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Abstract

This article presents a new approach to matching occupancy grid maps by means of finding corre-
spondences between a set of sparse features detected in the maps. The problem is stated here as a
special instance of generic image registration. To cope with the uncertainty and ambiguity that arise
from matching grid maps, we introduce a modified RANSAC algorithm which searches for a dynamic
number of internally consistent subsets of feature pairings from which to compute hypotheses about the
translation and rotation between the maps. By providing a (possibly multi-modal) probability distribu-
tion of the relative pose of the maps, our method can be seamlessly integrated into large-scale mapping
frameworks for mobile robots. This article provides a benchmarking of different detectors and descriptors,
along extensive experimental results that illustrate the robustness of the algorithm with a 97% success
ratio in loop-closure detection for ∼ 1700 matchings between local maps obtained from four publicly
available datasets.

1 Introduction

Occupancy grid maps, introduced into the mobile robotics community almost three decades ago [11], are
a very valuable geometrical representation for map building of planar environments [15, 16, 36]. In this
representation, the space is arranged into a metric grid of cells, each one storing the probability of being
occupied by obstacles. These maps can be employed in the context of large-scale, hybrid metric-topological
map models [5, 8, 12], where each node of a topological graph represents a local metric map, e.g. a set of
visual landmarks or a grid map.

An important requirement of hierarchical mapping approaches is to detect whether two local maps cor-
respond to the same physical place and, in that case, to compute the relative transformation between those
maps (namely, detecting loop closures). Solving loop closure in a hierarchical framework, the purpose of the
method presented in this work, implies coping with a number of hurdles such as noise in the robotic sensor,
ambiguity (different parts of the environment can be indistinguishable) and dynamic scenarios (the map of
an area may change over time).

Instead of using grid maps alone, we have adopted a dual representation of local maps where both
occupancy grids and point maps are maintained. As described in [29], this approach has a number of
advantages since these maps complement each other and their maintenance only requires updating both
maps simultaneously with the same sensory data.

Correspondingly to this dual representation, our approach for aligning a pair of local maps consists of two
differentiated steps: (i) the grid maps are firstly matched without any a priori information, then (ii) the point
maps help to refine the matching. Our discussion will preeminently focus on the first step, the grid-to-grid
matching, since the registration of point maps is a well understood topic with efficient solutions such as
ICP [2]. Furthermore, this second step only has to refine an estimation already close to the real solution
while the grid-to-grid matching has no such advantage and thus poses a far more challenging problem.

We propose to estimate the transformation between a pair of grid maps by registering the corresponding
map images, the grayscale images resulting from interpreting grid cells as pixels and occupancy probabilities
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as gray levels. Since in robotic applications we can select the grid cell size, we can focus on matching maps
with identical cell sizes only. Therefore, a pair of maps can be only related by a rigid transformation, fully
determined by a 2-d translation plus a rotation, disregarding scale changes.

In general, image registration techniques can be classified into those based on intensity and those based
on the extraction of interest points – refer to [38] for an extensive review. Although the former approach has
been already applied to grid map matching [16], there is no previous work based on feature extraction, which
is known to be more efficient computationally and therefore more appropriate for being integrated into real-
time mapping frameworks. In spite of the existence of previous works devoted to analyzing the performance
of different visual feature detectors [14] and descriptors [27], we present in this work a benchmark which
specifically addresses their behavior for grid map images.

Our approach represents an important contribution due to the reporting of a robust method for finding
the transformation between map images in the form of a Sum of Gaussians (SOG). This probabilistic rep-
resentation allows coping with multiple hypotheses and therefore to consistently integrate the method into
robotic mapping frameworks, most of them based on probabilistic Bayesian inference [37]. Our probabilistic
approach is therefore in contrast to previous works on robust image registration based on vote-counting in
the space of transformation parameters [33]. Within mobile robotics, Duckett and Nehmzow [10] reported a
method very similar to ours, which also obtains a SOG for potential matches between grid maps. However,
their work assumes an accurate knowledge of the absolute orientation of the robot (i.e. it should be equipped
with a compass), hence our proposal has a broader applicability to practical situations.

The present work is also related to research in multi-robot mapping, since the map merge problem can
be seen there as a special instance of the detection of loop closures in single robot mapping. In that field,
a method with a similar purpose to ours has been reported in [3], but it does not consider the possibility of
multiple hypotheses in the map merge, and a rough comparison of typical execution times has revealed that
our method is about 100 times faster.

The rest of the article is organized as follows. In the next section we introduce an overview of our method.
A thorough discussion on different detectors and descriptors is provided then in Sections 3 and 4, respectively,
which are benchmarked in Section 5. The robust matching method, discussed in Section 6, requires a Gaussian
model for the optimal rigid transformation for subsets of correspondences, which is discussed in Section 7.
Finally, experimental results validate our approach with maps from four publicly available datasets. We must
remark that a C++ implementation of the proposed algorithm has been released under the open source GNU
General Public License1.

2 Overview

Our overall method is summarized in Fig. 1. Firstly, map images are preprocessed to soften out the irregu-
larities commonly found in grid maps, which can be seen as high-frequency noise. Interest points (features)
are then detected in these filtered images and descriptors computed to model their surroundings. Obviously,
the choice of a particular interest point detector and descriptor will determine the performance of our whole
method. After comprehensive experiments (refer to discussion in Section 5) we have determined that either
the Harris [17] or the Kanade-Lucas-Tomasi ( [24,34]) detectors, in combination with a descriptor consisting
of a circular patch centered at the feature, provide the best performance in terms of both maximizing the
distinctiveness and reducing the computational cost.

Once features have been extracted from map images, a set of all the candidate correspondences C between
features in both images is determined by means of a measure of similarity between their descriptors (as
explained in Section 4.2). Due to ambiguity in maps it is common for a given feature to have several
candidate correspondences. From all those candidates, a modified RANSAC algorithm obtains subsets of
internally consistent hypotheses Ci ⊂ C by imposing uniqueness (each feature must correspond up to just
one in the other map) and the rigid transformation constraint (the relative position of features must be the
same in both maps). The uncertainty of all the variables is accounted for during the whole process, thus
all the decisions are taken upon stochastic tests. Unlike the standard RANSAC algorithm [13], we propose
to keep not only the solution with the largest number of supporting inliers but a dynamic number of them.

1See http://www.mrpt.org/Application:grid-matching
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Figure 1: An overview of the proposed method for map matching, which aligns a pair of maps each comprising
a grid map and a point map. It firstly registers the grid maps to obtain a set of potential transformations
q, which are then refined employing the point maps and ICP-based alignment. The result is a probability
density distribution for the actual q in the form of a mixture of Gaussians.
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Each of these detected hypotheses leads to a particular rigid transformation, which is modeled as a Gaussian
distribution over the space of translations and rotations.

The general form for the probability distribution of the rigid transformation q between two maps, as a
Sum of Gaussians (SOG), can be written down as:

p(q) =
∑

i

N (q;q⋆
i ,Qi)ωi (1)

where each ωi weights a Gaussian kernel centered at q⋆
i with covariance matrix Qi and such that

∑

i

ωi = 1.

The distribution p(q) can also be expanded using the law of total probability over all the potential sets of
correspondences Ci as follows:

p(q) =
∑

∀Ci

p(q|Ci)P (Ci) (2)

Comparing Eq. (1) to Eq. (2) it is clear that we can choose P (Ci) as the SOG weights ωi and model the
density of q (given a set of correspondences Ci) as a Gaussian distribution, that is:

p(q|Ci) = N (q;q⋆
i ,Qi) (3)

The parameters of this distribution (its mean and covariance) will be derived in Section 7.
Finally, we should remark our proposal to simplify the SOG distribution generated by the RANSAC stage.

This means that, whenever possible, two or more Gaussians are replaced by just one with the appropriate
mean and covariance such that it closely covers the same volume than the original pair. We will follow here
the method proposed by Runnalls [30]: only those simplifications whose Kullback-Leibler divergence (KLD)
between the original and tentative simplified densities is below a threshold will be admitted. One of the
reasons to simplify the SOG is reducing as much as possible the cost of the following refinement step, in
which ICP [2] is applied to the point maps in order to improve the estimate of the mean map transformation
q⋆. The resulting SOG is then tested again for further potential simplifications, obtaining the final, possibly
multi-modal, density distribution for the map transformation.

3 Extraction of features

In this section we review some well-known image feature detectors and motivate the need for pre-processing
the map images in order to improve the detection process.

3.1 Interest-point detectors

In a typical indoor occupancy grid map we can easily identify natural features produced by scene elements,
like corners, columns or, in general, any sharp edge. They also appear in some outdoor maps originated by
vertical poles, building corners, vehicle edges, etc. These natural landmarks are suitable for matching maps
of the same areas since they naturally occur in the environment and they are typically static.

All those interest points can be detected by interpreting the grid map as a grayscale image, the map image,
and applying existing key-point detectors. The most desirable property of any detector is its repeatability,
that is, its ability to detect a given feature when it appears in different images.

We are interested in the performance of the following four methods:

• The Harris detector [17], which searches for points where the structure tensor has two large eigenvalues,
revealing the existence of corners.

• The Kanade-Lucas-Tomasi (KLT) method ( [24, 34]) also relies on the structure tensor. It detects
salient points where one of the eigenvalues exceeds a given threshold.

4



• The detection phase of the SIFT algorithm [23], which identifies scale-space extrema in pyramids of
difference-of-Gaussians. This method aims at detecting blobs instead of corners [26].

• The detector of SURF, based on an approximation to the Hessian matrix [1].

There exists an issue in map images which affects the process of feature detection and needs to be handled
appropriately. Grid mapping from laser range scans typically generates some artifacts in the maps which can
be interpreted as high-frequency noise in the image (e.g. those arising from a single ray of the scans). To
prevent the detection of spurious interest points in the middle of free-space, we propose to pre-process the
images by applying first a Gaussian filter and then a median filter to attenuate most of the irregularities.
Next we explain how we have tuned each filter for optimal detection performance.

3.2 Characterization

The set of maps employed in this characterization (available online2) consists of 10 pairs of grid maps from
real robot data. We must remark that the maps represent real loop-closure situations with partial overlap
and small differences in the grids caused by noise and different viewpoints of the robot. Since hundreds of
key points are detected in each of these grids, our overall characterization can be considered significant from
a statistical point of view.

In order to evaluate the repeatability of each interest point detector we have applied it to both maps in
each pair, and then counted the number of common detected features, i.e. the same feature must be detected
in both grid maps. The correct pairings were obtained then from ground truth transformations between the
pairs of maps, computed manually. To avoid a bias in our results due to the number of detected points, we
have limited the number of interest points to a fixed value proportional to the extension of each grid map (a
typical value of 0.015 features per square meter is appropriate for all the maps employed in our comparison).

The results are summarized in Figure 2 for each detector and for different values of Wg and Wm, the
sizes of the Gaussian and the median filter, respectively. The values Wg = 0 and Wm = 1 correspond to a
null filter in each case, thus the cases of applying just one of the filters (or none of them) have been also
accounted for.

Observe how blob detectors (SIFT and SURF) perform well for large filter sizes (that lead to more
“softened” images), whereas corner detectors (Harris and KLT) have good repeatability for slightly filtered
images or even for maps not filtered at all (refer to KLT results in Figure 2). Figure 3 shows an example
of the different filters required by each detector to perform optimally. The best filter configuration for each
detector has been employed in the benchmark presented in Section 5.1, and the corresponding overall number
of matches can be seen in Figure 6(f).

4 Descriptors

4.1 Review

Once the key-points are detected they are assigned distinctive descriptors in order to establish correspon-
dences. We have studied the performance of the following five image descriptors 3.:

• SIFT: This method is based on histograms of image gradients [23], obtaining a 128-length descriptor
vector.

• SURF: Based on the responses of Haar-wavelets as described in [1].

• Intensity-domain spin images (Spin): A 2D histogram of intensities and distances [22], with the
maximum radius from the interest point determined by the parameter Rmax. The usage of distances
(disregarding angles), makes this descriptor rotation invariant.

2Refer to the website http://www.mrpt.org/Paper:Occupancy_Grid_Matching
3OpenCV implementations have been used for all the feature detectors and descriptors mentioned in this paper, except for:

(i) the SIFT method for which we rely on Hess’ implementation [19] and (ii) the lin-polar descriptor, coded by the authors and
released within OpenCV 2.0
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Figure 2: A measure of the repeatability for each detector and for different sizes of the Gaussian (Wg) and
median (Wm) filters used to smooth the map images. Brighter colors indicate a higher number of common
features detected in both maps.
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Figure 3: One of the maps from the dataset, filtered with a Gaussian and median filter of sizes Wg and
Wm, respectively. Detected interest points are marked with small squares for the Harris and SIFT detectors.
Notice how each method detects a different kind of features (corners or blobs), hence the different filtering
requirements.
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Figure 4: Example of matching features with different orientation. (a) An arbitrary reference feature fa
1 is

highlighted in map a, and two potential pairings f b
1 (the real correspondence) and f b

2 are marked in map b.
(b)–(c) The similarity between the feature descriptors is displayed as the distance function d(fi, fj ,∆φ) for
the cases of using the lin-polar and log-polar descriptors, respectively. Notice the pronounced minimum of
the distance for the case of the real correspondence fa

1 ↔ f b
1 close to the 180◦ relative rotation. We must

remark that hundreds of different discrete orientations have been evaluated in this figure with the purpose of
generating a clear illustration, while in practice as few as eight discrete orientations are enough for achieving
excellent discrimination.

• Linear or logarithmic circular patches: These two descriptors have many similarities, hence we
discuss them here together. Both map a circular region of radius Rmax centered at the interest point
into a 2D matrix (the descriptor) of polar coordinates. Let this matrix be denoted by f(u, v), where the
indices u and v stand for different values of the distance and the angle from the feature, respectively.
The idea is to extract a circular patch of the neighborhood of the feature in a representation which is
not invariant to rotations, but where these rotations become just shifts in the angle dimension (v), as
illustrated with the examples in Figure 4(b)–(c). The only difference between the linear polar descriptor
(lin-polar for short) and its logarithmic version (log-polar) is the usage of a linear or logarithmic scale
in the distances.

Next we address the problem of measuring the similarity between descriptors, a requisite to evaluate their
distinctiveness.

4.2 A Similarity Function Between Descriptors

Given a pair of descriptors fai and f bj for two keypoints i and j from maps a and b, respectively, we are
interested in measuring their similarity. For the SIFT, SURF and Spin descriptors the most natural measure
is the Euclidean distance between the descriptor vectors. However, the cases of lin-polar and log-polar deserve
more discussion since they are not directly invariant to orientation.

As illustrated in Figure 4, the descriptors of two matching features only differ by a shift in the angular
dimension. Therefore, we propose to measure the distance between two descriptors fi and fj by their Euclidean
distance, given a rotation ∆φ, that is:

d (fi, fj ,∆φ) =

(

∑

u

∑

v

|fi(u, v)− fj(u, v +∆φ)|2
)

1

2

(4)

where the angular polar coordinate v is taken modulo the corresponding size of the matrix.
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Figure 5: A schematic illustration of the distance between descriptors dij and the index δij , which measures
those distances relative to the closest one for each given feature i. Note that, by definition, the best pairing
is always assigned a value δij = 0. A pairing will be accepted only if it is below both thresholds Td (absolute)
and Tδ (relative to the minimum distance).

By computing the distance in Eq. (4) to a pair of descriptors fai and f bj we obtain a distance vector for
each possible shift in orientation ∆φ. As shown in Figure 4, these distance vectors have pronounced minima
for the true orientation when two features do really match, thus we propose to measure the inter-feature
distance in the cases of lin-polar and log-polar as:

d (fi, fj) = min
∆φ

d (fi, fj ,∆φ) (5)

For all the descriptors in our comparison we have normalized distances to the range [0, 1] in order to keep
homogeneity in the results presented in the next section.

5 Evaluation of detectors and descriptors

5.1 Benchmark

After defining a similarity measure for pairs of descriptors in Section 4.2, we are interested in obtaining a set
of candidate correspondences between the features of two maps a and b, given their descriptors fai and f bj . The
goodness of all the potential correspondences must be evaluated such as only the most promising pairings
(those passing a given test) are considered as candidates. It is acceptable for each feature to have multiple
potential correspondences in the other map, since a subsequent robust matching step (such as RANSAC [13])
can easily manage that ambiguity.

The arguably simplest test for selecting matchings is thresholding, which in our case means to accept a
potential match between fai and f bj only if the distance dij between their descriptors is below a fixed value Td.
However, this simple scheme has some drawbacks in the context of grid matching, because distance values
between actually corresponding pairs may vary in a relatively large range. Thus, any permissive threshold
Td which covers most of the good correspondences would suffer from a high rate of false positives.

Following an idea similar to Lowe’s proposal in [23] we introduce a second condition for establishing
candidate pairings: the associated distance dij must be not only below the threshold Td, but also sufficiently
close to the best matching of fai in map b, that is, the minimum of dij for all values of j (see Figure 5).
This restriction is characterized by a second threshold Tδ which states the maximum acceptable distance δ
between a potential pairing and the best one, that is, δij = dij −minj dij . Notice that for the extreme case
Tδ = 0 each feature will be associated to only one in the other map: the one with the closest descriptor.
Both measures dij and δij are illustrated with an example in Figure 5 for clarity.
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Figure 6: The benchmark of feature detectors for grid map matching. (a)–(d) Four examples of the expected
Perr for different values of thresholds Td and Tδ. The point with the minimum Perr is marked with a cross in
each figure. We have also shown the marginal conditional distributions for the distance d and the distance-
difference δ for valid (v) and wrong (w) associations are shown on the right hand of each subfigure. (e) For
each combination of detector and descriptor, the resulting overall probability of classification error Perr for
its best thresholds, i.e. that marked with a cross in (a)–(d), along with its average computation time for one
map. (f) A measure of the repeatability for each detector.
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A benchmark has been carried out to obtain the optimal values for the thresholds Td and Tδ from a
training set of 10 pairs of submaps with known ground-truth and for several combinations of detectors and
descriptors. Optimal thresholds have been determined by minimizing the probability Perr of misclassifying
a correspondence as a valid or an invalid candidate, given by:

Perr(Td, Tδ) = P (w)Perr(Td, Tδ|w) + P (v)Perr(Td, Tδ|v)
= P (w)P (dij < Td, δij < Tδ|w)
+ P (v) [1− P (dij < Td, δij < Tδ|v)] (6)

which can be evaluated given knowledge of the joint densities p(d, δ|v) and p(d, δ|w), where v and w stand
for valid and wrong pairings, respectively. The expression above can be easily derived by noticing that a
misclassification will occurs when: (i) a distance dij passes both thresholds and it was a wrong association
(first term in the sum), or (ii) a valid pairing does not pass the thresholds (second term). For our analysis
we assume no a priori information about the probability of being in a valid or invalid pairing, thus we have
P (v) = P (w) = 1/2. The joint conditional densities p(dij , δij |v) and p(dij , δij |w) have been estimated from
histograms generated by evaluating all the potential pairings in the 10 pairs of submaps, which amounts to
220 valid and 240,000 invalid correspondences.

The results of the benchmark are summarized in Figure 6(e) which shows the minimum classification
error Perr attainable by each combination of feature detector and descriptor, along the associated average
computation time (for one whole submap). These times include detection, descriptor extraction and distance
computations, but they do not include the preprocessing filters discussed in Section 3.2. This preprocessing
would add an average of 10 to 200ms, with larger computational burdens associated to SIFT and SURF since
they require larger filter kernels than the Harris or KLT methods.

Please, notice that for those descriptors parameterized by a maximum radius Rmax (see Section 4.1)
we present the results only for the value that minimizes the classification error. However, this is a non-
critical parameter since any value in the range 1 − 3 meters gives very similar results. The angular and
radial resolutions of the lin-polar and log-polar descriptors were set to 8 and 6 bins, respectively. Increasing
these parameters would in theory make them more distinctive but in practice the impact was little, thus we
employed the minimum values that do not degrade performance significantly.

5.2 Discussion

The first important conclusion we can extract from our comparison is that no descriptor can tell valid pairings
from wrong ones with a classification error below ∼ 20%, which is clearly a consequence of the ambiguity of
features in map images where many look quite similar locally. Still, discarding ∼ 80% of the wrong pairings
provides an invaluable improvement to the subsequent robust matching algorithm (see Section 6), since it
will have to deal with a reduced fraction of outliers.

It is interesting to note that the SIFT and SURF descriptors have a much poorer performance when
computed for interest points localized by the Harris or the KLT detectors (third to sixth values in the bar
graph) than when computed as proposed in their original methods (the first two values in the graph). As
commented in Section 3.1 and illustrated in Figure 6(f), this has important consequences for the practical
applicability of those descriptors to grid matching, since the original SIFT and SURF detectors have poorer
repeatability than the Harris and KLT methods. Subsequently, we discard the usage of these two descriptors
as the optimal solution since they lead to quite similar error ratios (Perr) than the other descriptors while
severely reducing the number of matched points and implying a higher computational burden, as can be seen
in Figure 6(e).

In Figure 6(a)–(d) it is represented the computed Perr(Td, Tδ) for some selected methods along the
marginal distributions obtained in our benchmark. Observe how the marginal p(δij |v) presents a clear
peak at the origin (δij = 0) for all the methods, which indicates that the closest feature is often the actual
correspondence 4. However, this is not always the case, hence the optimal Tδ values are not exactly zero.

Notice that the worst obtained value for Perr (0.5, represented in white in the graphs) is obtained for
a wide range of threshold values, while more reduced error ratios only appear for a certain band of the

4Recall that, by definition, δij = 0 means that feature fj has the minimum distance to feature fi.
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Algorithm 1 robust transform (C, {pAi }, {pBj }) → SOG

1: SOG ⇐ ∅

2: iter ⇐ 1
3: repeat // RANSAC iterations
4: Ĉ ⇐ {ck1

, ck2
} ⊂ C|uniqueness(ck1

, ck2
)

5: if D2
M (ck1

, ck2
) < χ2

c,1 then // Consistency test

6: if ∃k|Ĉ ⊂ SOGk.Ĉ then // Already in?
7: // Increment the weight
8: SOGk.ω ⇐ SOGk.ω + 1
9: else

10: // It is a new SOG mode
11: Ĉo ⇐ Ĉ // Save original minimal set
12: repeat // Incorporate inliers
13: Ĉt ⇐ Ĉo ∪ (i⋆, j⋆) // Tentative set of pairings
14: (q⋆i ,Q

⋆
i ) ⇐ opt transf(Ĉt) // See Eqs.(10),(15)

15: (i⋆, j⋆) ⇐ argmax(i,j)
∫

pi(ξ)p̃j(ξ)dξ
16: if D2

M (i⋆, j⋆) < χ2
c,2 then

17: Ĉ ⇐ Ĉ ∪ (i⋆, j⋆) // Accept pairing
18: end if
19: until D2

M (i⋆, j⋆) ≥ χ2
c,2

20: if |Ĉ| ≥ M then // Minimum inlier support
21: // New Gaussian mode with ω = 1
22: (q⋆i ,Q

⋆
i ) ⇐ opt transf(Ĉ) // Use Eqs.(10),(15) with final set

23: SOG ⇐ SOG ∪ (Ĉ, 1, (q⋆i ,Qi))
24: end if
25: end if
26: end if
27: iter ⇐ iter + 1
28: until iter > maxIters // With maxIters computed as in [18]

parameters (represented by darker areas). The thickness of these bands is related to the distinctiveness of
the descriptors, as can be observed in the densities of descriptor distances for valid and wrong pairings (the
histograms at the right hand of each Perr graph). For instance, compare the histograms p(d|v) and p(d|w)
for the SURF and the Spin descriptors in Figure 6(a)-(c), where it is clear that in SURF the histograms
concentrate in relatively different areas (easing the decision of where to place the threshold) whereas this is
definitively not the case for the Spin descriptor.

As a final conclusion from our benchmark, the lin-polar and log-polar descriptors, both with virtually
identical performance, emerge as the best choices for grid matching in combination with either Harris or KLT
detector, due to their reduced misclassification probability and faster computation time.

6 Construction of the SOG: the modified RANSAC algorithm

Subsets of self-consistent correspondences Ci ∈ C can be extracted with RANSAC, a consensus-based
method to tell inliers from outliers [13]. However, in our problem it is not enough to keep the hypothesis
with most supporting inliers since ambiguity in grid matching can lead to multiple mutually incompatible
but internally consistent subsets Ci. We propose instead to maintain each of those hypotheses as a Gaussian
mode in the SOG (refer to Eq. (2)), hence the need to modify the RANSAC algorithm to allow the existence
of multiple hypotheses.

Next we describe the complete process, which has been also specified in Algorithm 1 for clarity. Firstly,
two correspondences (the minimum number required to unequivocally determine the distribution of the
associated map transformation p(q|Ci)) are randomly chosen from C to initialize the subset Ci = {ck1

, ck2
}
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(line 4 of the algorithm). The uniqueness constraint is tested first, that is, in a valid pairing one given feature
cannot appear in both correspondences ck1

and ck2
simultaneously. Then, the feasibility of this pair is tested

by a chi-square test (line 5) which detects inconsistencies between the inter-feature spatial distances da and
db measured in the two maps a and b (refer to the example in Fig. 7(a)). As shown in the Appendix, if

(d2a − d2b)
2

8σ2(d2a + d2b)
< χ2

1,c (7)

holds, we can accept that the distances are consistent within a confidence of c, where χ2
n,c stands for the

inverse chi-square cumulative distribution with n degrees of freedom.
Next, it must be determined the number of inliers supporting the hypothesis p(q|Ci) defined by each set of

initial pairings Ci. This is achieved by establishing associations between all the features in map b and those
in a transformed by q. Notice that this is a stochastic data-association problem since all feature locations,
and the transformation itself, have associated uncertainties.

A robust method for stochastic data association is the Joint Compatibility Branch and Bound (JCBB) [28],
but unfortunately its exponential time complexity makes it impractical for our problem, where each map will
typically contain about one hundred features.

Our alternative, detailed in Algorithm 1, consists of sequentially incorporating (lines 12–19) matches
which optimize the integral of the product of the two Gaussians, which can be interpreted as the likelihood
of the two points sharing the same position in space – that is, it is the matching likelihood [7] of the pairing.
The incorporation of inliers stops when the next best pairing candidate (i, j) has a squared Mahalanobis
distance D2

M (i, j) above a given threshold χ2
c,2.

The above process is repeated a number of times updated dynamically as new inliers are found, as
described in [18]. Regarding the weights of the SOG, each Gaussian mode is initially assigned a unit weight,
which is incremented each time the same subset of correspondences is found in subsequent iterations (lines
6–8). An optimization of this approach is to test whether the two first correspondences Ci are already part of
another Cj, and in that case, to increment the weight ωj. This heuristic is justified by the observation that
the same set of self-consistent pairings will be obtained if the two first ones were different but belonging to
the final subset.

Notice as well the existence of a minimum number of required inliers M in order to accept a hypothesis
(line 20 of the algorithm). In our experiments, this threshold has been heuristically set to a ∼ 15% of the
average number of features found in each map. This restriction prevents the detection of spurious hypotheses
with very few supporting inliers caused by pure chance when two maps do not really match.

7 Uncertainty of the Optimal Transformation

Given a set of point correspondences from a pair of maps, it is well-known that a closed-form solution exists
for finding the rigid transformation between them that is optimal in the sense of least mean square error
(LMSE) ( [2, 20, 25]). We contribute here with a derivation of the uncertainty associated to this optimal
solution with the purpose of making our formulation usable within probabilistic localization and mapping
frameworks. Taking such uncertainty into account is essential, since the position of any feature is always
prone to error, mainly because of the discrete nature of maps and because of the limited precision of the
interest point detectors (in the order of one pixel, that is, the size of one grid cell – typically in the range
of 5 to 20 centimeters for mobile robot grid maps). Additionally, the spatial distribution of features on the
map is crucial to the precision in the transformation, as discussed at the end of this section.

Given a certain set of feature correspondences Ci, we model the probability density of a rigid transforma-
tion between maps q = [x y φ]⊤ as a Gaussian distribution, that is:

p(q|Ci) = N (q;q⋆
i ,Qi) (8)

where q⋆
i and Qi represent the corresponding mean and covariance matrix, respectively. In the following we

derive expressions for the parameters of this distribution. The basic idea is to take the optimal solution for the
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map transformation as the mean of the Gaussian, while the covariance matrix is approximated by uncertainty
propagation through a first-order Taylor series approximation of the resulting function, as explained below.

Let pa
k = [xa

k yak ]
⊤ and pb

k = [xb
k ybk]

⊤ be the position of the k ’th feature in maps a and b, respectively.
Then, given a set Ci of correspondences, i.e. pairs of map feature indices in each map (ia, ib), we can define
the squared error of the feature matching for any rigid transformation q as:

ECi
(q) =

∑

∀(ia,ib)∈Ci

∣

∣pb
ib
− (q⊕ pa

ia
)
∣

∣

2
(9)

where ⊕ represents the pose composition operator [4]. In the 2-d case, the optimal transformation q⋆
i =

[x⋆
i y⋆i φ⋆

i ]
⊤ that minimizes this error can be obtained by equaling to zero the derivative of Eq. (9) with

respect to the transformation q, which leads to the closed-form solution [25]:

∂ECi
(q⋆

i )

∂q
= 0 →

q⋆
i =











x̄a − x̄b ∆x√
∆2

x+∆2
y

+ ȳb
∆y√

∆2
x+∆2

y

ȳa − x̄b ∆y√
∆2

x+∆2
y

− ȳb ∆x√
∆2

x+∆2
y

tan−1
(

∆y

∆x

)











(10)

where x̄a, ȳa, x̄b, and ȳb are the means (average values) of the vectors xa, ya, xb, and yb, respectively, which
contain the 2-d coordinates of features within maps a and b. We have also introduced the auxiliary scalar
terms ∆x and ∆y, defined as:

∆x = N

(

∑

k

xa
kx

b
k +

∑

k

yaky
b
k

)

−N2
(

x̄ax̄b + ȳaȳb
)

∆y = N

(

∑

k

yakx
b
k −

∑

k

xa
ky

b
k

)

+N2
(

x̄aȳb − ȳax̄b
)

(11)

with N = |Ci| standing for the number of pairings in Ci.
The optimal transformation in Eq. (10) can then be seen as a function q⋆

i = q(z) of six auxiliary variables,

which we can stack into the vector z =
[

x̄a ȳa x̄b ȳb ∆x ∆y

]⊤
. In order to estimate the covariance matrix

Qi that models the uncertainty of the optimal transformation we use first-order uncertainty propagation,
for which it is firstly needed the multivariate Gaussian distribution of the vector of auxiliary variables z.
This vector is a function of the 2-d coordinates of all the features xa, ya, xb and yb (which all are known
input data). Assuming that these coordinates are corrupted with an additive, zero-mean Gaussian noise with
known covariance matrices Xa, Ya, Xb and Yb, we can approximate the covariance of z by:

Σz = Jz









Xa 0 0 0
0 Ya 0 0
0 0 Xb 0
0 0 0 Yb









J⊤
z (12)

Since z depends on the whole set of feature coordinates, the Jacobian matrix Jz = ∂z
∂{xa,ya,xb,yb}

has

a dimensionality of 6 × 4N . In despite of the large size of the matrices involved in Eq. (12), important
simplifications are possible because of the following properties of the feature covariances:

• Since in most feature detectors each point is detected independently, Gaussian errors in the coordinates
of different features are uncorrelated.

• As a consequence of this independent detection, all features may be assigned the same covariance.
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Figure 7: Four sets of correspondences between two synthetic maps a and b for different spatial distributions
and number of detected features. Here, the position uncertainty for all the features has been set to σp = 0.10
and ellipses represent 95% confidence intervals. The inter-feature distances measured in the different maps,
da and db, as employed in Eq. (7), are shown in (a) as an example.
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• It is plausible for most interest point detectors to assume an isotropic distribution for the localization
errors.

These assumptions are widely accepted in the computer vision literature [9, 31, 32, 35]. To sum up, it
seems plausible to accept that Xa, Ya, Xb and Yb are diagonal matrices with the same variance for all the
coordinates, which we will name σ2

p. By replacing the covariance matrices by their values in Eq. (12) we end
up with the following diagonal matrix:

Σz = σ2
p

[

1
N
I4 04×2

02×4 βI2

]

(13)

with β given by:

β = N2(N − 1)
(

σ̂2
xa + σ̂2

ya + σ̂2
xb + σ̂2

yb

)

(14)

where the constants σ̂2
xa , σ̂2

ya , σ̂2
xb and σ̂2

yb represent the unbiased estimates of the variance for their corre-
sponding vectors.

At this point we can proceed with the derivation of the covariance of q⋆
i . By computing the Jacobian of

Eq. (10) with respect to z, Jq =
q
⋆
i

∂z
, it follows that the covariance Qi is proportional to the uncertainty of

the individual features σ2
p, that is:

Qi = JqΣzJ
⊤
q = σ2

p





C11 C12 C13

C12 C22 C23

C13 C23 C33



 (15)

where the matrix terms are given by:

C11 =
2

N
+ β

(

x̄b∆y + ȳb∆x

∆2
x +∆2

y

)2

C22 =
2

N
+ β

(

x̄b∆x − ȳb∆y

∆2
x +∆2

y

)2

C33 =
β

∆2
x +∆2

y

C12 = β

(

x̄b∆y + ȳb∆x

) (

ȳb∆y − x̄b∆x

)

(

∆2
x +∆2

y

)2 (16)

C13 = β
x̄b∆y + ȳb∆x
(

∆2
x +∆2

y

)
3

2

C23 = β
ȳb∆y − x̄b∆x

(

∆2
x +∆2

y

)
3

2

To illustrate some results for this covariance estimation, the transformations computed from four sets of
feature correspondences are shown in Fig. 7, along with their 2-d uncertainty ellipses for [x⋆

i y⋆i ]
⊤ and the

densities of φ⋆
i . These examples illustrate some interesting properties of the resulting uncertainty. Firstly,

the uncertainty in the orientation φ⋆
i strongly depends on the spatial distribution of the features, since more

precise estimations can be made from features distributed over larger areas. This can be clearly observed
by comparing the two cases shown in Fig. 7(b)–(c). Secondly, the uncertainty in the 2-d coordinates of
q⋆
i decreases with the number of features N only for very low values of N . This can be explained by the

term 2
N

becoming negligible in the expressions for C11 and C22 where the second term does not decrease for
increasingly larger values of N .
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In order to validate our model of the covariance Qi, we have evaluated the Kullback-Leibler divergence
between our model and the covariance obtained from a Monte-Carlo simulation comprising 6 pairs of corre-
spondences between randomly located features corrupted with Gaussian noise. The results, in Fig. 8, reveal
that the experimentally obtained covariance approaches the theoretical model as the number of Monte-Carlo
trials increases.

At this point, we have described a closed-form, optimal solution for the map transformation and derived
a Gaussian approximation to its associated uncertainty for any given set of correspondences. The derived
expressions are needed during the RANSAC stage discussed in Section 6, specifically in the step denoted as
opt transf in the Algorithm 1.

8 Results

In this section we present experiments aimed at testing the robustness of our approach. For all these results
we have employed the Harris corner detector and the linear-polar descriptor to establish correspondences
between 10cm resolution grid maps.

8.1 Performance under errors and noise

Maps built by a mobile robot at different moments in time may present significant differences due to both
dynamic objects and errors in the robot localization while mapping. To quantify the accuracy of our method
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Figure 8: The Kullback-Leibler divergence between our theoretical model for the covariance Qi and its value
from a Monte-Carlo simulation for an increasing number of trials. Confidence intervals are shown for the
KLD since the values at each point were computed for 50 different maps generated by randomly positioned
features.
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Figure 9: Characterization of our method under the presence of localization errors (σp) and laser sensor errors
(σl). The average error in the map transformation (from the most likely Gaussian mode in the SOG) and
the average number of matches between the pair of maps are shown by the thick plot, while the ±1-sigma
confidence intervals are represented by the shaded region.

against such differences we have matched a reference map, built from real data, to a transformed one with
known ground-truth translation and rotation – see the left column in Fig. 9.

Two sources of errors have been evaluated. Firstly, the estimated robot path in the environment (which in
turn determines the accuracy of the map itself [16]) has been deliberately corrupted by Gaussian noise with
a standard deviation of σp. As σp increases, so does the degradation of the test map, as illustrated in the top
row of the figure. It can be seen how the corresponding errors in the map transformation as detected by our
method increases with larger σp, which is explained by both the more erroneous locations of detected features
and their more reduced repeatability, shown in the rightmost column of the figure. Note that repeatability
is a desired property of any feature detector since it assures that the same physical point is detected in two
different maps in spite of potential changes in orientation or minor differences in the feature surroundings.
For completeness, we also repeated this experiment with a standard RANSAC implementation. Notice that
since in this test map there exist no chances for multi-hypothesis matching (that is, the map does not present
a real ambiguity) the accuracy of standard RANSAC should match that of our method, and indeed this is
what we verified.

Secondly, we also evaluated the effects of noise in the laser scanner ranges, characterized by a standard
deviation of σl. As reflected by Fig. 9 our method is less sensitive to this kind of error, probably because the
preprocessing of map images smooth out part of the noisy measurements.

We must remark that the error and noise levels probed in this characterization are much higher than
those expected in real-world conditions (the ranges of realistic values are marked in the graphs). Therefore,
the errors of our method under normal conditions are expected to be below 10cm, approximately.

8.2 Performance in Loop-closure detection

The following benchmark characterizes the performance of our method in its natural application to hierar-
chical SLAM [5, 12], that is, in detecting loop closures from local, metric submaps. For this aim we have
selected four publicly available datasets. Three of them, the Freiburg campus dataset, the Intel dataset and
the MIT dataset are published in the Radish repository [21], while the fourth was collected by the authors
at the Málaga campus5. See Fig. 10 for example submaps from each dataset.

All these datasets have been processed within our Hybrid Metric-Topological (HMT) SLAM framework,
presented elsewhere [5]. In this framework, the original sequence of robot observations is grouped into
segments of consecutive observations (the submaps) according to a natural metric of similarity [6]. For

5Available online at http://www.mrpt.org/Malaga 2006 campus dataset
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Figure 10: (a)–(c) Some examples of map-to-map matchings as detected by the proposed method. (d) A pair
of submaps for which a multi-modal transformation is detected. The two different hypotheses are represented
by the overlay of the submap #20 over submap #18 in the right hand images.

Table 1: Results for the loop-closure detection benchmark.

Result Disregarding ambiguity

True positives 97.56% (40/41) ·
False positives 3.47% (58/1670) 1.38% (23/1670)

True negatives 96.53% (1612/1670) 98.62% (1647/1670)

False negatives 2.44% (1/41) ·
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convenience, we disabled topological loop closure detection in this framework to obtain the raw sequence of
submaps in each dataset. Among them, some areas will appear several times corresponding to loop closures.

The so obtained set of 59 submaps is an ideal testbed for the method proposed in this article, since we
can now try to match each submap with the rest, including those in different datasets (from which no valid
transformation should result). The detailed results of executing the 1711 map-to-map matchings are shown
in Fig. 11, where each entry in the table specifies the outcome from our method and whether the two maps
actually do correspond or not, that is, it shows the loop closure ground truth (obtained by human inspection).
Notice that there are two possible kinds of errors in this experiment: false positives (our method detecting
a loop closure that does not really exist) and false negatives (where a real loop closure is overlooked). In
global SLAM the former is far more important because a single false positive may completely ruin the map.
However, note that in HMT-SLAM candidate false positives may be not that critical as long as they can be
discarded if the uncertainty of the metric information is not too high [5].

As can be seen in the figure, our method correctly detects as non-matchings virtually all the cases where
each submap belongs to a different dataset. Two datasets deserve additional attention. Firstly, the Intel
dataset leads to several false positives, which is explained by the symmetry of the environment, i.e. all its
submaps are very similar. Secondly, the Málaga 2006 campus dataset also suffers from many false positives,
most of them attributable to the environment consisting of an array of three exactly identical buildings.
These are the kind of potential error that, as mentioned above, can be easily discarded in a posterior stage
by checking the consistency of the loop closure hypothesis and the metric information within a hierarchical
map.

The overall performance is also summarized in Table 1, where for the sake of a fair validation we do not
count the elements in the main diagonal of Fig. 11 (matching each submap to itself), which were correctly
detected by our method. It is remarkable that only one loop closure out of 41 was not recognized (a ∼ 2.4%
fail rate). We also show in the table the ratio of false positives modified by disregarding the errors clearly
attributable to a real repetitive environment, not to errors in our detection method.

Regarding the computation time of this benchmark, it took 1740 seconds to compute the 1711 matchings
in a Pentium Core Duo @ 2.2GHz (using a single execution thread), yielding an average 1.02 seconds per
match. Notice that this includes the detection and descriptor extraction phases, not only the descriptor
matching.

9 Conclusions

In this article we have proposed a new approach to grid matching, based on existing computer vision tech-
niques (detectors and descriptors) and providing the modifications required by the ambiguity typically found
in our problem by means of a multi-hypothesis RANSAC stage. The resulting method has been demonstrated
to assess a 97% success ratio in detecting loop closures while also being reliable against sensor noise and errors
in the robot positioning. In contrast to previous works, our proposal does not rely on an accurate knowledge
of the robot heading, thus making it suitable to a larger number of real-world SLAM problems. Also, by
keeping the probabilistic nature of the problem throughout the whole process, potentially including multi-
modal distributions, our method has important and direct applications to hierarchical robot map building of
large scale environments.

A Pairings test of consistency

In the following we derive the test for the hypothesis that a given pair of features in maps a and b do
actually match. Our statistical test relies solely on the rigid-body constraint that dictates that both inter-
feature distances d2a and d2b , measured in each map, must be equal. Note the usage of squared distances due
to convenience during the derivation. A schematic illustration of these distances can be observed with an
example in Fig. 7(a).

Following the assumptions presented in Section 7, the uncertainty in the feature points is modeled by a
2-d isotropic Gaussian with a standard deviation of σ. Then, each of the squared distances d2i is:

d2i = |pi,1 − pi,2|2 = (xi,1 − xi,2)
2 + (yi,1 − yi,2)

2 (17)
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Figure 11: Results of the loop closure benchmark. The submaps corresponding to each of the two datasets
have been separated by thick lines and inter-dataset blocks have been shaded for clarity.
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and by means of linear uncertainty propagation we can model each d2i as a Gaussian with mean d̄2i and
variance σ2

d2

i

= JΣJ⊤, where J stands for the Jacobian of Eq. (17) and Σ is the covariance of the feature

point coordinates. It is clear, assuming independence for the coordinates, this covariance amounts to σ2I4,
thus by replacing the values of the Jacobians we obtain:

σ2
d2

i
= σ2JJ⊤ = 8σ2d̄2i (18)

Having the distribution of each variable d2i , we can define the auxiliary variable z as the difference between
the two squared distances, that is, z = d2a−d2b. Under the hypothesis of the pairing to be valid, both distances
da and db should be equal, thus z should be null. This allows us to test the hypothesis with a confidence c
by means of the following chi-square test:

χ2 =
(d̄2a − d̄2b)

2

8σ2(d̄2a + d̄2b)
< χ2

1,c (19)

where χ2
n,c is the inverse of the chi-square cumulative distribution function with n degrees of freedom. In the

denominator it has been also used the fact that the variance of z is the sum of the variances of the individual
squared distances.
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[4] José-Luis Blanco. A tutorial on se(3) transformation parameterizations and on-manifold optimization.
Technical report, University of Malaga, September 2010.

[5] Jose-Luis Blanco, Juan-Antonio Fernández-Madrigal, and J. Gonzalez. Towards a Unified Bayesian
Approach to Hybrid Metric-Topological SLAM. IEEE Transactions on Robotics, 24(2):259–270, 2008.

[6] Jose-Luis Blanco, J. Gonzalez, and Juan-Antonio Fernández-Madrigal. Subjective local maps for hybrid
metric-topological SLAM. Robotics and Autonomous Systems, 57(1):64–74, 2009.
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