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Short answer for the impatient

Non-Euclidean manifolds in robotics and computer vision: why
should we care? → Because we can’t ignore the real geometry
of the mathematical spaces!

“What is the distance from Madrid to Miami?”
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Concept: topological spaces

The topology of an object defines its “shape” in the coarsest
sense: no geometric (“metric”) details.

Two objects are topologically the same if we can morph one
into another just streching, without creating new holes
(tearing) or closing existing ones.

Classic example: a coffee mug and a torus.
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Topological spaces: examples

The line of real numbers R.

The infinite plane of R2.
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Topological spaces: examples

The circle S1.

The torus is the Cartesian product of two circles: S1 × S1

The sphere is the different space S2.
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Concept: What is a manifold?

An N-dimensional manifold M is a topological space where
every point p ∈ M is endowed with local Euclidean structure.

Informally: a manifold is built by “gluing” together small pieces
of RN . However, the “global” structure is not Euclidean.

Example

A sphere is a 2D manifold (surface) embedded in R3:
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Concept: manifold tangent space

The tangent space of the N-dimensional manifold M at x ∈ M can
be seen as the local Euclidean space at x . Also called the
“linearization” of the manifold.

Denoted as TxM, is the vector space of all possible “velocities” of x :
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Concept: Lie group

A Lie group is a (non-empty) subset G of RN that fulfills:

1 G is a group.

2 G is a manifold in RN .

3 Both, the group product operation (· : G 7→ G ) and its
inverse (·−1 : G 7→ G ) are smooth functions.

Matrix Lie groups

1 Lie groups of our interest are matrix spaces.

2 A theorem due to Von Newman and Cartan [Bla10]:

A closed subgroup G of GL(N,R) is a linear Lie
group → is also a smooth manifold in RN2
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Concept: Lie algebra

For any Lie group, its Lie algebra m is the set of base vectors
of its tangent space at the identity I: m = TIM
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An example: the Lie group SE(3) (I)

SE(3) is the group of all 4× 4 matrices for rigid translations + rotations:

SE(3) =

M

∣∣∣∣∣∣∣∣M =


x

R3×3 y
z

0 0 0 1


 ,with R3×3 ∈ SO(3)



Non-Euclidean
manifolds

Jose Luis
Blanco Claraco

Basic concepts

Normalized
histograms

RRT planning

PCA on
manifolds

Averaging 2D
rotations

Averaging 3D
rotations

Derivatives
and
optimization

The Lagrange
multiplier
method

The tangent
space method

References

An example: the Lie group SE(3) (I)

SE(3) is the group of all 4× 4 matrices for rigid translations + rotations:

SE(3) =

M

∣∣∣∣∣∣∣∣M =


x

R3×3 y
z

0 0 0 1


 ,with R3×3 ∈ SO(3)



Non-Euclidean
manifolds

Jose Luis
Blanco Claraco

Basic concepts

Normalized
histograms

RRT planning

PCA on
manifolds

Averaging 2D
rotations

Averaging 3D
rotations

Derivatives
and
optimization

The Lagrange
multiplier
method

The tangent
space method

References

An example: the Lie group SE(3) (I)

SE(3) is the group of all 4× 4 matrices for rigid translations + rotations:

SE(3) =

M

∣∣∣∣∣∣∣∣M =


x

R3×3 y
z

0 0 0 1


 ,with R3×3 ∈ SO(3)

Clarifying the number of dimensions

Environment space dimensions = 4× 4 = 16

Manifold dimensions = 6 (DOFs)
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An example: the Lie group SE(3) (I)

SE(3) is the group of all 4× 4 matrices for rigid translations + rotations:

SE(3) =

M

∣∣∣∣∣∣∣∣M =


x

R3×3 y
z

0 0 0 1


 ,with R3×3 ∈ SO(3)

Its Lie algebra se(3) is a vector base, whose elements are 6 matrices:

G
se(3)
1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0



G
se(3)
2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0



G
se(3)
3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



G
se(3)
4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0



G
se(3)
5 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0



G
se(3)
6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
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An example: the Lie group SE(3) (II)

OK, but... WHY? Where do those skew symmetric matrices come from?!

Remember: Lie algebra is a vector base (“matrix base”, actually) of the tangent
space, which is the space of all possible “velocities” on the manifold.

Take derivatives of the transformation matrix with respect to x , y , z, yaw φ, pitch
χ and roll ψ at the identity and you’re there!

R(φ, χ, ψ) = Rz (φ)Ry (χ)Rx (ψ)

=

 cosφ cosχ cosφ sinχ sinψ − sinφ cosψ cosφ sinχ cosψ + sinφ sinψ
sinφ cosχ sinφ sinχ sinψ + cosφ cosψ sinφ sinχ cosψ − cosφ sinψ
− sinχ cosχ sinψ cosχ cosψ



∂R

∂φ

∣∣∣∣
φ=0,χ=0,ψ=0

=

 0 −1 0
1 0 0
0 0 0

 =

 0
0
1


×

etc.



Non-Euclidean
manifolds

Jose Luis
Blanco Claraco

Basic concepts

Normalized
histograms

RRT planning

PCA on
manifolds

Averaging 2D
rotations

Averaging 3D
rotations

Derivatives
and
optimization

The Lagrange
multiplier
method

The tangent
space method

References

An example: the Lie group SE(3) (II)

OK, but... WHY? Where do those skew symmetric matrices come from?!

Remember: Lie algebra is a vector base (“matrix base”, actually) of the tangent
space, which is the space of all possible “velocities” on the manifold.

Take derivatives of the transformation matrix with respect to x , y , z, yaw φ, pitch
χ and roll ψ at the identity and you’re there!

R(φ, χ, ψ) = Rz (φ)Ry (χ)Rx (ψ)

=

 cosφ cosχ cosφ sinχ sinψ − sinφ cosψ cosφ sinχ cosψ + sinφ sinψ
sinφ cosχ sinφ sinχ sinψ + cosφ cosψ sinφ sinχ cosψ − cosφ sinψ
− sinχ cosχ sinψ cosχ cosψ



∂R

∂φ

∣∣∣∣
φ=0,χ=0,ψ=0

=

 0 −1 0
1 0 0
0 0 0

 =

 0
0
1


×

etc.



Non-Euclidean
manifolds

Jose Luis
Blanco Claraco

Basic concepts

Normalized
histograms

RRT planning

PCA on
manifolds

Averaging 2D
rotations

Averaging 3D
rotations

Derivatives
and
optimization

The Lagrange
multiplier
method

The tangent
space method

References

An example: the Lie group SE(3) (II)

OK, but... WHY? Where do those skew symmetric matrices come from?!

Remember: Lie algebra is a vector base (“matrix base”, actually) of the tangent
space, which is the space of all possible “velocities” on the manifold.

Take derivatives of the transformation matrix with respect to x , y , z, yaw φ, pitch
χ and roll ψ at the identity and you’re there!

R(φ, χ, ψ) = Rz (φ)Ry (χ)Rx (ψ)

=

 cosφ cosχ cosφ sinχ sinψ − sinφ cosψ cosφ sinχ cosψ + sinφ sinψ
sinφ cosχ sinφ sinχ sinψ + cosφ cosψ sinφ sinχ cosψ − cosφ sinψ
− sinχ cosχ sinψ cosχ cosψ



∂R

∂φ

∣∣∣∣
φ=0,χ=0,ψ=0

=

 0 −1 0
1 0 0
0 0 0

 =

 0
0
1


×

etc.



Non-Euclidean
manifolds

Jose Luis
Blanco Claraco

Basic concepts

Normalized
histograms

RRT planning

PCA on
manifolds

Averaging 2D
rotations

Averaging 3D
rotations

Derivatives
and
optimization

The Lagrange
multiplier
method

The tangent
space method

References

Concept: Charts

A chart is the bijective parameterization of (part of) a
N-dimensional manifold into RN . They enable doing calculus
(e.g. derivatives) on manifolds.
Example: two overlapping charts of a double torus:

(Image credits: [GHQ06])
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Concept: Atlas

An atlas is a collection of charts that covers the entire
manifold – nomenclature as in “real-world” Cartography!.

(Image credits: [GHQ06])
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Concept: Exponential & logarithm maps

Maps for a Lie group M

Exponential map: A map from the local tangent space Tx M → the
manifold M.

Logarithm map: Inverse map, from the manifold M → Tx M .

Note: The projections of Lie algebra’s vector base through the exponential are
tangent to the geodesics on the manifold at x .

(Image credits: [Lui12])
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Normalized histograms

Topology

If x ∈ RM
+ is a normalized histogram, the set of all of them:

PM−1 =

{
x1, ..., xM

∣∣∣∣∣
M∑

m=1

xm = 1, xm ≥ 0

}
(1)

is the simplex PM−1, a manifold with corners.
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Normalized histograms

How are distances defined over normalized histograms

Geodesics are good-old straight lines! → L1, L2 norms
and alike are OK.

But... from machine learning there is much more to say:
learning significative χ2 distances, etc. [AS11].

Optimizing / derivatives over histograms?

Here, the topology does matter. Let’s see it graphically...
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Geodesics are good-old straight lines! → L1, L2 norms
and alike are OK.

But... from machine learning there is much more to say:
learning significative χ2 distances, etc. [AS11].
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Normalized histograms: M=2

For M=2, (x1, x2), we have a 1-simplex (a segment):

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
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Normalized histograms: M=3

For M=3, (x1, x2, x3), we have a 2-simplex (a triangle):
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Normalized histograms: M=3

The Jacobian for some target
function f:

df

d{x1, x2, x3}
=

[
df

dx1

df

dx2

df

dx3

]
may give us a gradient direction
/∈ the manifold.

We’ll see how to properly deal
with optimizations on manifolds
in a few minutes...
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Sampling for Rapidly-Exploring Random Trees
(RRTs)

A graph can be built to represent the topology of the atlas
(remember: atlas=collection of charts) of
kinematically-constrained problems:

(Image credits: [GHQ06])
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Principal Component Analysis (PCA)

PCA

The standard PCA method:

Given a set of N-dimensional samples, determine the q
directions of “principal variation“.

It can be solved by finding the eigenvectors of the covariance of
data points, and keeping those with the q largest eigenvalues.

It works fine for Euclidean spaces, but couldn’t handle non-linear
manifolds:

Works OK Does not Does not
(Image credits: [Ihl03])
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PCA on manifolds

The key difference

In PCA we want to maximize the variance of the largest
components → an implicit metric for distances (Euclidean
norm).

On manifolds, distances → distances along geodesics.

Use methods like IsoMap [TdSL00], to ”unroll“ manifolds:

(Image credits: [Ihl03])
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Averaging in SO(2)

Motivation

We may need to average, for example:

Orientations of image gradients, blob-like features, etc.

Estimating the most-likely heading from a set of particles
in Monte-Carlo localization.

(Image credits: [XHJF12])
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Averaging in SO(2)

The Special Orthogonal Group in 2D: SO(2)

From all 2× 2 invertible matrices GL(2), only a few
represent rigid, pure rotations in the 2D plane.

Orthonormal matrices R =

(
a c
b d

)
→ we need two

numbers to unequivocally define a rotation, since
(a, b) · (c , d) = 0 (and |R| > 0)⇒ (c, d) = (−b, a), so:

R(a, b) =

(
a −b
b a

)
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Averaging in SO(2)

The Special Orthogonal Group in 2D: SO(2)

This group of matrices is isomorphic to S1: a circle, with 1
DOF:

R(φ) =

(
cosφ − sinφ
sinφ cosφ

)

→ SO(2) =

{
A manifold with 1 DOF,
but needs 2 different numbers for representing!

Think it this way: there is no way to map S1 to a segment of
R1 and preserve the circular topology.
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Example 1

Put it clear:

Orientations in 2D︸ ︷︷ ︸
A manifold with S1 topology

6= Values for the parameter φ︸ ︷︷ ︸
This parameter lives in R1

Let’s see the practical implications...
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A manifold with S1 topology

6= Values for the parameter φ︸ ︷︷ ︸
This parameter lives in R1

Let’s see the practical implications...
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Example 1

What is the mean orientation of 0◦ and 80◦?

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0deg

80deg

40deg

Arithmetic mean of 0◦ and 80◦ = 40◦ (the correct mean)→ Intuitive!

...but is only correct “by accident” for averages of only two values.
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Mean

But... what is actually the mean or average of a set of values?

Common definition:

x̄ =
1

N

N∑
i=1

xi

It turns out that this is just a special case for Euclidean spaces!
Everything depends on the metric for defining distances.
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Meaning of “mean”

A generic (invariant) definition of “mean”

Given a metric d(x, y), the average of {p1, ...,pN} is:

p̄ = arg min
p

N∑
i=1

d(p− pi )
2

On manifolds, distances are measured over geodesics, the
“straight lines” of curved spaces.

Note: In Euclidean RM , geodesics are good-old straight lines!
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Metrics for matrix spaces

The point is: distances are not measured for values of the
parameter φ, but on the manifold SO(2).

A standard metric for matrix spaces → Frobenius norm:

||A||2F =
∑

i

∑
j

a2
ij = tr(AA>)
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Metrics on SO(2)

It’s clear both metrics are different for the distance between
orientations φ1 and φ2:

Operating, one gets:

d(φ1, φ2)2
F = 4 [1− cos(φ1 − φ2)]
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Metrics on SO(2)

It’s clear both metrics are different for the distance between
orientations φ1 and φ2:
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Example 2

Let’s show this with a new example:

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

−20.0deg

20.0deg

150.0deg
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Example 2

The (WRONG) average from arithmetic mean of φ is 50◦...

−1 −0.5 0 0.5 1 1.5 2
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−0.5

0
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−20.0deg

20.0deg

150.0deg

Arith. mean: 50.0deg
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Example 2

Instead: (1) evaluate the centroid of all 2× 2 matrices,

−1 −0.5 0 0.5 1 1.5 2
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20.0deg

150.0deg

Centroid
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Example 2

and (2) project the point onto the manifold. 26.3◦ 6= 50◦!!

−1 −0.5 0 0.5 1 1.5 2
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−0.5

0
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1

−20.0deg

20.0deg

150.0deg
True mean: 26.3deg
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Example 2

and (2) project the point onto the manifold. 26.3◦ 6= 50◦!!

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

−20.0deg

20.0deg

150.0deg
True mean: 26.3deg

Why the centroid of 2D points? → think of the first column in
SO(2) matrices...
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Two important manifolds

SO(3)

The Lie group of 3D rotations:

SO(3) =
{

R ∈ GL(3,R)
∣∣∣R>R = I, |R| = 1

}

SE(3)

The Lie group of 3D rigid transformations (4× 4 matrices):

SE (3) = SO(3)︸ ︷︷ ︸
Rotation

× R3︸︷︷︸
Translation
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The meaning of mean (once more)

Means and metrics

The variational definition of mean involves a definition of
distances on the manifold:

p̄ = arg min
p

N∑
i=1

d(p− pi )
2

Advantage wrt the x̄ = 1
N

∑N
i=1 xi definition: it is invariant.

The notion of “mean” is not obvious for manifolds and
there exist as many different “means” as metrics.
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Two means for SO(3)

(1) Euclidean mean

Using the Frobenius norm:
dF (R− Ri ) = ||R− Ri ||F = tr(R>Ri )

Can be shown to be equivalent to the previous 2D example: (1)
“centroid” of SO(3) matrices, then (2) project to SO(3) – e.g.
doable via Singular Value Decomposition (SVD).

(2) Riemannian mean

Using the Riemannian distance dR (R− Ri ) = 1√
2
|| log(R>Ri )||F

It stands for the length of the shortest geodesic between two
matrices.

(See [Moa02] for more details and closed-form formulas)
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What about SE(3)?

Unlike for SO(3), there exists no bi-invariant metric in
SE(3)

Still, good metrics for computing means exist: [SWR10]
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Independent vs. dependent coordinates

Problem

Integrate or minimize:
f (q)

for q ∈ Rn, restricted to q ∈ M , with M an m-dimensional
manifold (m < n), defined as Φ(q) = 0.

Coordinates

Dependent coordinates (dims=n): q.

Independent coordinates (dims=m < n):
z ∈ TxM.
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(1) The Lagrange multiplier method

Augmented problem with n −m new unknowns λ (Lagrange
multipliers):

f (q)
Φ(q) = 0

}
→ f (q) +

∂Φ(q)

∂q

>
λ
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(1) The Lagrange multiplier method

Augmented problem with n −m new unknowns λ (Lagrange
multipliers):

f (q)
Φ(q) = 0

}
→ f (q) +

∂Φ(q)

∂q

>
λ︸ ︷︷ ︸

This should be zero

Idea: Lagrange multipliers can always be found that make the
second term vanish.
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(1) The Lagrange multiplier method

Augmented problem with n −m new unknowns λ (Lagrange
multipliers):

f (q)
Φ(q) = 0

}
→ f (q) +

∂Φ(q)

∂q

>
λ︸ ︷︷ ︸

This should be zero

Idea: Lagrange multipliers can always be found that make the
second term vanish.
This method is widely-used in dynamical simulations of
kinematically-constrained robots, mechanisms, etc.
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(2) The tangent space method

Basic idea

Replace “global” optimizations with local solutions on the
tangent space.
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(2) The tangent space method

Least-squares optimization

δ?k ←
∂F (xk−1 + δk )

∂δk

∣∣∣∣
δk

= 0 ⇒ xk ← xk−1 + δ?k

where δ ∈ ambient space, “+” is the standard Euclidean addition.

On-manifold least-squares

ε?k ←
∂F (xk−1 � εk )

∂εk

∣∣∣∣
ε=0

= 0 ⇒ xk ← xk−1 � ε?k

where ε ∈ manifold, � the Lie group operation (i.e. matrix
multiplication)
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(2) The tangent space method

Example:

Given an observation model h(p) for p ∈ R3 the relative location of a
landmark, in SLAM we find:

h(p) = h(L	 x) →
{

L ∈ R3 : landmark coordinates,
x ∈ SE (3) : camera pose.

During optimization, we find the Jacobian:

∂h(L	 (x + ∆x ))

∂∆x
(Euclidean)

∂h(L	 (x⊕ ε))

∂ε
(On-manifold SE(3))

Trick: Apply the chain rule representing poses and points as
homogeneous 4× 4 matrices → compositions become matrix
multiplications → simple Jacobians!!
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(2) The tangent space method

Example:

Given an observation model h(p) for p ∈ R3 the relative location of a
landmark, in SLAM we find:

h(p) = h(L	 x) →
{

L ∈ R3 : landmark coordinates,
x ∈ SE (3) : camera pose.

During optimization, we find the Jacobian:

∂h(L	 (x + ∆x ))

∂∆x
(Euclidean)

∂h(L	 (x⊕ ε))

∂ε
(On-manifold SE(3))

Trick: Apply the chain rule representing poses and points as
homogeneous 4× 4 matrices → compositions become matrix
multiplications → simple Jacobians!!
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(2) The tangent space method

Historical remarks

∼1820?: Could be traced to Gauss’ works on survey

...

1994: Taylor & Kriegman proposal for SO(3) [TK94]

(Re?–)Introduction in the SLAM community (AFAIK):

2006: Mentioned in a German work by Udo Frese et al.
[FSH+].
2008: First work in English is [Her08], a Bachelor’s thesis
by Christoph Hertzberg, adviced by Udo Frese.
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Applications to EKF

Applicability

Has been introduced in graph-SLAM, but is a general framework!

Motivation

EKF with quaternions has been quite common and successful in visual
SLAM.

but the filter does not respect the normalization of the quaternion → need
to renormalize after each step.

In theory, it’s sub-optimal (though, I haven’t tested this numerically!)

EKF with on-manifold derivatives

Required changes:

Choose a parameterization (quaternion is OK here!)

Replace all Jacobians ( ∂·
∂∆x
→ ∂·

∂ε
)

Use manifold Jacobian to update the EKF mean,

Apply chain rule to get the correct Jacobian that updates the covariance in
parameterization space, not the manifold.

See detailed formulas, etc. [Bla10, FMB12]
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Udo Frese, Lutz Schröder, Christoph Hertzberg, Janosch Machowinski, and
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