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Abstract— In this paper we defend the superior scalability of
the Relative Bundle Adjustment (RBA) framework for tackling
with the SLAM problem. Although such a statement was
already done with the introduction of the sliding window (SW)
solution to RBA [16], we claim that the map extension that can
be maintained locally consistent for some fixed computational
cost critically depends on the specific pattern in which new
keyframes are connected to previous ones. By rethinking from
scratch what we call loop closures in relative coordinates we will
show the unexploited flexibility of the RBA framework, which
allows us a continuum of strategies from pure relative BA to
hybrid submapping with local maps. In this work we derive a
systematic way of constructing the problem graph which lies
close to submapping and which generates graphs that can be
solved more efficiently than those built as previously reported in
the literature. As a necessary tool we also present an algorithm
for incrementally updating all the spanning-trees demanded by
any efficient solution to RBA. Under weak assumptions on the
map, and implemented on carefully designed data structures, it
is demonstrated to run in bounded time, no matter how large
the map becomes. We also present experiments with a synthetic
dataset of 55K keyframes in a world of 4.3M landmarks. Our
C++ implementation has been released as open source.

I. INTRODUCTION

Most recent proposals that deal with the simultaneous

estimation of a robot path and the unknown location of all

observed landmarks use a graph model where nodes are

the unknowns (poses and landmarks) and edges represent

constraints (e.g. observations, odometry). Robot poses are

then typically called keyframes (KFs) when working with

imaging sensors. Under the assumption of all observation

errors being Gaussians it is easily demonstrated [7] that a

least-squares minimization of the mismatch between obser-

vations and predictions from the estimated model becomes

the maximum likelihood estimator for the problem. Typically,

sparse algebra approaches are employed to exploit the inher-

ent sparsity of the systems of linear equations that appear

during this process. In the computer vision community such

methods are dubbed Bundle Adjustment (BA) [19], while

similar methods in mobile robotics, which may estimate only

the robot path or both the path and the landmarks, receive

the names of Graph-SLAM [9] or view-based SLAM [6].

In spite of the great success of this family of techniques,

scalability is still an open issue. Even for implementations

exploiting sparse solutions, computational complexity may

become O(n3) (with n the number of KFs) if the number of
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Fig. 1. A miniature SLAM problem as seen in global coordinates.
The goal is estimating the positions of keyframes and landmarks from
observation data. Notice the loop closure at keyframe #5, where landmark
a is redetected.

loop closures is proportional to the length of the path [13]. A

loop closure is typically understood to be the re-observation

of previously seen landmarks that got out of sight during the

traversal of a path (the loop) excluding going forward and

then backwards over the same track. For example, a loop

closure occurs in Fig. 1 because landmark a was discovered

from KF #0 and then re-observed from KF #5.

We call Global Bundle Adjustment (GBA) or global

SLAM to all those BA or graph-SLAM methods using only

one (thus, global) frame of reference. Under this parame-

terization, there exists no upper bound for the computational

complexity needed to process a loop closure, since the larger

the loop, the more KF and landmark coordinates that require

a correction.

If we pursue life-long operation of robots it is reasonable

to aim at an ideal bounded-time complexity for localization

and mapping. We believe that Relative Bundle Adjustment

(RBA), a framework similar to graph-SLAM or GBA but

where all coordinates are relative, has the potential to take

us closer to this ideal.

In RBA, unknowns are now the relative poses between

KFs and the position of landmarks with respect to (wrt)

some KF which we will call the base KF for that landmark

–commonly, the KF from which it was firstly observed.

Fig. 2 shows a model of the previous example under this

perspective.

The sliding window (SW-RBA) solution to RBA [16]

achieves a constant time computational cost by only opti-

mizing the unknowns up to a certain topological distance

(the “window”) from the latest KF inserted in the map,

i.e. the “current” pose. An adaptive size for this window

was also investigated [17] (ASW-RBA), but in any case
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Fig. 2. One possible reformulation of the problem in Fig. 1 as RBA,
where unknowns are now the thick edges with a question mark. Unknown
keyframe-to-landmark edges, marked with a circle mid-mark, connect
landmarks with the keyframes from which they are observed for the first
time. Two central topics to this paper are: (i) is this a loop closure for RBA?
and (ii) is this the most efficient way to parameterize the problem?

it remains independent of the map size. Thus, the RBA

framework provides an efficient approximate solution to

SLAM, estimating locally consistent maps.

In RBA it seems natural to create relative-coordinate edges

from each KF to its preceding one, thus KFs tend to form

a linear graph as in Fig. 2. Loop closures are the obvious

exceptions at where to build something different than a linear

graph. However, loop closures in RBA introduce a number of

new problems without parallel in other SLAM frameworks

which have not been properly studied yet in the literature.

In global SLAM, loop closures do not modify the problem

unknowns, only the constraints between them. In contrast, in

RBA they may or may not introduce new unknowns (new

relative poses between KFs): we can decide what is more

convenient under some criterion. The problem in Fig. 2 is a

loop closure in the common sense, but is not for RBA since

KFs still form an acyclic graph. An RBA loop closure occurs

when a new KF is added to the graph with more than two

new edges. In the figure, one possibility for the loop closure

in KF #5 would be adding an extra edge #5 → #0. This

paper will discuss the pros and cons of adding such edges

in RBA.

Furthermore, we can go one step forward and ask our-

selves if connecting all poses in a linear graph is really

optimal in some sense, or if there are other alternatives.

In this paper we claim that RBA offers an unprecedented

flexibility in this aspect in comparison to other SLAM

frameworks and that, indeed, some connection patterns lead

to systems of equations that are much more efficient to solve

than others. In particular, we will see how relying on linear

graphs introduces large dense blocks in the Hessian matrix

of the problem, rendering the computational cost of the es-

timation higher than necesary. Fig. 3 qualitatively compares

our proposed connection pattern to other alternatives.

Finally, but of the most practical importance, we address

the problem of maintaining the shortest-path spanning trees

(STs) required by RBA in an incremental way for arbitrarily-

complex loop closures (the relation between STs and RBA

is clarified in section II-B). Under mild assumptions, it is
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Fig. 3. A qualitative classification of SLAM methods under the criterion
of sparsity vs. size of the linear systems that must be solved. Represented
methods include batch Global Bundle Adjustment (GBA) [19], Batch and
sliding window (SW) solutions to Relative Bundle Adjustment (RBA) [16]
and its Adaptive sliding window (ASW) version [17], and this work.

shown that the method runs in constant-time wrt the size of

the map.

In the following we will assume that the problem of

data association, finding the corresponding map landmark for

each observation, is solved separately [15], [4]. Thus, data

association clearly becomes the present bottleneck towards

achieving a complete constant-time solution to SLAM.

The source code of our implementation has been released

as the C++ library libmrpt-srba1.

II. PROBLEM STATEMENT

A. Graphical representation and Notation

In global SLAM there exists an immediate correspon-

dence between the graphical representation of (i) keyframes

(poses), landmarks and their constraints (observations), and

(ii) the graphical models (Dynamic Bayesian Networks or

Markov Networks) used to drive the Bayesian or least-

squares estimation. For RBA this connection is not as

straightforward since the unknowns (nodes in graphical

models) are represented as edges. Although it is possible

to convert an RBA graph into its corresponding graphical

model, in this work only the former will be represented in

order to better preserve the physical meaning of the variables.

Thus, an RBA graph consists of a directed graph, whose

nodes are either KFs or landmarks. Edges between them

represent either: (i) observations, (ii) relative poses of one KF

wrt another (a KF-to-KF edge), or (iii) the relative position

of a landmark wrt its base KF (a KF-to-LM edge). The

two latter kinds of edges are unknowns to be determined

from the observations. Thus, notice how graphs can contain

two fundamentally different types of edges between KFs and

landmarks: observations (known data) and KF-to-LM edges

(unknowns). When represented graphically we will denote

the latter as edges with a circular mid-mark in order to help

telling ones from the others. Relative poses and positions

can be parameterized in a number of ways, but since this

becomes irrelevant for the present work we will assume that

poses are represented by a translation plus three Euler angles

and positions by their Cartesian coordinates.

1Available online: http://www.mrpt.org/srba
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(a) Spanning tree for i→ l, with a direct edge d→ d+ 1 (b) Chain of poses i← l, with a direct edge d→ d+ 1

(c) Spanning tree for i→ l, with an inverted edge d+1→ d
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(d) Chain of poses i← l, with an inverted edge d+ 1→ d

Fig. 4. Notation used for the derivation of the required Jacobians with respect to a relative pose p
d+1

d
(or pd

d+1
) in the middle of a spanning tree between

a keyframe l (observing a landmark j) and the keyframe i (the root of the tree) used as local coordinate base for that landmark.

About the direction of KF-to-KF edges, that is, whether

an edge is represented as a → b or b → a, we must remark

that the choice to pick one of them when introducing a new

edge is completely arbitrary. This is justified on the basis that

for the sake of determining STs, the graph of KFs is always

treated as if it was undirected. For convention we will always

choose as origin the KF with the lowest identifier number.

Furthermore, for convenience in the formulation below we

assume that the unknown relative pose pb
a for an edge a → b,

with a < b, actually stands for the inverse pose; that is, pb
a is

the pose of the KF a as seen from the frame of coordinates

of KF b.

This must be kept in mind while addressing chains of

poses along STs, undoubtedly the most important construc-

tion that appears while solving RBA (see section II-B). For

each KF we need the ST composed of the shortest paths to

all other KFs from that root KF, and up to some predefined

topological distance Dmax. Note that the direction of KF-

to-KF edges and the existence of observations or KF-to-LM

edges are all ignored during the construction of these trees,

i.e. as if we had an undirected graph of KFs. An algorithm

to build those trees is presented in section IV.

The notation of the involved variables is depicted with

Fig. 4. As can be observed in the example of Fig. 4(a)–

(b), relative poses are defined in the opposite direction than

directed edges, where the former represents KF-to-KF edges

and the latter the geometrical meaning of the relative poses.

Paths along these trees are the shortest ones from the root

KF, thus the figure represents the shortest sequence of edges

between two KFs i and l. We will denote arbitrary relative

poses along such a path as pd+1
d when the edge goes in the

direction i → l (see Fig. 4(a)–(b)) or as pd
d+1 when heading

in the opposite direction (see Fig. 4(c)–(d)).

The relative position of the j–th landmark wrt the KF o

will be denoted as xj,b
o , with b the base KF of the landmark

(unique, does not vary over time). Therefore, the x
j,b
b will

always be unknowns (KF-to-LM edges) while xj,b
o with b 6=

o are relative positions (a function of unknowns) involved in

observations gathered from KF o.

Other unexploited possibilities in RBA are the definition

of landmarks with a fixed (known) relative position (useful,

for example, when using a variety of sensors and one of

them provides accurate range information) and “virtual”

fixed landmarks which can model constraints between KFs

(e.g. odometry). We do not cover them in this work.

B. Least-squares estimator

Given a set of No observations {zi} corrupted with

additive zero-mean Gaussian noise of known information

(inverse covariance) matrices Λi, the Maximum Likelihood

Estimation of the unknowns (all relative poses p and all

relative positions x) becomes the minimization of the cost

function [7]:

F (p,x) =
1

2

No
∑

i=1

∆z⊤i Λi∆zi (1)

∆zi = hi(p,x) − zi

with h(·) being the observation model. By means of a first-

order Taylor series expansion of the latter and using the

Gauss-Newton approximation of F (·)’s Hessian, H ≈ J⊤ΛJ

with J = ∂h(p,x)
∂{p,x} , we can solve for the increments in the

unknowns [∆p ∆x]⊤ that successively approach the most

likely estimation:

(

J⊤ΛJ
)

(

∆p

∆x

)

= −J⊤Λ∆z (2)

When the initial estimation is far from the real solu-

tion it becomes a better idea to employ the Levenberg-

Marquardt (implemented in this work) or the Powell’s dog

leg algorithms instead [12]. Note that the uncertainty of the

estimation is available in the form of the Hessian, which is

proportional to the estimation information matrix. Efficiently

recovering the cross-covariances between the different land-

marks and poses for data association (e.g. via JCBB [15]) is

a cumbersome problem explored elsewhere [8], [10].
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The fundamental basis for any efficient solution to this

optimization problem is exploiting the sparse structure of

the Jacobian J [19]. Since each observation depends on

only a few unknowns, most entries in the Jacobian are

typically zeros (see the example of Fig. 5(b)). We find here an

essential difference between RBA and global SLAM: while

in the latter the number of nonzero entries only depends

on the number of observations, in RBA it is also strongly

determined by the pattern in which KF-to-KF edges are

connected –see section III. Our implementation accounts

for the sparsity of the problem structure to efficiently store

and compute only the required submatrices, as described in

section II-C.

Each observation zi contributes to the cost function by

means of a row of block matrices in the sparse Jacobian J.

Observations are functions h(·) of the relative position of

landmarks wrt an observer KF l (i.e. the KF from which

an observation is taken), while our map unknowns are the

coordinates of a landmark j referred to its base KF i, thus

we arrive at the model h(xj,i
l ) – see notation above. The

observer l and the base i are typically different KFs, thus

we need their relative pose in order to evaluate x
j,i
l . In

general we can find the relative pose of any pair of KFs

by composing a chain of poses for all the KF-to-KF edges

along the topological path that takes from l to i – refer to

Fig. 4. The minimum number of variables involved is found

by following the shortest of such paths. Here is where we

find the utility of maintaining STs rooted at each KF and

containing the shortest path to any other KF around.

The Jacobian wrt the unknown KF-to-LM edge x
j,i
i is

easily found with the chain rule of derivatives. Obtaining

the Jacobian blocks wrt any KF-to-KF edge in the shortest

path, say pd+1
d in Fig. 4(a)–(b), follows from firstly applying

the chain rule:

∂h(xi,j
l )

∂pd+1
d

=
∂h(x′)

∂x′

∣

∣

∣

∣

x′=x
i,j

l

∂x
i,j
l

∂p

∣

∣

∣

∣

∣

p=p
d+1
d

(3)

where the first term is trivial to evaluate. The second is better

replaced by taking derivatives wrt the more convenient lin-

earization on the pose (p) manifold (ε). By also introducing

the chain of poses defined by the shortest path:

∂x
i,j

l

∂ε

∣
∣
∣
∣
∣
ε=0

=
∂(

A

︷ ︸︸ ︷

p
l
l−1 · · ·p

d+2

d+1 e
ε

D

︷ ︸︸ ︷

p
d+1

d · · ·p
i+1

i x
i,j
i )

∂ε

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
ε=0

(4)

which has a known expression [1]. The mathematical details

on optimization on the SE(3) manifold and the derivation of

related Jacobians were described in [1], [7].

Finally, in contrast to previous literature on RBA, we will

create graphs with an arbitrary topology, thus the shortest

paths from STs will not necessarily have all KF-to-KF edges

pointing towards l as in Fig. 4(a). When an intermediate

edge pd
d+1 is found in the opposite direction, as in Fig. 4(c),

derivatives wrt pd
d+1 (see Fig. 4(d)) can be shown to lead to:

∂x
i,j

l

∂ε

∣
∣
∣
∣
∣
ε=0

= −

∂(A′
e
ε D′x

i,j
i )

∂ε

∣
∣
∣
∣
ε=0

(5)

with A′ = A
(

pd+1
d

)−1
and D′ =

(

pd+1
d

)−1
D.

C. Symbolic constructions

We briefly review the data structures we have designed to

exploit the sparsity of the problem.

1) Jacobians: We adopted a column-indexed structure of

sparse columns for storing the nonzero Jacobian blocks, an

idea already proposed in Spa2D [11]. The list of columns

is kept in a non-associative container, with O(1) access

and growth costs (C++ STL’s std::deque), while each

column maintains its sparse entries in an associative con-

tainer (std::map). The unique two operations on the latter

are: (i) inserting new rows (observations), doable in O(1)
instead of the generic logarithmic cost since we know the

insertion point, and (ii) looking for the intersection set with

another column while building the Hessian. Assuming that

each landmark is only observed from a bounded number of

KFs (i.e. redundant KFs are not indefinitely inserted in the

map) this cost does not grow with the map size.

2) Hessian: For any subset of unknowns we build and

store the sequence of matrix operations required to construct

each of the three blocks of the Hessian “primary structure”

[19]: the Hessian for poses Hp, for landmarks Hx and the

cross terms Hpx. By storing references (pointers) to the

placeholders where Jacobians will be numerically evaluated,

the update of the Hessian becomes a purely mechanical

reproduction of the stored program without any further logic.

3) Schür reduced system: Taking into account the sparsity

of the Hx block (the “secondary structure”) provides a

huge computational advantage. Building the Schür poses-

only reduced system is approached by means of what we

call symbolic Schür structure, a storage of the sequence of

matrix operations and numeric matrix placeholders required

for its construction, such that during optimization steps no

further logic is required.

Curiously, as a result of our custom data structures han-

dling all the problem sparsity and the limited number of

unknowns found in RBA, there is not much sparsity to

be exploited when solving the final system of equations

Ax = b. Therefore, and contrarily to most recent global

SLAM methods, solving the linear equations is more efficient

in our case by applying dense Cholesky algorithms instead

of the symbolic (sparse) versions [5].

4) Spanning trees: Trees are maintained only up to a

desired maximum depth Dmax, which also settles the max-

imum map area which is assured to be maintained locally

consistent (see section III). We store STs as a symbolic

structure comprising two tables: ST .D[i][j] and ST .N [i][j].
For any pair of KFs i and j, the former keeps the length

of the shortest path (distance) from i to j while the latter

indicates the next KF found in the direction of that path.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. An example of how two parameterizations of the same problem (i.e. (a)–(c) relative BA, (d)–(f) global BA) with the same number of unknown
KF-to-KF edges affect the sparsity of the Hessian H. Each observation requiring a chain of relative poses of length L requires the evaluation of L + 1

Jacobian blocks, L2 + L+ 1 matrix multiplications for the Hessian and leads to an L× L dense block in the same matrix.

Algorithm 1 srba define new keyframe .

Worst case: O((γNR)
3 +No(Dmax + logNR))

Input: (zn, αn) =
{(

z1n, α
1
n

)
, ...,

(

zNo
n , αNo

n

)}

⊲ Set of No new

observations zin and their data association αi
n

Output: The updated, locally consistent map

// Update keyframes (KFs) data structures

1: n←number of KFs in the map ⊲ Assign a free ID to the new KF – O(1)
2: KF [n]←empty KF data structure ⊲ Insert at the end of std::map – O(1)

// Apply edge-creation policy to decide how to handle loop closures, etc.

3: while ∅ 6= [(ik ↔ n) = decide edge to create()] do ⊲ O(No log NR)

4: add kf2kf edge(ik ↔ n) ⊲ Update KF-to-KF edge structures – O(1)
5: update sym spanning trees(ik ↔ n) ⊲ O(N2

R logNR)
6: end while ⊲ Typ. iterations: O(γ)

// Update symbolic Jacobian structures ⊲ O (No(Dmax + logNR))

7: for each
(
zin, α

i
n

)
∈ (zn, αn) do ⊲ For each of the No new observations

8: add observation( z
i
n

︸︷︷︸

obs. data

, n
︸︷︷︸

observing KF

, αi
n

︸︷︷︸

landmark ID

) ⊲ O(Dmax + log NR)

9: end for

// Update SLAM estimation

10: edges to optimize← all within a Dmax distance from n ⊲ O(NR)
11: non linear optimizer(edges to optimize) ⊲ O((γNR)3)

Only the former is assured to be symmetric. Both tables are

physically stored together in one row-indexed list of sparse

rows. Assuming a bounded degree for the graph of KFs, i.e.

that we avoid indefinitely adding new edges to any KF, the

number of reachable nodes (NR) from any ST with a depth

Dmax is also bounded, thus searches and insertions in sparse

rows have a bounded complexity of O(logNR).
Given any pair of KFs at a maximum topological distance

of Dmax, it is possible to evaluate their numeric relative pose

(denoted as ST num[i][j]) in O(Dmax logNR) from these

tables.

III. SPARSER RBA (SRBA)

By changing our policy about how to introduce new edges,

RBA can be turned into one of different frameworks:

• Every KF is connected to its immediately preceding

KF (except for loop closures where extra edges appear)

and all KF-to-LM edges’ bases are the KF from where

each landmark was first observed. This is what we call

the “intuitive” choice for RBA, and was the proposed

approach in its introduction ([16], [17]).

• A single KF appears as the base for all edges (KF-to-

KF and KF-to-LM): Under this situation RBA becomes

exactly the same problem as global BA (GBA).

• Different KFs are dynamically selected as the “local

origin” of coordinates over time. The present work

advances in this direction, which may be seen as a

“blended solution” in between the two previous ones.

Thus, RBA is capable of a seamless integration of benefits

from both pure relative and global coordinates: from the

former we have the possibility of closing arbitrarily-large

loops with a bounded computational cost, while from the

latter we will incorporate its sparser structure (hence the

name, SRBA) which for a same number of unknowns is

more efficient to solve. This point is illustrated with the

example in Fig. 5, where both the Jacobian and the Hessian

are clearly denser in RBA than in GBA (for the specific KF-

to-KF connection pattern shown here). This follows from the

insight that, in RBA, each observation introduces an L × L

dense block in the Hessian with L the shortest path length to

the landmark’s base KF. Thus one of our goals when adding

new edges will be minimizing the distance between observer

and base KFs.

To quantitatively evaluate the cost of each SLAM timestep

we summarize our generic SRBA method in Algorithm 1.

With the exception of the ST maintenance which is addressed

in section IV, space limits do not permit an in-depth analysis

of each subalgorithm. The resulting worst case computational

complexities are summarized along with the pseudocode,

where Dmax is the maximum depth of the maintained STs,

74



� � � � � �� �� ���	�	�

(a) Linear graph for the “intuitive” RBA policy

0(2)

1(3) 2(3) 3(3) 4(3)

12(1)

5 6 7 8(2)
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(b) The proposed hierarchical-like graph
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(c) Geometrical representation

Fig. 6. The “intuitive” edge creation policy for RBA leads to linear graphs
of KFs as in (a). Our alternative lay out is shown in (b) for a physical robot
path like that in (c). As an example, all the KFs reachable from KF #14

for a Dmax = 3 are shaded in (b) with the distance in parentheses.

NR the number of reachable nodes in each ST (which is

bounded as long as it is the degree of the graph) and No the

number of observations. A key issue here is modeling the

number of edges (not nodes) in a ST. Assuming a constant

ratio γ between edges and nodes, we have O(γNR) edges

to optimize in each time step (line 11 in the algorithm).

To sum up, we arrive at three conflicting desiderata:

1) Having a large NR such that a large portion of the map

is kept locally consistent.

2) Keeping γNR as reduced as possible to reduce the

number of unknowns and the cost of solving the

associated linear system. This recommends keeping a

sparsely connected graph (low γ values).

3) Shortening all paths between observer and base KFs

as much as possible to reduce the above-mentioned

O(L2) cost and arrive at sparser Hessians. Shorter

paths require a denser graph, increasing γ and con-

flicting with the previous point.

Our proposal is to find a trade-off by means of an edge

creation policy which either assures the maximization of

some model for the estimated computational cost or relies

on heuristic rules. Determining such rules is complex enough

for deserving dedicate future research.

In this paper we investigate one heuristic rule, which turns

RBA in something similar to hybrid SLAM with submapping

[2], [3]. We propose dividing the sequence of KFs into

“submaps”, such that one KF plays the role of local frame

of reference for all other KFs in the submap. As a first

approximation, a new submap can be started after the last

one fills up to a fixed number of KFs. Whereas the “intuitive”

policy in RBA leads to linear graphs, ours generates a

hierarchical-like lay out – compare Figs. 6(a)–(b).

All KFs within a submap have one and only one KF-

to-KF edge connecting it to its local frame of reference.

Whenever a new submap is created, its first KF becomes its

local reference and we consider the creation of a number of

multiple edges to other submaps, but only between KFs that

play the role of local references. With this simple heuristic

we assure that most KFs in the graph have a degree of exactly

1, while a large number of potential observations’ base KFs

are still available at a short topological distance. Consider

the example of the KF #14 in the figures, whose ST covers

all the nodes shaded in Fig. 6(b) for a Dmax as reduced as 3
(compare this to the number of reachable KFs in the linear

graph of the original SW-RBA, which is typically 2Dmax).

In practice, Dmax = 4 should be enough since it allows

observing landmarks whose bases belong to all neighbor and

neighbor of neighbor submaps. Additional edges between

reference KFs (e.g. #0 → #12 in the example) represent

physical loop closures, as illustrated in Fig. 6(c).

IV. UPDATEABLE SHORTEST-PATH SPANNING TREES

A. The basic idea

The shortest-path STs for all the nodes of a graph G =
(N,E) with |N | nodes and |E| edges can be easily built

with the classic breadth-first-search (BFS) algorithm [14]

in O (|N | (|N |+ |E|)). Though, we are not interested in

the construction of such trees from scratch for an existing

graph. Instead, we pursue the simultaneous, incremental

construction of both, the graph and all its associated STs.

To the best of the authors’ knowledge, this problem has not

been addressed in the SLAM community before.

Spira and Pan found in 1975 that updating a ST after the

addition of a new node to a graph has a worst-case com-

plexity of O(|N |) [18, see theorem 3.3]. It would then seem

unfeasible to obtain a bounded execution time algorithm to

update all the STs required in RBA for unbounded maps, i.e.

for unbounded |N |. However, we should highlight that the

worst case complexity is related to the maximum topological

distance (along existing STs) between the different nodes

at which the newest KF is connected to the graph. Since

our STs have a maximum depth we therefore avoid the

appearance of the total graph size (|N |) in the task of

updating STs. We describe next the proposed algorithm.

B. The algorithm

We start with an existing graph of KFs, for which we

know the shortest path STs of maximum depth Dmax for all

its nodes. This prerequisite is not limiting since we can start

with an empty graph and build all those STs incrementally.
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(b)

Fig. 7. Notation and basic concepts involved in our updateable shortest-
path spanning-tree algorithm.

A new node n is then added to the graph with Nu undirected

edges connecting it to nodes ik, k = 1...Nu – see Fig. 7(a).

If only one edge is added the algorithm greatly simplifies

but for the sake of generality we will describe our generic

procedure which works for any number of new edges Nu.

New edges must be processed one by one. For each new

edge to ik we have the situation depicted in Fig. 7(b): all

nodes belonging to the ST of n (including its root n) are

now potentially close to all those in the ST of ik (including

the root ik as well). The distance between any such node r in

the ST of n and another s in the ST of ik is easily evaluated

by summing three components: the distance of the way up

from r to n (d1 = ST .D[n][r]), the new edge n−ik (d2 = 1)

and the way down within the ST of ik (d3 = ST .D[ik][s]).
If nodes r and s were previously at a distance larger than

Dmax (which is reflected by they not being in the current ST

of each other) and the resulting distance d = d1+d2+d3 is

Dmax or less, then both STs must be updated to reflect this

new path. If a previous path existed between r and s it must

be updated only if the new path is shorter than the currently

stored shortest path. Otherwise, the new edge is irrelevant

for what respect the shortest path between these nodes. This

evaluation is repeated for all potential nodes s and r.

The procedure is summarized in Algorithm 2. A careful

analysis of its computational cost, including access and

creation of data structures, reveals a worst case complexity

of O(N2
R logNR), with NR being the maximum number of

reachable KFs for a fixed Dmax and which is reasonable to

consider bounded for any large and complex map, as long

as redundant KFs are not continuously added to the map for

the same physical area.

Algorithm 2 update sym spanning trees .

Worst case: O(N2
R logNR)

Input:

(ik ↔ n) ⊲ A new edge

Dmax ⊲ The maximum desired depth of span. trees

1: STDmax−1(ik)← {∀v/d(v, ik) ≤ Dmax − 1} ⊲ O(NR)
2: STDmax (n)← {∀v/d(v, n) ≤ Dmax} ⊲ O(NR)

3: for each r ∈ STDmax (n) do ⊲ O(NR) iterations

4: for each s ∈ STDmax−1(ik) do ⊲ O(NR) iterations

5: // New tentative distance between r and s
6: d← ST .D[n][r] + ST .D[ik][s] + 1 ⊲ O(logNR)
7: if (s ∈ spanning tree(r) and d < ST .D[r][s]) or

(s /∈ spanning tree(r) and d ≤ Dmax) then ⊲ O(logNR)
8: // Shorter or new path found. Update trees:

9: ST .D[r][s]← d

10: ST .N [r][s]←

{
ik r = n
ST .N [r][n] r 6= n

11: ST .D[s][r]← d ⊲ O(logNR)

12: ST .N [s][r]←

{
n s = ik
ST .N [s][ik] s 6= ik

13: end if

14: end for

15: end for

V. EXPERIMENTS AND CONCLUSIONS

In order to validate the alleged constant-time complexity of

our implementation we firstly generated2 the large synthetic

dataset shown in Fig. 9, and comprising 55K keyframes with

monocular camera observations. A video is also available

online3. Then, all observations are processed sequentially

while monitoring the execution times of all the relevant

stages of the algorithm. Fig. 8(b) shows the results for our

ST algorithm, which exhibits the expected constant time

complexity (its cost does not grow appreciably during the

55K keyframes) excepting the peaks at loop closures where

NR temporarily grows. In fact, these peaks are independent

of the loop length (e.g. the largest loop is closed at “B”, but

“G” has a higher cost) and can be greatly further reduced by

avoiding adding redundant KFs, which is not addressed yet

in our implementation.

We also show in Fig. 9(c) one of the most complex stages,

building the symbolic Hessian, whose complexity clearly

also depends on NR but not on the size of the map. In

contrast, updating the sparse Jacobian structures with new

observations is a completely constant-time operation, as seen

in Fig. 9(d).

Therefore, we have demonstrated the functionality of our

constant-time implementation of an algorithm for main-

taining all the STs of an RBA graph, together with a

submapping-like policy for edge creation. The latter is,

however, just one possibility and further research is required

to fully exploit the potential of the SRBA framework and to

compare the accuracy of RBA solutions to classic GBA.

2The tool designed to generate large simulated datasets has been made
available as open source at:
http://code.google.com/p/recursive-world-toolkit/

3Playlist on YouTube: http://goo.gl/kP7IS
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(b) Update of symbolic spanning-trees
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(c) Symbolic Hessian construction

� �� �� �� �� �� �� �� �� �� ��

���

�

���

���

��	

���

�

���

���


�� 
���� ����
�
�

�
��

�
��
��
�
�
�
��
�
��
�
�
��
�
�
�

(d) Update of symbolic sparse Jacobians

Fig. 8. (a) Number of processed observations and landmarks over time (time indices are KFs). (b) Computational cost (in milliseconds per new KF)
of running the proposed algorithm for ST maintenance. Letters correspond to the robot path locations highlighted in Fig. 9. (c) Cost (in milliseconds)
of building our symbolic Hessian from sparse Jacobian structures. (d) Time spent on growing our sparse Jacobian data structures (in microseconds per
observation). All times are for a single-threaded program running on an Intel i5 2.9GHz.
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Fig. 9. The test dataset world 4.3M 3loops consists of a 55 ·103 KFs path
comprising three long loop closures. A total of 3.78 · 106 observations are
generated from a synthetic world with 4.37 ·106 landmarks. Thin blue lines
are corridor-like pathways where landmarks (not shown here) concentrate,
while the thick black line is the path described by the robot.
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