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Abstract

This paper introduces a dataset gathered entirely in
urban scenarios with a car equipped with one stereo
camera and five laser scanners, among other sensors.
One distinctive feature of the present dataset is the
existence of high-resolution stereo images grabbed
at high rate (20 fps) during a 36.8 km trajectory,
which allows the benchmarking of a variety of com-
puter vision techniques. We describe the employed
sensors and highlight some applications which could
be benchmarked with the presented work. Both
plain text and binary files are provided, as well
as open source tools for working with the binary
versions. The dataset is available for download in
http://www.mrpt.org/MalagaUrbanDataset.

1 Introduction

Applying the scientific method to computer vi-
sion and Simultaneous Localization and Mapping
(SLAM) implies being able to perform rigorous
benchmarking of the different algorithms in order to
determine their suitability and relative performance.

The interest of the community in this sense is
clear, given the number of projects and work-
shops devoted to the topic [Bonarini et al., 2006,
Sturm et al., 2012]. One of the best known

SLAM dataset is the Sydney Victoria park dataset
[Guivant and Nebot, 2001], which is however lim-
ited to 2D range-bearing mapping. The project
Rawseeds [Bonarini et al., 2006] also aimed at pro-
viding indoor and outdoor datasets with visual infor-
mation. More recent releases that include images of
urban areas [Geiger et al., 2012, Peynot et al., 2010]
or both images and laser data of park-like zones
[Smith et al., 2009] have also received the attention
of the community, clearly reflecting the demand for
this kind of releases.

In comparison to previous datasets, and as sum-
marized with Table 1, we claim that the present
work provides a unique combination of (i) multiple
laser scanners pointing in various orientations and
(ii) high-rate (20 fps) and high-resolution (1024×768)
stereo images of good quality (e.g. minimal motion
blur). In addition, a significant part of our dataset
reflects dynamic environments with real-life traffic,
thus becoming a challenging testbed for SLAM, vi-
sual odometry and object detection methods.

The structure of this paper is as follows. Section
2 addresses the configuration of the vehicle, next we
describe each employed sensor and finally section 3
presents the dataset itself.
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Dataset GPS GT IMU
Laser

scanners
Images Path length

New College (2008) and
Oxford city center

[Cummins and Newman, 2008]
X × × × Mono.: color 640 × 480@ ∼ 1 fps

College: 2 km
City: 28 km

New College (2009)
[Smith et al., 2009]

X × X 2
Stereo: b/w 512 × 384@20 fps

Ladybug: 5 × (color 384 × 512@5 fps)
2.2 km

Rawseeds datasets (2009)
[Ceriani et al., 2009]

X X X 4
Front: color 320 × 240@29.95 fps
Omni.: b/w 640 × 640@15 fps
Trino.: b/w 640 × 480@15 fps

Indoors: 0.89 km
Outdoors: 1.9 km

Málaga 2009 dataset
[Blanco et al., 2009]

X X X 5 Stereo: color 1024 × 768@7.5 fps 6 km

MIT DARPA
[Huang et al., 2010]

X X X 13
Mono.: 4 × (color 376 × 240@10 fps)
Mono.: color 752 × 480@22.8 fps

90 km

The Marulan datasets
[Peynot et al., 2010]

X X X 4 Mono.: b/w 1360 × 1024@10 fps ∼ 1 km

Karlsruhe sequences
[Geiger et al., 2010]
[Geiger et al., 2011]

X X X × Stereo: b/w 1344 × 391@10 fps 6.9 km

Ford campus
[Pandey et al., 2011]

X X X 1 Omni.: color 1600 × 600@8 fps ∼ 6 km

KITTI
[Geiger et al., 2012]

X X X 1
Stereo: b/w 1392 × 512@10 fps
Stereo: color 1392 × 512@10 fps

∼ 50 km

Málaga Urban dataset
(this work)

X × X 5 Stereo: color 1024 × 768@20 fps 36.8 km

Table 1: A comparison of some previous datasets regarding the presence (X) or not (×) of GPS sensors,
ground truth (GT), inertial units (IMU), the usage of laser scaners, the kind of cameras on the vehicle and
the dataset path lengths.

2 Vehicle setup

2.1 Physical characteristics

In order to be able to navigate outdoors in a safe
way throughout typical urban scenarios we decided
to employ a common Citroen C4 car, shown in Fig-
ure 1. All the sensors were installed in a modified
roof-rack, designed for a flexible placement of het-
erogeneous devices. This configuration allows us to
drive among the city traffic without restrictions.

Two computers were also installed inside the vehi-
cle to cope with the computational and storage band-
width requirements. All the electrical power for com-
puters and sensors was obtained from the vehicle’s
own power system.

We recorded data from an overall of eight sensors:
one stereo camera, five laser scanners, one inertial
measurement unit (IMU) and one GPS receiver.

Figure 2 schematically illustrates the placement of
each sensor on the vehicle, with approximate (hand-
measured) coordinates shown in Table 2. The local

frame of reference is set such that the positive x axis
always points forwards and z points upwards, as cus-
tomary in mobile robotics.

Next we briefly describe the relevant characteristics
of each sensor and the reasons for their inclusion in
the dataset.

2.1.1 Stereo camera

Color imaging was provided by a Point Grey Re-
search’s Bumblebee 2 stereo camera, configured to
capture images at its maximum resolution of 1024×
768 at 20fps. As opposed to our previous dataset
[Blanco et al., 2009], the usage of a stereo camera
instead of two independent ones assures a precise
synchronization in both image streams. The camera
gain and white-balance control were left in automatic
mode.

Once one determines the camera intrinsic parame-
ters, the rigid mounting of the two CCD sensors in-
side the camera and the use of a fixed focal distance
lead to a reliable calibration that is not affected by
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Sensor x (m) y (m) z (m) yaw (deg.) pitch (deg.) roll (deg.)

CAMERA1 0.785 0 0.273 0.057 0 −8.2 0

XSensMTi 0.400 0.040 0.000 0 0 0

GPS DELUO 0.155 0.069 0.004 n/a n/a n/a

LASER1 (Rear SICK) −0.023 0 0.097 −180 0 0

LASER2 (Front SICK) 0.536 0 0.093 0 0 0

HOKUYO1 (Front) 0.536 0 0.273 0 21.4 0

HOKUYO2 (Right) 0.075 −0.489 0.055 −90 0 −90

HOKUYO3 (Left) 0.075 0.489 0.055 90 0 90
(n/a: not applicable)

Table 2: Summary of approximate sensor positioning on the vehicle. Refer to Figure 2.

(a)

(b)

Figure 1: The instrumented vehicle employed for col-
lecting the dataset: (a) general view and (b) close-up
of the sensors.

Figure 2: Side and top views, respectively, of the
relative positions of sensors on the vehicle’s roof-rack
structure. Compare to Figure 1(b). Not to scale.
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shocks and vibrations. Although the dataset includes
all camera calibration parameters, we also publish a
collection of raw stereo images of a checkerboard to
allow the reader applying different calibration meth-
ods.

This camera was placed pointing forwards and
slightly tilted up, to avoid capturing part of the ve-
hicle chassis. Despite the small parallax obtained
during navigation from forward-looking cameras, we
decided to use this configuration for its interesting
applications in detecting other vehicles, pedestrians,
traffic lights, etc.

2.1.2 Laser scanners

The vehicle was equipped with five laser scanners:
three Hokuyo UTM-30LX and two SICK LMS-200.
The former are small, energy-efficient scanners with
a range of 30 meters and a field of view of 270◦. With
an angular resolution of 0.25◦, they provide nominal
accuracies of 30mm and 50mm for distances below
and above 10 meters, respectively. The latter mod-
els, manufactured by SICK for industrial use, are
considerably heavier, more robust and more energy
demanding. In turn, their working range extends up
to 80 meters and are less prone to detecting “phan-
tom points” near sharp edges, a problem occasionally
found in range data from the Hokuyo sensor.

Regarding the placement of the scanners onboard,
they can be divided in three groups:

• The two SICK scanners sense in the horizontal
plane. These data may be useful for 2D SLAM
for parts of the trajectory that are flat enough.

• Two lateral Hokuyo sensors provide a vertical
scanning of the vehicle surroundings.

• Finally, one Hokuyo scanner is placed pointing
forwards and tilted down, in order to sequen-
tially scan the road ahead the vehicle, e.g. for
detecting obstacles.

The two scanners (SICK and Hokuyo) pointing for-
wards may find applications to detection algorithms
that fuse visual and range information.

2.1.3 IMU

Inertial sensors based on inexpensive MEMS tech-
nology are present nowadays in many portable de-
vices such as tablets or smartphones. Therefore, it
seems reasonable to try to explore the possibilities
that these sensors create for improving visual odom-
etry or visual SLAM methods.
To endow our dataset with this kind of information

we installed an xSens MTi inertial unit on the vehicle.
It was firmly attached to the roof structure like all
the other sensors, thus the angular velocities sensed
by the device can be accurately assigned to the rest
of sensors as well, disregarding the negligible effects
of the structure elastic deformations during the drive.
With a rate of 100 Hz, the measurements provided

by this device include:

• 3-axis acceleration. We have experimentally
measured its static error, which has a standard
deviation of σacc ≈ 0.05m/s2.

• 3-axis instantaneous angular velocity. Its exper-
imental angular velocity error has been found to
be σgyro ≈ 0.4◦/s, while systematic errors were
noticed for yaw (rotations around the Z axis) in
the order of ∼ 0.6◦/s.

• Attitude dead-reckoning in 3D, as provided by
the internal filter implemented by the manufac-
turer.

2.1.4 GPS receiver

We also installed a consumer-grade, low-cost GPS re-
ceiver on the car, with a two-fold purpose: (i) provid-
ing approximate positioning for a better understand-
ing of the whole trajectory traversed in this dataset
(see Figure 3), and (ii) offering realistic GPS data
for usage in visual SLAM applications aimed at the
automotive industry.
This sensor provides positioning data at 1 Hz dur-

ing the whole dataset, with the exception of a few
unavoidable segments (“urban canyons” and dense
groves) were the signal was too weak to provide good
localization.
Two additional industry-grade GPS receivers were

also installed in the vehicle (mmGPS devices from
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Figure 3: An overview of the complete trajectory, as reconstructed from GPS data. A zoomable version is
available online.

Topcon, the two cylindrical yellow devices in Fig-
ure 1), but positioning information was not avail-
able from these receivers during the recording of the
dataset. However, frames with GPS timing informa-
tion were collected from both receivers in order to ac-
curately synchronize the local clocks of the two com-
puters. By grabbing satellite timestamps from two
identical receivers in both computers we have been
able to establish a least-square fit of the mapping be-
tween the reference GPS time and the local clocks.
More importantly, this mapping provides an accu-
rate way of merging the partial datasets grabbed in
each machine during an offline postprocessing stage.
Interestingly, we found out that not only the local
clocks had an offset (as could be expected) but that
they exhibit a small drift (6.06 µs/s and 83.33 µs/s,
respectively), which has been corrected in the pub-
lished dataset.

2.2 Software

The vehicle is equipped with sensors of quite different
types, each generating data at different rates. Thus,
the software intended to record the data logs must be

capable of dealing with asynchronous streams from
the sensors. For this purpose, we employed the data
logger application rawlog-grabber, as we also did for
previous datasets [Blanco et al., 2009].

This program launches one thread for each indi-
vidual sensor. Then, each thread splits the sensory
data into their corresponding natural discrete pieces
(called observations), e.g. a complete 2D scan for
laser scanners, and marks them with timestamps.
Since our system does not run on a real-time OS, we
have to assure that no observation is lost by creating a
FIFO queue for each thread, then merging all of their
outputs into a thread-safe timestamp-sorted queue,
which is periodically pushed to a binary “rawlog”
file. We chose binary log files for their bandwidth
efficiency in contrast to other pure-text formats. Af-
terwards, we have post-processed the binary logs to
generate plain text logs for the convenience of read-
ers.

Collecting large images (1024 × 768) at real-
time without dropping frames presented an addi-
tional challenge, because hard-disk bandwidth is not
enough for saving raw images, while lossy compres-
sion solves the issue but introduces a high computa-
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Sensor label Count Duration (sec) Actual rate (Hz) Nominal rate (Hz)
CAMERA1 113082 5654.6 19.998 20
GPS DELUO 11244 5653.0 1.989 1
HOKUYO1 225416 5654.62 39.864 40
HOKUYO2 225631 5654.62 39.902 40
HOKUYO3 225510 5654.62 39.880 40
LASER1 398531 5315.58 74.974 75
LASER2 404487 5498.11 73.568 75
XSensMTi 549816 5498.15 100.000 100

Table 3: Summary of grabbed data from each sensor. The actual rates shown here are the average values
obtained as the ratio count/ duration.

tional burden. Our approach consisted in paralleliz-
ing the latter task by creating additional threads with
the sole purpose of compressing images in a high-
quality format (JPEG format, quality=95).

3 Dataset summary

The following paragraphs describe the most relevant
characteristics and statistics about the presented
dataset. However, accessing to the supplementary
material online1 is recommended for having a better
insight about its content.

3.1 Description

The dataset was recorded as a single sequence during
a car trip throughout different urban areas of Málaga,
with a total duration of ∼93 minutes. An overlaid
impression of the GPS-reconstructed path over a map
of the city is provided in Figure 3.
Observations from all sensors were recorded at

their maximum nominal rates. These values, along
with the actual average rates obtained from the
logged stream of data, are shown in Table 3. The sim-
ilarity of actual and nominal rates means that only
a tiny fraction of sensory data was dropped for most
sensors (mostly due to corrupt frames for communi-
cation errors), with the worst case being the sensor
LASER2 (front SICK laser) for which a 1.9% of all

1See: http://www.mrpt.org/MalagaUrbanDataset.

frames were lost. An overall of 2.2 millions of indi-
vidual observations were collected.
Regarding the trajectory followed during the

recording, we can split the dataset into the following
segments or epochs (within parentheses, the starting
and end points measured in minutes since start):

• Epoch 1 (0–6min): Four loops within the park-
ing lot of the Computer Science School of the
University of Málaga. This area was also
recorded 13 months earlier for a previous dataset
with a different camera [Blanco et al., 2009],
making this segment ideal for testing place recog-
nition algorithms.

• Epoch 2 (6–10min): Driving towards a nearby
suburb, crossing one under-construction road.

• Epoch 3 (10–52min): One of the main parts of
the dataset, in which North-West Málaga sub-
urbs (“El Cónsul” and “El Romeral”) are trans-
versed several times including nested loop clo-
sures. The car underwent a parking maneuver-
ing during minutes 17–19. Traffic lights and take
overs also appear in this segment.

• Epoch 4 (52–60min): A trip towards downtown,
traversing a highway-like road. In contrast to the
velocity range of 20–40 km/h (12.4–24.9 mph)
in the other epochs, in this segment the vehicle
moves faster than 50 km/h (31 mph).

• Epoch 5 (60–93min): Another of the most in-
teresting segments, since it includes several loop
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closures in downtown. Here we find the highest
traffic density for the entire dataset.

As an additional tool to help the interested reader
to pick relevant segments from the dataset we cre-
ated a video index (see Figure 5), available online2.
Apart from camera images, the video shows a 3D
point cloud reconstruction of the environment from
the vertical laser scanners and GPS data as a gross
estimate of the ground truth path. Some snapshots
of the obtained scenarios can be also seen in Figure 4.
In order to make working with the dataset easier, it

has been further divided into 15 smaller sequences or
extracts, illustrated in Figure 6. A video is also avail-
able online for each individual sequence, such that
they can be easily inspected. Next, we enumerate
the length in seconds of each extract and provide a
brief description of its contents:

1. Straight path in the faculty parking (39 s).

2. Through an under-construction road (92 s).

3. Three-quarters of a turn in a roundabout (41 s).

4. Crossing a roundabout, some traffic (32 s).

5. Loop closure (∼ 1.7 km) in a straight avenue
(240 s).

6. Loop closure (∼ 1.2 km) around building blocks
(230 s).

7. Loop closure (∼ 0.7 km) around a small avenue
(106 s).

8. Long loop closure (∼ 4.5 km) (501 s).

9. Through the campus boulevard, with some traf-
fic (50 s).

10. Multiple loop closures in a suburb area (865 s).

11. High-way incorporation, some traffic (144 s).

12. Long avenue (∼ 3.7 km), dense traffic (443 s).

13. At downtown. Dense traffic and pedestrians
(1572 s).

2http://www.youtube.com/watch?v=tM5BSLKUSxU

14. Direct sun conditions at a parking area (112 s).

15. Direct sun conditions at a suburb area (69 s).

Although all sensory data are provided in plain-
text format, it is worth mentioning that two
ready-to-use applications (named RawLogViewer and
rawlog-edit) are provided to inspect, filter or split
binary log files. These programs are already shipped
within modern Debian and Ubuntu GNU/Linux dis-
tributions as part of the package mrpt-apps. Ex-
ample C++ source code is also available online for
readers interested in parsing binary logs.

3.2 Challenges

We found that a particularly challenging problem
during the recording of outdoor images was the ap-
pearance of vertical smears caused by direct sun ex-
posure. After several attempts at different dates we
obtained, in a cloudy day, the present dataset which
exhibits a minor occurrence of such smears. Another
challenging aspect of the images, from the point of
view of computer vision, is the dynamic gain control
of the camera which may introduce hurdles to feature
tracking algorithms. Anyway, we believe that these
challenges are intrinsic and unavoidable for any real-
world problem where cameras are to be placed on
vehicles for navigation in uncontrolled, outdoor sce-
narios. In order to allow researchers to easily compare
diverse robust techniques against this kind of prob-
lems, we released two short dataset extracts (num-
bered #14 and #15) with direct sun exposure.

4 Conclusions

We have presented a dataset whose most relevant
component is the presence of high-rate and high-
resolution stereo video in unmodified urban scenarios.
The authors believe that the mobile robotics commu-
nity will find it specially suited for benchmarking of
visual odometry, visual SLAM and appearance-based
recognition methods. Moreover, the presence of sev-
eral laser scanners enables Lidar-vision object detec-
tion and recognition within realistic traffic situations.

Page 7 of 11



Authors’ draft version. To appear in “The International Journal of Robotics Research”, 2013 (C) SAGE.

(a) t=1278s

(b) t=3732s

(c) t=3983s

Figure 4: Three sample screenshots from the dataset: (left) 3D reconstructions from vertical laser scanners
and GPS-only information, (right) images from the stereo camera in the same places.
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Figure 5: A view of the dataset video index, which
simultaneously displays: (top-left) raw video frames,
(bottom-left) the current location of the vehicle over
the city map and (right) local 3D point cloud from
laser scanners.
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is shown together with aerial urban images for reference. Refer to the online material for color images and
interactive maps.
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