operation, although the DBN can be straightforwardlymodified to allow a dynamic
B if needed.

Other remarkable points in the model are observations and transitions between
time steps. Sensor observations ot have been modeled as depending only on the
current mechanism position, velocity and acceleration; note how this simple model
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Fig. 4: The DBN in Figure 2 after marginalizing out all dependent coordinates.
This is the final model employed in the rest of the work.

includes most common sensors such as encoders, resolvers, accelerometers, gyro-
scopes, etc. Regarding the transitions between consecutive time steps (t→ t+1),
they simply correspond to the application of a numerical integrator.

Thinking of the process of statistical inference at which the DBN model is
aimed we have already colored the nodes in Figure 2 accordingly: forces (Qt)
and sensor readings (ot) are observed (known) variables, while the mechanism
dynamical state and its branch (B) are represented as shaded nodes because they
are hidden nodes to be estimated, as addressed in section 3. Note however that the
same model may be employed to identify part of the acting forces or some poorly
modeled parameters of the mechanism, by just applying a different partitioning of
nodes into known and hidden.

Before deriving the filtering equations it becomes convenient to apply one sim-
plification to the graphical model in Figure 2. Recall that edges in a DBN encode
probabilistic relationships between sets of variables. Still, in the particular case of
MBD we find that dependent coordinates q are deterministic functions of the inde-
pendent ones z and the branch B, thus in an estimation problem it makes sense to
focus on recovering only the independent coordinates and the configuration. When
dependent coordinates q are required (for instance, while predicting the outcome
of an inertial sensor attached to the mechanism) they could be trivially computed
from z and B. Removing some of the random variables from a probabilistic model
is called marginalization and depending on the specific application the process
may have pros and cons. In our case, marginalizing out the dependent variables is
desirable because of the reduction in the dimensionality of the estimation problem.
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This idea is closely related to the Rao-Blackwellization technique [28], well-known
in statistical inference, where part of a target probability distribution is computed
analytically (in closed-form) as a function of the other part which is estimated
with a filter.

The reduced DBN after marginalizing dependent coordinates is shown in Fig-
ure 4. Our motivation for introducing the branch variable B now becomes clear
under the statistical perspective: if dependent coordinates qt were formulated as
depending on the previous set qt−1 as is common in the MBD literature, more
edges would appear after marginalizing them out2, leading to an impractical,
barely sparse graph. Instead, the proposed graphical model remains sparse and
presents a repetitive structure over time steps, which eases the derivation of filters
or any other kind of estimators.

Another argument favoring the introduction of the branch variable B arises if
one reflects about the fact that the proposed graphical model aims at representing
the underlying structure of an estimation problem in multibody dynamics. One
should prefer the smallest theoretical model among those that fit a large number
of problems in order to reduce the overall number of unknowns. Smallest above
means having the minimum number of variables and relationships between them.
Therefore, it makes sense to get rid of the coupling, for each time step t, between all
dependent coordinates qt and their predecessors qt−1, a coupling that only seems
natural due to the customary approach of deriving qt from independent coordi-
nates zt and the hint of the nearby configuration qt−1. However, from a conceptual
point of view the introduction of the branch variable B involves fewer constraints,
fewer variables, and also opens the possibility of employing techniques capable of
automatically determining the discrete branches of the constraint manifold [29].

Finally, another incentive to marginalize out dependent coordinates is that
most estimators assume a state space of independent variables.

3 Recursive Bayesian filtering

Now that the variables involved in the dynamic simulation of a multibody system
have been modeled as a DBN we can derive a recursive equation for Bayesian
filtering of such a system.

Our goal is to perform statistical inference to estimate the posterior density
distribution of the hidden variables (the branch B and the dynamic state xt =
{zt, żt} and z̈t) at some discrete time step t given the sequence of all sensory data
o1:t = {o1, ...,ot} and known forces Q1:t = {Q1, ...,Qt}, that is, the PDF:

p (xt, z̈t, B|Q1:t,o1:t)
︸ ︷︷ ︸

Posterior for t

(2)

Applying the definition of conditional probability3 we have:

2 The rule for removing variables from a DBN determines that new edges must be created
between the neighbors of removed nodes.

3 From p(a|b) = p(a, b)/p(b) it follows that p(a, b) = p(a|b)p(b), which can be generalized to
p(a, b|c) = p(a|b, c)p(b|c) via, for example, the multiplication rule for p(a, b, c).
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p (xt, z̈t, B|Q1:t,o1:t) = p (z̈t|xt, B,Q1:t,o1:t)
︸ ︷︷ ︸

T1

p (xt, B|Q1:t,o1:t)
︸ ︷︷ ︸

T2

(3)

Applying the Bayes rule4 to the first term (T1) over the latest observation ot

one obtains:

T1 ∝ p (ot|z̈t,xt, B,Q1:t,o1:t−1) p (z̈t|xt, B,Q1:t,o1:t−1) (4)

where the proportionality constant does not affect the estimation and can be
ignored. Now, the information about conditional independence can be exploited
to simplify the expression above:

T1 ∝ p (ot|z̈t,xt, B)
︸ ︷︷ ︸

Observation likelihood

p (z̈t|xt,Qt)
︸ ︷︷ ︸

Prob. equation of motion

(5)

Indeed, a careful observation of the DBN in Figure 4 reveals the following
conditional independence:

p (ot|z̈t,xt, B,Q1:t, o1:t−1)

ot⊥⊥Q1:t,o1:t−1|xt,z̈t,B
︷︸︸︷
= p (ot|z̈t,xt, B)

p (z̈t|xt, B,Q1:t, o1:t−1) =
︸︷︷︸

z̈t⊥⊥o1:t−1,Q1:t−1,B|xt,Qt

p (z̈t|xt,Qt)

We must remark the importance of the term denoted as observation likelihood

in Eq. (5): this is the unique point at which data from sensors are contrasted to
predictions from the estimator, making possible filter corrections as the actual
movement of the mechanism is tracked. In the case of multihypothesis estima-
tors (as the proposal in section 5) the term also allows the discrimination among
the different branches B, assigning a rigorously well-grounded probability to each
possibility. Regarding the other term of T1 in Eq. (5), p (z̈t|xt,Qt), it can be in-
terpreted as a probabilistic equation of motion. Section 4 provides further details
on how to implement these two probabilistic models.

Next, we address the term T2 = p (xt, B|Q1:t,o1:t), which represents amarginal

distribution where all past states x1:t−1 and all accelerations z̈1:t have been filtered
out. However, it is clear from the DBN in Figure 4 that any present state xt

depends on the previous dynamical state xt−1 and z̈t−1, thus they should appear
somehow in the expression for xt. Here we invoke the law of total probability5 to

4 The Bayes rule establishes how the observation of b affects the prior knowledge regarding
another variable p(a). It says that p(a|b) ∝ p(b|a)p(a), with p(b|a) customarily called the
likelihood of b. In the text, we apply the rule extension for conditional probabilities, where all
terms can be conditioned to another variable or variable set c, i.e. p(a|b, c) ∝ p(b|a, c)p(a|c).

5 This law states that any marginal distribution p(a) can be expressed as the summation or
integration (for discrete or continuous domains, respectively) of the conditional p(a|b) for all
possible values of b, i.e. p(a) =

∫
∞

−∞ p(a|b)p(b)db. It can be trivially extended for conditioned

probabilities, as required in our derivation, i.e. p(a|c) =
∫

∞

−∞ p(a|b, c)p(b|c)db. For discrete

variables, as the case of the branch B, integrals are replaced by summations over all the
potential values.
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introduce those two terms. For convenience we also introduce B as a conditioning
variable, leading to:

T2 = p (xt, B|Q1:t, o1:t)

=
∑

B

∫ ∫ ∞

−∞
p
(
xt,✚B|xt−1, z̈t−1,✚B,Q1:t, o1:t

)

︸ ︷︷ ︸

Since: p(a,b|b)=p(a,✄b|✄b)=p(a)

p (xt−1, z̈t−1, B|Q1:t,o1:t) dxt−1dz̈t−1

=
∑

B

∫ ∫ ∞

−∞
p (xt|xt−1, z̈t−1) p (xt−1, z̈t−1, B|Q1:t−1, o1:t−1) dxt−1dz̈t−1 (6)

where the following conditional independences from the DBN model have been
employed during the last step to drop non-informative terms:

p (xt|xt−1, z̈t−1,Q1:t, o1:t)

xt⊥⊥Q1:t,o1:t|xt−1,z̈t−1
︷︸︸︷
= p (xt|xt−1, z̈t−1)

p (xt−1, z̈t−1, B|Q1:t, o1:t) =
︸︷︷︸

xt−1,z̈t−1,B⊥⊥Q1:t−1 ,o1:t−1|Qt,ot

p (xt−1, z̈t−1, B|Q1:t−1, o1:t−1)

Putting together Eqs. (3)–(6) we obtain the sought recursive expression:

Posterior for t
︷ ︸︸ ︷

p (xt, z̈t, B|Q1:t,o1:t) ∝

Observation likelihood
︷ ︸︸ ︷

p (ot|z̈t,xt, B) ×

Prob. equation of motion
︷ ︸︸ ︷

p (z̈t|xt,Qt) × (7)

×
∑

B

∫ ∫ ∞

−∞

p (xt|xt−1, z̈t−1)
︸ ︷︷ ︸

Numerical integration

p (xt−1, z̈t−1, B|Q1:t−1,o1:t−1)
︸ ︷︷ ︸

Posterior for t − 1

dxt−1dz̈t−1

which takes as input the posterior PDF at t− 1 and allows the estimation of the
updated one for t. Hence the recursive nature of this kind of Bayesian estimator.
It is worth pointing out that only the latest dynamical state is estimated at each
instant of time with the present formulation, as corresponds to our decision of
approaching the estimation problem from a filtering perspective. The DBN model
devised in this work can be also employed to derive other inferring schemes such
as batch estimators and smoothers [30]. However, they have been left out of the
present work for the sake of conciseness.

At this point we already have the recursive probabilistic equation Eq. (7) but
still have to decide how to implement it in practice. Two fundamentally differ-
ent kinds of approaches exist in the literature: those based on parametric [31,
32] and non-parametric distributions [28,33]. The formers are basically dominated
by methods that assume multivariate Gaussian distributions for all the involved
variables, a convenient assumption that allows modeling all filtered distributions
as analytics functions with a few parameters (i.e. a mean vector and a covari-
ance matrix). This is the approach already proposed in the literature for state
observers based on multibody models [34]. In order to illustrate that other al-
ternatives do exist, this paper will implement the filtering equation by making
use of non-parametric models, leading to the particle filter algorithm that will be
introduced in section 5.
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4 Probabilistic models for MBD

Dealing with uncertainty and probability distributions is not common in the multi-
body literature, thus we deserve this section to giving a detailed description of how
to merge MBD concepts with probability such that we are able to define all the
terms involved in Eq. (7).

4.1 Observation likelihood

The first probabilistic term that appears in the recursive filtering equation is
p (ot|z̈t,xt, B). Let us denote as L to the number of sensors installed on the mech-
anism, which may be of any kind as long as their readings ot can be modeled
according to the very general form:

ot =






o1t
...

oLt




 =






h1(z̈t,xt, B) + n1
t

...

hL(z̈t,xt, B) + nL
t




 = h(z̈t,xt, B) + nt (8)

where h(·) is the arbitrary model that predicts the sensor readings from a known
dynamic state (z̈t,xt) and branch (B), and nt is additive zero-mean Gaussian
noise that models measuring errors, a wrong calibration, electrical noise, etc. In
general, the noise from each sensor will be independent (i.e. uncorrelated to the
other errors), but for the sake of generality we assume that this noise follows a
general multivariate Gaussian distribution with covariance matrix Σs, that is:

nt ∼ N (0,Σs) (9)

where x ∼ p(x) means “x follows the p(x) probability distribution” and N (µ,Σ)
is the multivariate normal distribution with mean µ and covariance Σ.

Using this information to derive the expression for the observation likelihood
requires some knowledge that will not be evident until section 5, namely whether
the values z̈t, xt and B also have associated uncertainty or not. As will be shown,
in the particular estimator introduced in this paper all three variables can be
assumed to be perfectly known, since they will be hypotheses within a particle
filter. Therefore, all the arguments of the sensor model h(·) are perfectly known
and do not add additional uncertainty to the sensor reading predictions, leaving
the likelihood as follows:

p (ot|z̈t,xt, B) = N (ôt,Σs) (10)

with: ôt = h(z̈t,xt, B)

4.2 Probabilistic equations of motion

From the variety of different formulations that exist for solving the dynamic equa-
tions of motion of a rigid MBS [6], this work assumes the usage of any such formu-
lation that works with independent coordinates [2]. Moreover, our implementation
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makes use of natural coordinates but nothing in the probabilistic estimators would
change if another decision was made.

For a sequential estimator, the equations of motion behave like a black box that
gives the (independent) accelerations for each kinematic and dynamic situation:

z̈t = f (zt, żt
︸ ︷︷ ︸

xt

,Qt) + vt (11)

where vt is a zero-mean additive Gaussian noise with covariance matrix Σa that
models errors in the physical parameters of the mechanism, the effects of non-
modeled friction, unexpected internal or external forces, etc. Please note that the
Gaussianity assumption of acceleration errors applies pointwise at any possible
state xt. The uncertainty of such state space is by no means constrained to be
modeled in any particular form. In particular, section 5 proposes a non-parametric
representation.

As an example of what to expect as a function f (·), in the case of employing
the Matrix R method [2, §5.2.3] it looks like:

f (zt, żt,Qt) =
(

R
T
MR

)−1
R

T (Qt −MSc) (12)

where M is the system mass matrix, R is a projection matrix such that q̇ = Rż

and the product Sc equals q̈ when z̈ = 0 (refer to [2] for further details).
Since neither the state xt nor the generalized forces Qt have uncertainty in the

formulation of estimators as particle filters because each particle carries its own
hypothesis about the state, as discussed in section 5, the only source of uncertainty
in accelerations is the above mentioned additive noise, which gives raise to the
following simple expression for the sought distribution:

p (z̈t|xt,Qt) = N (ˆ̈zt,Σa) (13)

with: ˆ̈zt = f (xt,Qt)

4.3 Numerical integration

In the statistics literature, terms like p (xt|xt−1, z̈t−1) are interpreted as transi-

tion models because they define how a variable (x) evolves over time, possibly
affected by some external influence (z̈). Particularizing for MBD, it becomes clear
that the term describes the process of numerical integration (n.i.) of independent
coordinates that takes place at each time step. Again, the particular form of this
probabilistic term depends on whether or not the involved variables have associ-
ated uncertainty. In the particular case of using a particle filter (described in next
section), all variables are perfectly known, thus we arrive at a simple deterministic
model where the transition becomes a Dirac delta:

p (xt|xt−1, z̈t−1) = δ(xt − x̂t) (14)

with: x̂t
n.i.
←− xt−1, z̈t−1
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which imposes the usage of an explicit integrator –we used an explicit fourth-order
Runge-Kutta method in our particle filter implementation. It must be noted that
implicit integrators can also be used with our DBN model, as long as iterative
estimators (e.g. iterated EKF) are employed.

5 Online estimation with sequential MonteCarlo

Starting from the graphical model, section 3 showed how to obtain the recursive
equations of a probabilistic MBD estimator in a generic mathematical form. Next
we address the implementation of such equation into a feasible computer program
suitable for practical problems.

5.1 A particle filter for MBD

Implementing the recursive formula in Eq. (7) requires making a decision about
how to model each probability distribution in the equation. One possibility is
assuming parametric probability distributions, such as multivariate Gaussians or
sums of Gaussians. Under this convenient choice, the integrals of products of dis-
tributions that appear in the equation also turn out to be Gaussians, thus it is only
needed to store a few parameters (i.e. the mean and covariance) for the distribu-
tions at each time step. Such an approach leads to the family of Kalman-like filters,
which have the advantage of being computationally efficient. However, they are
unable to automatically distinguish between the different ”branches” of a mecha-
nism, neither are applicable when the initial state is unknown, due to their limited
support to handle nonlinearities.

To solve these drawbacks, we decided to employ non-parametric distributions
in this work. In particular, a technique called importance sampling [35]. If the dis-
tribution that is modeled with samples is employed to perform sequential Bayesian
estimation, the resulting method receives different names depending on the com-
munity, being the most common ones sequential MonteCarlo (SMC) and particle

filter (PF). Next we introduce the basis of this approach, but the interested reader
can refer to the introduction in [36] or to more exhaustive reviews of theoretical
advances in the field [28,33,37].

Importance sampling consists of approximating probability distributions with
finite sets of weighted hypotheses, also called particles. Informally speaking, the
goal is approximating the target distribution with the weighted density of parti-
cles at each point of the state space. Under ideal conditions all weights tend to
be identical, such that all the samples are equally significant, meaning that the
particles can be considered to be samples drawn from some target distribution
p(x):

x[i] ∼ p(x) , for i = {1, ...,M} (15)

where x[i] are the M particles. In general, each particle is also associated a relative
weight w[i] and then it follows that the PDF can be approximated as a weighted
combination of Dirac deltas δ(·) at each particle position:
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Fig. 5: An illustration of the principles underlying importance sampling for a one-
dimensional state space, here represented as the horizontal axis. (a) The target
probability density function (PDF). (b) A Gaussian approximation of the PDF.
(c)–(d) Two different approximations with particles, where all have exactly the
same weight (c) or different weights (d). Note that the particles themselves are
the position at the state space axis (represented as solid segments), while their
weights are represented as the height of each segment.

p(x) ≈
M∑

i=1

w[i]δ(x− x[i]) (16)

It is worth making a brief stop at this point in order to gain an insight about
how importance sampling really works in comparison to parametric methods. Con-
sider some target PDF, which may have an arbitrary shape, such as the one shown
in Figure 5(a). In general, the shape of a PDF p(x) resulting from probabilistic
filtering of non-linear systems is too complex to be described in closed form, hence
our need to rely on approximations. One alternative is approximating it as a Gaus-
sian distribution, which only requires providing two parameters: a mean and a vari-
ance, a situation illustrated in Figure 5(b). Alternatively, the same PDF can be
approximated with importance sampling. One such approximations is that shown
in Figure 5(c), where we find the ideal situations of all particles having exactly the
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Algorithm 1 MBD SIR {s
[i]
t , w

[i]
t }

M
i=1 → {s

[i]
t+1, w

[i]
t+1}

M
i=1

1: for all particles s
[i]
t = {x

[i]
t , z̈

[i]
t , B[i]} do // For each i = 1...M

2: x
[i]
t+1

n.i.
←− x

[i]
t , z̈

[i]
t // Numerical integration, see Eq. (14)

3: z̈
[i]
t+1 ∼ p

(

z̈t+1|x
[i]
t+1,Qt+1

)

// Draw acceleration sample, see Eq. (13)

4: s
[i]
t+1 ← {x

[i]
t+1, z̈

[i]
t+1, B

[i]} // Assemble new particle data

5: ŵ
[i]
t+1 ← w

[i]
t p

(

ot|z̈
[i]
t ,x

[i]
t , B[i]

)

// Update weight, see Eq. (10)

6: end for

7: // Normalize weights
8: for all i = 1...M do

9: w
[i]
t+1 =

ŵ
[i]
t+1

∑M
k=1 ŵ

[k]
t+1

10: end for

11: N̂eff ←

(
∑M

i=1

(

w
[i]
t+1

)2
)−1

// Evaluate ESS

12: if N̂eff < M
2

then // Selective resampling

13: {s
[i]
t+1, w

[i]
t+1}

M
i=1 ← resample({s

[i]
t+1, w

[i]
t+1}

M
i=1)

14: end if

same weight. This means that the “density” of samples exactly tends towards the
target PDF as the number of samples tends to infinity. In other words: all particles
can be considered to be statistical samples drawn from the target PDF. Note how
difficult is to achieve this ideal since, in practical applications, we do not know how
to draw samples from an unknown PDF. That is where weights play an important
correcting role: as illustrated in Figure 5(d), if we now draw particles following
a uniform distribution over the state space and then set their weights according
to pointwise evaluations of the target PDF, the resulting “weighted density” of
samples also converges towards the desired PDF as the number of particles grows.
The key insight here is that we are able to model a PDF by only evaluating its
value pointwise, even if we lack a closed-form expression for it.

Once the basics of importance sampling have been introduced, we can recover
the goal of deriving a filtering algorithm for MBD. Most previous works on particle
filters that can be found in the literature assume the following simple filtering
equation:

p(xt+1|o1:t+1) ∝ p(ot|xt+1)

∫ ∞

−∞

p(xt+1|xt)p(xt|o1:t)dxt (17)

which does not exactly matches the one derived in the previous section. Therefore,
we must directly apply importance sampling principles to Eq. (7) in order to derive
the correct algorithm to be applied in the estimation of MBD.

We start by defining M particles s
[i]
t = {x

[i]
t , z̈

[i]
t , B[i]} for i = {1, ...,M}, with

weights w
[i]
t , as the approximation of the posterior distribution at time step t.

Defining these particles for t = 0 is known as the filter initialization problem, and
is addressed in section 5.2. A particle filtering algorithm aims at computing an

updated set of particles s
[i]
t+1 and weights w

[i]
t+1 for t+ 1 that fulfills the recursive

equation Eq. (7). Implementing that Bayesian equation is enough for obtaining a
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working estimator, known as the Sequential Importance Sampling (SIS) algorithm
[35]. However, it has been demonstrated that the variance of the weights increases
over time [38], eventually leading to the degeneracy of the filter. That is the reason
why we adopt the SIS with resampling (SIR) algorithm [39], where an additional
resampling step is introduced in order to replace particles with low weights with
copies of more likely particles. Different resampling schemes are possible [40], but
for MBD they all have similar performance.

To help with the introduction of the resulting method, a pseudocode descrip-
tion is provided in Algorithm 1, whose line numbers are referenced in the following.
The algorithm takes as input a set of particles and weights for one time step t and
returns the updated sets for the t + 1. The three parts of the SIR algorithm are
clearly identified: (i) Implementation of Bayesian filtering (lines 1–6), (ii) normal-
ization of weights such as they sum up the unity (lines 7–10) and (iii) selective
resampling if the effective sample size (ESS), denoted as N̂eff , drops below a given
threshold [41] (lines 11–14). The first part is the most complex one, thus we next
provide a more detailed description. From the three terms in the product at the
right hand side of Eq. (7), the implementation firstly evaluates the third term in
the product (the sum of integrals). Since the posterior distribution for t is repre-
sented as a set of particles, hence as a sum of Dirac deltas as in Eq. (16), the sums
and integrals in Eq. (7) simplify into the application of the numerical integrator
to each particle (see line 2). Let us write down this step for the sake of clarity:

∑

B

∫ ∫ ∞

−∞
p (xt+1|xt, z̈t)
︸ ︷︷ ︸

Numerical integration

p (xt, z̈t, B|Q1:t,o1:t)
︸ ︷︷ ︸

Posterior for t

dxtdz̈t =

∑

B

∫ ∫ ∞

−∞
δ(xt+1 −

x
[i]
t+1

︷ ︸︸ ︷

x̂t+1(xt, z̈t))
︸ ︷︷ ︸

n.i. as of Eq. (14)

M∑

i=1

ω
[i]
t δ

(

{xt, z̈t, B} −
{

x
[i]
t , z̈

[i]
t , B[i]

})

︸ ︷︷ ︸

Importance sampling model

dxtdz̈t =

M∑

i=1

ω
[i]
t δ

(

{xt+1, z̈t, B} −
{

x
[i]
t+1, z̈

[i]
t , B[i]

})

(18)

Next, the probabilistic equations of motion, as discussed in section 4.2, simply
become the solution of the standard MBD problem with the addition of random
noise to the obtained accelerations (line 3). Mathematically, this imply approxi-
mating the product of Eq. (18) and the equations of motion p (z̈t+1|xt+1,Qt+1).
Using Eq. (13) it is clear that the resulting distribution becomes a sum of Gaus-
sians which, following the SIR algorithm [39], is approximated as a set of samples
by drawing one random sample from each Gaussian. Given that the branch B does
not change over time, it remains unmodified, thus all the particle information for
the new time step is ready at that point (line 4). Finally, the remaining term in
the recursive Bayesian product in Eq. (7), that is, the observation likelihood, turns
out to be a well-determined scalar for each particle i, thus it can be absorbed into
the posterior as a modification of the particle weight (see line 5).

It must be noted that the described method is just one of the possible ways
of implementing the Bayesian equation as a particle filter, but it is the simplest
one and therefore the most suitable for real-time estimation of mechanisms. Fu-



MDS as Bayesian Networks: applications to robust state estimation of mechanisms 17

(a) 10 particles (b) 100 particles (c) 500 particles

Fig. 6: Simultaneous representation of all initial hypotheses for an increasing num-
ber of particles aimed at estimating the dynamic state of a four-bar linkage similar
to that shown in Figure 3. The initial distribution follows a uniform distribution
over the joint space of independent coordinates and branches.

ture works may explore other alternatives such as the usage of optimal proposal
distributions [38] which would allow accounting for implicit integrators.

Finally, we must address the issue of recovering the filter most-likely estimation
at any instant of time, which may be required in real-time to, for example, feed
a controller whose actuation depends on the mechanism state. In those cases, we
can easily evaluate the expected value of the posterior density function as:

[

ẑt, ˆ̇zt, ˆ̈zt
]

=
M∑

i=1

w
[i]
t

[

z
[i]
t , ż

[i]
t , z̈

[i]
t

]

(19)

Caution must be paid to the formula for ẑt above when there exist independent
coordinates that model angles instead of Euclidean coordinates, since averaging
over the manifold of planar orientations requires a modified averaging equation6.
In turn, the angular velocities and accelerations corresponding to those coordinates
do not present such a complication.

Regarding the most-likely branchB of the mechanism at any time step t, it does
not make sense to evaluate an “average value” due to the discrete nature of that
variable. Therefore, all we can do is computing the probability of the mechanism
to be at each branch bk out of the |B| possible ones, which amounts to summing
the weights of all the particles that carry such a hypothesis:

P (B = bk) =
∑

∀i/B
[i]
t

=ck

w
[i]
t , for k = 1..., |B| (20)

A practical application of this formula will be demonstrated in Figure 11(c)–(d)
when determining the assembly of a real mechanism from sensor readings.

6 For planar rotations in SO(2), weighted averaging can be performed by weighting the
two-dimensional coordinates of points at each given angle over the unit circle, then projecting
the average point back to the unit circle. For SO(3) rotations, several averaging methods exist
depending on the desired matrix metric over the manifold [42].
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5.2 Filter initialization

All filtering estimators consist of a recursive equation that propagates the state
belief from one time step to the next one. The important issue of how to set the
initial belief of the filter remains as an open problem that must be solved by the
analyst depending on the particularities of the filter, the mechanism, the sensors
and the prior knowledge available at start up. Parametric filters such as those
based on EKF [43] or the Unscented Kalman Filter (UKF) [32] impose a serious
limitation in this sense, since, in general, the initial state of the mechanism must
be roughly known in advance in order to be well approximated as a Gaussian,
restricting their practical utility to well-controlled scenarios.

In turn, one of the clearest advantages of particle filters is their suitability
to deal with ambiguous situations, such that the lack of information about the
mechanism state when the state estimator starts up. As an example, Figure 6
illustrates the initial state of our proposed particle filter for a different number
of particles when used to track a four-bar linkage whose initial position is totally
unknown. Mathematically, each component of the initial set of particles for t = 0,
that is,

s
[i]
0 = {z

[i]
0 , ż

[i]
0

︸ ︷︷ ︸

x
[i]
0

, z̈
[i]
0 , B} (21)

must be generated as a random sample from the corresponding uniform distribu-

tion according to the physical limits of the variables used to describe the mecha-
nism. Particularizing for a four bar mechanism, which has two possible branches
(B = 1 or B = 2) and only one degree of freedom, and assuming that the inde-
pendent variable is the angular position of the crank (θt), we have:







θ
[i]
0 ∼ U(−π, π)

θ̇
[i]
0 ∼ U(−wmax, wmax)

θ̈
[i]
0 ∼ U(−ẇmax, ẇmax)

B
[i]
0 ∼ U({1,2})

(22)

where U(·) stands for the uniform distribution7, and wmax and ẇmax are upper
limits for feasible initial angular velocities and accelerations, respectively. Clearly,
using initial distributions for mechanisms with several degrees of freedom would
require an excessive number of particles to sufficiently cover the entire state space,
rendering impossible their application to real-time operation. However, we demon-
strate with the experiments below that particle filters are a suitable, robust solu-
tion for simple-enough mechanisms.

7 The continuous uniform distribution p(x) = U(a, b) assigns the same probability density
to every point x ∈ (a, b), whereas the discrete version P (x) = U(S) models the case where
each event in the set S has exactly the same probability of occurrence.
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6 Experiments

In order to evaluate the suitability, robustness and accuracy of the proposed PF
algorithm for multibody tracking we performed two series of experiments: a first
set of tests on a simulated mechanism and real tests on a physical prototype. In
both cases the employed model is a four-bar linkage. Next we address the two sets
of experiments. We also recommend viewing the online video demonstrating the
results regarding particle filter convergence under large initial uncertainty8. The
C++ source code for our experiments is also publicly available online9.

6.1 Simulations

The aim of these first experiments is to demonstrate how a PF estimator is able
to automatically determine the starting configuration of a mechanism from the
sequence of readings from one noise sensor. To this end, a computer program was
developed which simultaneously runs two processes: (i) a multibody dynamic sim-
ulator of a four-bar linkage, similar to that shown in Figure 3(a), and (ii) the PF
estimator described in previous sections. The idea is to employ the first simulation
as a “ground truth” or “real” mechanism, from which sensor readings are simu-
lated, corrupted with zero-mean additive Gaussian noise (with standard deviation
σr) and fed to the estimator. By employing a simulated reference mechanism we
are able to precisely analyze how diverse kinds of errors affect the performance
and accuracy of the estimator.

The mechanism, shown in Figure 9(a), is modeled with natural coordinates [44]
by means of eight redundant coordinates q = [xA yA x1 y1 x2 y2 xB yB]T, with A
and B being the left and right fixed points, respectively. As dynamic formulation
we employed the Matrix R projection method [2] with full-pivoting LU decom-
position of the constraint Jacobian, implemented with the Eigen C++ library
[45]. This allows the code to automatically determine, at each time step, which
redundant coordinate in qt is better suited for being selected as the independent
coordinate. Notice that this is the reason why the acceleration noise in Table 1 has
units of linear acceleration (m/s2), as opposed to the frequent case where a four-
bar linkage is modeled with mixed coordinates that include the crank angle. No
external forces exist apart from gravity, and only one virtual sensor was simulated:
a gyroscope attached to the longest bar –refer to the sketch in Figure 9(a). Notice
that this choice leads to angular velocity observations that only indirectly reveal
information about the crank angle at the opposite side of the device, which will be
computed for each time step to reflect the mechanism position. Two experiments
have been performed on this simulation benchmark, as detailed next.

6.1.1 Tracking experiment

Here, the PF estimator was initialized using a uniform distribution to model the
situation where the filter has no prior information at all about the mechanism

8 See http://www.youtube.com/watch?v=7Zru0oiz36g
9 Hosted at https://github.com/jlblancoc/mbde
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Parameter Value

Number of particles 100
Additive gyroscope noise (σr) 0.3 deg/s

Sensor noise assumed by the state observer
(σs, with Σs = σ2

s in Eq. (10))
1 deg/s

Equations of motion acceleration noise
(σa, with Σa = σ2

a in Eq. (13))
1 m/s2

Table 1: Parameters of the simulation experiment.

state. Therefore, the initial hypotheses of the PF are distributed as in the exam-
ples of Figure 6. For this experiment, the multibody model employed by the PF
exactly matches the real mechanism (i.e. lengths, masses, etc.), hence in this sense
we have an ideal situation. Most relevant parameters of this setup are summarized
in Table 1. It can be observed there how the sensor noise assumed by the PF is
larger than the actual simulated noise, that is, σs > σr. This may seem subop-
tiomal, since the estimator will not “trust” the readings as much as it should,
discarding valuable information. However, artificially increasing the uncertainty is
a widely-accepted technique employed to avoid the sample impoverishment prob-
lem [46]. Informally, this effect can be described as hypotheses losing the minimal
“randomness” required to fit both the multibody model and the sensor noise,
which ends up in the assignment of high weights to random samples that are not
really the ones that best represent the posterior density distribution.

The results are summarized in Figure 7(a), which shows the ground truth crank
angle (i.e. the “real” value being estimated) in solid black, along with the PF
estimation over time. We have also computed the average or expected crank angle
from the filter (in solid red) as well as the corresponding 95% confidence interval,
which represents how much uncertainty exist about the mechanism dynamic state.
Notice how the filter starts with a large uncertainty, corresponding the the absolute
lack of information about the orientation of the crank. We must insist in the
impossibility of modeling such a large uncertainty with parametric filters (as the
EKF or UKF), since the involved nonlinearities are excessively large for that kind
of filters to be useful. In less that 0.5 seconds, however, the filter converges to the
actual position of the mechanism, as can be seen in the Figure 7(a). The error in
the crank angle estimation is also shown in Figure 7(b), along with its uncertainty.

6.1.2 Robustness benchmark

The second experiment consists of a benchmark against errors in the modeling of
the mechanical device. Here, the focus is on determining whether the estimator
is able to track the real movement of the mechanism in the case of mismatches
between the real model and the parameters of the multibody model employed by
the PF. Such benchmark is relevant since, in practice, it becomes difficult to accu-
rately determine the weight, dimensions, inertia matrices and friction parameters
of all the elements of a machine.

We performed a characterization of the estimation accuracy for different errors
in the length and mass of the crank element. In particular, we evaluated errors of
0% (perfect model), 1%, 2% and 3% with respect to the ground truth. Simultane-
ously, for each error level the benchmark was also run for a wide range of values of
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Fig. 7: Results from a simulated mechanism being tracked with a PF state ob-
server. (a) The evolution over time of the degree of freedom of the real mechanism
(ground truth) and the probabilistic estimation, including a 95% confidence inter-
val. (b) Error in the tracking and its 95% confidence interval.

σa (with Σa = σ2
a), the standard deviation of the acceleration noise in our statis-

tical equations of motion in Eq. (13). The intention is to experimentally verify the
theoretical role of Σa, whose optimal value arises as the trade-off between very
low values, which reduce the uncertainty by forcing the estimator to follow the
kinematics and dynamics of the multibody model, and high values which allows
the estimator to fit unexpected friction forces, length errors, etc. In short, that
parameter should require some tuning for each specific application.

The results for the particular mechanism at hand, which should not be ex-
trapolated to a more general case, are summarized in Figure 8 as the root mean
squared error (RMSE) of the estimated crank angle. In fact, the displayed values
are the mean of 100 repetitions of each combination of error level and Σa. Three
remarkable insights can be obtained from these curves. Firstly, it is clear that
the achievable accuracy strongly depends on how precisely the multibody model
represents the real mechanism: the best accuracy (MRSE of ∼ 0.3◦) can be only
obtained with a perfect model (0% error in the graph). Note that an imporant
practical implication of this result is that inexpensive sensors (e.g. a gyroscope)
could replace a more expensive or intrusive one (e.g. an encoder), provided that
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Fig. 8: Results of the benchmark for different levels of mismatch (0%, 1%, 2% and
3%) between the real mechanism and the model assumed by the PF estimator. The
horizontal axis stands for σa, the standard deviation of the equations of motion
noise model, with Σa = σ2

a. The vertical axis stands for the root mean squared
error (RMSE) of the expected crank angle as estimated by the filter.

a quality multibody model is available. Secondly, there is not a universal optimal
value for Σa, since it depends on the actual level of inaccuracy in the model. As
expected from its theoretical meaning, higher values of this parameter are required
to achieve the minimum error as the inaccuracy grows. And thirdly, the sample
impoverishment problem [46] clearly reveals itself as Σa becomes too small, be-
coming specially relevant in the curve for a perfect model (0% error) .

6.2 Real-time tracking of a real mechanism

We also built a physical prototype on which to test the PF estimator, as can be
seen in Figure 9(b). The main parameters of the design and the estimator are
summarized in Table 2.

Two tests were performed for the two possible configurations of the mechanism:
one with the middle bar upwards (which will be called configuration B = 1) and
another one with it downwards (B = 2). The challenging goal of this experiment
is to obtain a reasonable estimation of the mechanism state, including its configu-
ration among the two possibilities, from a short sequence of noisy gyroscopic data.
Note that the friction in the joints, which is high enough to stopping the mecha-
nism after a few seconds, is totally neglected in the multibody model, making the
estimation problem harder.
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L3
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L1

(a)

(b)

Fig. 9: The four-bar linkage employed as a testbed for our nonlinear, particle filter
estimator. (a) Schematic view. Refer to Table 2 for the nominal lengths and masses
of each link. (b) The real prototype. The solid-state gyroscope can be seen attached
to the longest bar.

As in the simulation experiments, the only acting force is gravity and the
unique sensor available to the estimator is an inexpensive triaxial MEMS gyroscope
(L3G4200D) attached to one of the links. The real position of the mechanism
is obtained by means of a FAULHABER optical encoder with 500 pulses per
revolution, attached to the crank. Readings from this encoder are not fed to the
state observer, but rather used as a reference to check the quality of the estimation.

For each configuration, the crank is manually raised, then released, and data
from the gyroscope and the encoder are recorded until the mechanism stops moving
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Parameter Value

Number of particles 50
Equations of motion acceleration noise

(σa, with Σa = σ2
a in Eq. (13))

4 m/s2

Sensor noise assumed by the state observer
(σs, with Σs = σ2

s in Eq. (10))
1 deg/s

Gyroscope measuring period (Ts) 6 ms
PF working period (T ) 3 ms

L1 125 mm
L2 270 mm
L3 540 mm
m1 0.039 kg
m2 0.161 kg
m3 0.303 kg

Table 2: Parameters of the real experiment. The Li and mi correspond to the
lengths and masses of the links, respectively. All of them have been determined
experimentally.

due to friction. The starting angle at which the crank is manually taken is arbitrary,
since our goal is to demonstrate how the PF is able to recover that information.
The raw gyroscopic data for the two different configurations (i.e. see Figure 3) are
shown in Figure 10, where it can be appreciated how similar they look like.

One of the most surprising results of this work is the short time required by
the filter to correctly determine, from gyroscopic data, the actual assembly of the
system, i.e. the unknown B, simultaneously to the determination of the initial
position of the crank, which is also unknown. As can be seen in Figure 11(c)–(d),
it takes less than 6 sensor readings (about 36 ms) for the probability of the correct
configuration to grows up to the unity. Recall that these probability values are
extracted from the state observer using Eq. (20). Regarding the reconstruction
of the crank angle over time for each experiment, illustrated in Figure 11(a)–
(b), there exist larger errors than in the simulation experiment presented in the
previous section, specially in the configuration B = 1. The better performance for
B = 2 is due to the largest velocities and accelerations attained in this situation,
which provide a better discrimination among particle hypotheses when the unique
sensors are gyroscopes. Nevertheless, it must be remarked that, even provided a
poor multibody model that disregards all friction forces, the state observer is still
able to track the link oscillations at the correct frequency and with approximate
amplitudes without any precise information about the initial angle. Although this
presents a qualitative improvement with respect to previous state observers based
on parametric filters, it becomes patent that considering better multibody models
(e.g. with approximate friction forces) is crucial to obtain high quality estimations.

The computer code for this experiment was implemented in C++, compiled in
GNU/Linux and executed on an Intel Core i7-3770 CPU at 3.40 GHz. The PF runs
with a time step of T = 3 ms, incorporating the readings from the gyroscope only
when they are ready. The average period of sensory data was Ts = 6 ms, which
means that in roughly half of the iterations no new sensory data were available,
in which case the proposed SIR algorithm remains unmodified but for the weight
update stage which is skipped.
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(b) B = 2

Fig. 10: Gyroscopic readings for two experiments, one for each possible configura-
tion of the mechanism.

Regarding computational efficiency, our implementation achieves faster-than-
real-time execution for a four bar linkage model and 50 particles. For an experiment
with real duration of 10.98 seconds, the overall computational cost of running the
PF is 9.2 seconds (83.75% of real-time). Indeed, the most expensive stage of our
algorithm is the implementation of the Bayesian filtering (lines 1-6 of Algorithm 1)
with a 97.47% of the total execution time. Solving the equations of motion for each
particle is the most time-consuming task in that stage. The weight renormalization
and particle resampling stages represent the remaining 0.03% and 2.50% of the
time, respectively.

7 Conclusions

The present work has contributed two significant achievements in the field of prob-
abilistic estimation of MBD. Firstly, a graphical model has been proposed for the
first time in the literature. It serves as a theoretical foundation to previously-used
estimators such as EKF or UKF, but can be also used as a guide to implement
new estimators in future works. Secondly, it was shown how to rigorously derive,
from such graph, the equations of a sequential filter for online estimation of a
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(d) B = 2

Fig. 11: Experiment results from the real prototype. (a)–(b) Real crank angle
(solid black line), estimation from the state observer (red) and is 95% confidence
interval (gray area) for the two assembly configurations, or branches, of the four-
bar linkage. (c)–(d) Time evolution of the probability of the mechanism to be in
each branch, as estimated by the proposed method. It is remarkable how quickly
the correct solution, i.e. B = 1 in (c) and B = 2 in (d), becomes dominant.
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mechanism. The particular implementation as a particle filter has been shown to
be suitable to real-time tracking of small mechanisms with inexpensive sensors, re-
porting a decent accuracy and robustness to non-modeled effects. For the first time
in the literature, an estimator has been presented that can distinguish between the
different configurations of the system by accumulating statistical evidence over a
few milliseconds of sensory data.

Despite the successful results, two research lines remain open after this work:
(i) performing a systematic and consistent benchmarking among different state ob-
servers in order to quantitatively establish their pros and cons in different applica-
tion areas, and (ii) developing new estimators from the presented DBN, including
potential ways of fusing the advantages of both parametric and non-parametric
methods or the determination of system parameters or external forces as problem
unknowns. More future work is clearly required in order to address these topics.
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